
achieving high performance
by targeting multiple paral-
lelism mechanisms
Michael McCool is an Associate Professor at the Uni-
versity of Waterloo and is also a co-founder and Chief
Scientist of RapidMind, Inc., which produces a unified
development platform for multicore processors and
many-core accelerators. His background includes ex-
perience with and research publications in real-time
computer graphics, medical imaging, hardware design,
parallel computing, compiler design and implementa-
tion, and mathematics.

Michael.McCool@rapidmind.com

r e c e n t ly, p r o c e s s o r v e n d o r s h a v e
begun increasing performance by adding
additional cores, rather than increasing the
performance of a single core. The addition
of multiple cores augments several other
parallel hardware mechanisms already in
place on each core. These features create
the potential for increased performance,
but only if they are properly utilized. Pro-
grammers who disregard the underlying
design of the hardware in newer proces-
sors can actually produce code that runs
slower on a multicore processor. In this
article, I explain what these design features
are. I also discuss the underlying memory
models and the impact they have on pro-
cessing in a multicore context. Finally, I
present an example of a method of writing
abstract parallel code that allows a devel-
opment platform to do the heavy lifting of
implementing code for different processor
 architectures.

The trend toward increased hardware parallelism
results from several factors, but basically it is not
possible to scale clock rate owing to the excessive
power required, because power requirements grow
nonlinearly with clock rate. It is also simply not
cost-effective to use the very large number of tran-
sistors that can fit on a modern chip for only one
core. There just isn’t enough to do, and it takes too
long to get signals from one side of the chip to the
other.

Several recent multicore processor designs have
also used heterogeneous cores, in which some
cores are tuned for specific tasks or workloads. In
particular, not all processors have to be able to run
the operating system and the user interface; they
can instead be specialized for high-performance
computation. At their targeted workloads, special-
ized cores can be orders of magnitude more ef-
ficient in terms of space and power than general
cores. This is the case with the Cell BE processor
and with GPUs, the processors found in video ac-
celerator cards, for example. These processors also
use a relatively large number of cores (since each
core is simpler) and often provide more direct con-
trol over on-board memory, which is also a major
factor in performance.

; lo g i n : a PRi l 20 0 8 acH i e v i n g H i g H Pe RFo R M a n ce By ta Rg e ti n g Mu lti Ple Pa R a lle l i sM M ecH a n i sMs ��

M I c H A e l d . M c c O O l

�� ; lo g i n : vo l . 33, n o. 2

There are two major factors to consider when targeting high performance:
parallelism and memory access. First, hardware is naturally parallel, and
multicore processors make this painfully obvious. However, as we will dis-
cuss, there are in fact many hardware mechanisms already available besides
multiple cores that exploit parallelism, and the performance advantages of
these are multiplicative. To get the most out of modern processors and have
any hope of running well on future processors a massively parallel approach
needs to be considered from the start. Second, memory access can easily be-
come a bottleneck even on single-core processors and the problem is even
worse on multicore processors. To achieve even adequate performance on
modern processors, programming practices and data structures need to be
compatible with the structure of the memory system. Certain naive pro-
gramming practices that conflict with the memory system can easily drop
performance by one or even two orders of magnitude and can make it im-
possible to scale to a large number of cores.

Parallelism

Modern computer systems and processors actually use several forms of par-
allelism internally, in addition to multiple cores. To achieve maximum per-
formance, it is often necessary to target several of these forms of parallelism
simultaneously. This can be accomplished by designing parallel algorithms
in an abstract form first. Once a good parallel algorithm has been designed,
the abstract or “latent” parallelism in the algorithm needs to be decomposed
and mapped onto the concrete parallelism mechanisms available in the tar-
get hardware.

To understand this better, let’s review the various forms of parallelism sup-
ported in modern processors and summarize how to take advantage of
them.

muLTIPLe cores

The most obvious form of parallelism available in modern processors con-
sists of the multiple cores, of course. Every core is capable of executing inde-
pendent instruction streams. These cores may or may not share a common
memory subsystem. To make use of multiple cores, a workload needs to be
decomposed into multiple components and each component run on the vari-
ous cores. It is desirable to break the workload into equal-sized pieces so
that the cores are evenly loaded; otherwise some cores will finish early and
have to wait for the slowest core to complete. It may also be necessary to co-
ordinate work among the cores, so that access to shared data is done in the
right order. Because the number of cores can vary and is also increasing over
time, an approach to decomposing the work that is adaptable to different
numbers of cores is desirable. Data parallelism, which drives the decomposi-
tion by the structure of the data, is one approach that can accomplish this.
An alternative way to achieve parallelism is to use decomposition by task,
for instance, mapping different software modules onto different cores, al-
though usually there are a limited number of different tasks available. These
two approaches can be combined.

muLTIPLe Processors

When multiple processors are placed in a system, the number of available
cores is the sum of the cores in all the processors. It is necessary to auto-

matically distribute the work over all the available cores, even if they are in
separate processors. In addition, specific banks of the memory may also be
associated with specific processors, and in this case accessing the memory
associated with a specific processor will be more efficient from that pro-
cessor. This property is called Non-Uniform Memory Access (or NUMA for
short). For the best performance, it is useful to preferentially assign work
units to processors closest to the memory banks where the needed data is
located. This can be controlled by using processor affinity, which allows
particular threads to be preferentially run on particular cores (although one
has to be careful about the core numbering, since the mapping to physical
cores and processors varies among vendors).

vecTor INsTrucTIoNs

Many processors have special vector instructions that can operate on mul-
tiple elements of data at once. These are also called Single-Instruction Mul-
tiple Data (SIMD) operations. For instance, a processor may be able to apply
a single arithmetic operation to 4-tuples of numbers, and that operation will
take place in parallel on each element of the 4-tuple. A vector length of four
is typical for single-precision floating point but it may be longer or shorter
on different processors or for different data types. Examples of such instruc-
tions include Altivec instructions on the PowerPC and the SSE instructions
on x86 processors. If these special instructions are not used the benefit of
this form of parallelism will not be realized. Also, different processors, even
within the same “family,” may support different instruction set extensions.
In particular, there are several generations of SSE instruction set extensions
on x86 processors.

Instruction Pipelining

Many operations, in particular floating-point operations, may take multiple
clock cycles to complete. The hardware breaks such operations into several
stages, like an assembly line. For example, consider a floating-point addi-
tion. This is a surprisingly complex operation. Floating-point numbers are
represented as in binary scientific notation, with both an exponent and a
mantissa. To add two floating-point numbers, it is necessary to (1) compute
the difference of the two exponents, (2) shift the mantissa of the smallest
value down by this difference to align the “binary” point, (3) add the aligned
mantissas, (4) shift the result mantissa so that it is in normalized form (with
a leading 1), (5) round the result, and (6) renormalize the result (shifting
down by one bit) if the highest bit was rounded up. This process can be im-
plemented with separate hardware units for each step, with one unit feeding
its result to the next on every clock pulse. As in an assembly line, several
“jobs” (instructions, in this case) can be in the pipeline at the same time, as
all the stages can operate in parallel. However, if an instruction depends on
a previous result, then that instruction cannot begin until the result of the
previous instruction is available. To keep the pipeline operating at maximum
efficiency, there must be a large number of independent instructions avail-
able. If independent parallel tasks are available, they can be interleaved to
avoid dependencies among instructions.

suPerscALAr INsTrucTIoN Issue

Many processors can also start (“issue”) multiple instructions in the same
clock cycle, as long as they do not depend on each other or use the same

; lo g i n : a PRi l 20 0 8 acH i e v i n g H i g H Pe RFo R M a n ce By ta Rg e ti n g Mu lti Ple Pa R a lle l i sM M ecH a n i sMs ��

�� ; lo g i n : vo l . 33, n o. 2

hardware resources. For example, it might be possible to issue an instruc-
tion for an integer multiply and a floating-point addition in the same cycle,
since they use separate hardware resources (with one using the integer mul-
tiplier and the other the floating-point adder).

Some processors will automatically issue multiple instructions simultane-
ously whenever possible. This is typical of mainstream desktop and server
CPUs, which often have two-way or four-way superscalar instruction issue.
Long instruction words may also be used to explicitly specify multiple op-
erations at once. The latter approach is called a Very Long Instruction Word
(VLIW) architecture. Current ATI/AMD GPUs are examples of the VLIW
architecture, in which every core can issue five floating-point operations and
one branch operation in every instruction. The Cell BE SPE cores can also
be considered to have a VLIW architecture: Each instruction “pair” can issue
one four-way SIMD floating-point operation and one integer, branch, or
load/store operation in parallel.

As with pipelining, latent parallelism in an algorithm specification can be
used to create independent instruction streams to make best use of this
hardware feature.

AsYNcHroNous memorY TrANsFers

Data can typically be transferred in and out of on-chip memory in parallel
with computation, as long as the computation does not depend on the re-
sult of the transfer. This can be used to hide the latency of memory trans-
fer. Different processors have different mechanisms for this; on CPUs, cache
prefetching instructions are used. Prefetch instructions indicate that the
contents of a given memory address in DRAM should be copied into cache
in advance of when it will be used. On GPUs and the Cell, DMA transfers
must be specified explicitly to move data between on-chip memory and ex-
ternal DRAM. In either case, to exploit this form of parallelism, the need for
the data stored in a given memory location must be anticipated.

sImuLTANeous muLTITHreADING (HYPerTHreADING)

Some processors are able to run multiple threads on a single core. These ad-
ditional threads look as though they are running on two or more “virtual”
cores per real, physical core. In many ways, this can be considered an alter-
native interface to some of the other mechanisms for hardware parallelism
already noted. Sometimes these threads are used to generate additional in-
structions for superscalar issue; sometimes the processor time-slices between
the threads or switches between the threads on a memory stall in order to
hide latency when data needed by a particular thread needs to be fetched
from main memory. It is important to understand that simultaneous multi-
threading has very different performance characteristics from true multicore
threading: It is usually a mechanism for sharing virtualized resources, not
for accessing additional resources. It is important, therefore, to understand
how processor affinities map threads to both real cores and “virtual” cores.
Many times, if the code is carefully scheduled to use pipelining and super-
scalar issue, and to use prefetching, then multithreading on one core may
not add any additional benefit. However, if each thread has a lot of control
flow, it can be harder to schedule pipelined and superscalar code explicitly,
and in this case multithreading on one core can be beneficial.

AcceLerATors

Accelerators, which are additional non-CPU co-processors often with their
own dedicated memory, such as GPUs, can execute a computation in par-
allel with the host CPU. If an operation is invoked that targets an accelera-
tor, it is possible to start that operation asynchronously. Control can then
be returned to the host program immediately even if the computation on
the accelerator is not yet complete. The host process may then continue
with additional operations that can execute in parallel with the computa-
tion running on the accelerator. However, if the host tries to read the result
generated by an accelerator operation still in progress, the host process must
wait until the accelerated operation is complete.

memory

Multicore processors put a high demand on the memory system, and if care
is not taken to use the memory system carefully, it can quickly become a
bottleneck. The memory system consists of multiple types and forms of
memory with different performance characteristics. The most important
distinction is between on-chip and off-chip memory. On-chip memory is
small but very fast, whereas off-chip memory (typically implemented using
DRAM) is high capacity but slow. The number of clock cycles needed to read
a data element from memory is called its latency. On-chip memory typically
have single-digit latencies. Off-chip memory can have hundreds of cycles of
latency. Bandwidth is often much higher to on-chip memory as well.

Typically a core can only operate at full speed when operating out of on-chip
memory, which has a severely restricted capacity. Therefore on-chip memory
is a critical resource and needs to be carefully managed.

Different processors take different approaches to managing on-chip mem-
ory. Caches are an automatic approach that makes management of the on-
chip memory functionally invisible to the programmer. This is the approach
taken by most general-purpose processors. However, the programmer still
should take certain steps to make sure the cache performs well. In many
cases, more efficiency can be gained if the programmer has direct access to
and control of the on-chip memory, since then the use of this critical re-
source can be adapted to a specific application. This is the approach taken
by the Cell BE processor in its specialized high-performance SPU cores:
Each SPU core (out of eight total) has 256 kB of dedicated on-chip memory,
and data must be explicitly transferred to and from external DRAM.

cAcHe

Cache is a small, fast, usually on-chip memory in which copies of frequently
used data are stored temporarily. In fact, there is typically a cache hierarchy,
with very small, very fast cache memories right next to the processor that
are actually caching data from another, slower and bigger cache lower in the
hierarchy. Modern multicore processors can have up to three levels of cache,
and data is moved between them automatically in response to the memory
access patterns of the running program.

The purpose of cache is to reduce memory access latency on average. Reading
a data item from off-chip DRAM takes, from the processor’s point of view,
hundreds of cycles. It will take only a few cycles to read that same data from
cache. On every memory access, the processor checks whether a copy of the
needed data is in the cache. If it is not, then it must wait until a copy of the

; lo g i n : a PRi l 20 0 8 acH i e v i n g H i g H Pe RFo R M a n ce By ta Rg e ti n g Mu lti Ple Pa R a lle l i sM M ecH a n i sMs ��

�0 ; lo g i n : vo l . 33, n o. 2

appropriate memory item can be read from a lower, slower level of mem-
ory, ultimately from off-chip DRAM. If such cache misses happen very infre-
quently, then on average, the memory access latency is closer to the time to
read from the cache than to read from DRAM. Data is also transferred in
relatively large blocks (on the order of hundreds of bytes) from DRAM, to
amortize the overhead of setting up a memory transaction. A cache miss is
only taken on the first access to a block. Later accesses to the same block
will find the data already in the cache.

Eventually the cache fills up and blocks have to be replaced when space is
needed to handle a new cache miss. If the block to be overwritten has been
modified, it needs to be written back to main memory. Also, the hardware
needs to select which block to discard. This is done by some simple rule; for
instance, the block that has not been accessed for the longest time might be
the one replaced.

Unfortunately, certain programming practices can defeat the cache, and
cache may also not benefit some applications.

First, if only one element is ever read from every cache block loaded, then
the cache is useless. In this case prefetching should be used to hide the
memory access latency. Prefetching allows the processor to request a cache
block sometime in advance of actually using it.

Second, as noted, data is actually transferred in blocks from main memory.
If one element in a block is touched, the whole block is brought into the
cache. If other nearby items in the same block are used by the program—
a property called spatial coherence—then additional cache misses can be
avoided. If they are not, then the bandwidth for transferring the rest of the
block has been wasted. Therefore, programmers should select algorithms
with good spatial coherence. Unfortunately, typical data structures based on
pointers between many small memory records are not very good for cache
performance. Pointer chasing leads to a lot of jumping around in memory
and often results in poor spatial coherence.

Third, the processor has to be able to quickly check if data is in the cache.
The hardware structure for this only allows a few locations in the cache
to be used to hold copies of a large set of elements in main memory. Typi-
cally the locations of the elements in this set are offset by powers of two. If
repeated accesses are made to the elements in the same set, they will fight
over a very limited set of slots in the cache, a situation called cache conflict.
The resulting cache thrashing, where items repeatedly replace one another, es-
sentially disables the cache and can severely degrade performance.

Finally, if writes are made to data stored in cache, this data needs to be writ-
ten back to DRAM eventually. Complications can arise if two cores with
separate caches write to the same block of memory, or if one tries to write
to a block another core is reading from. To maintain the illusion of a single
unified memory space, these cores then have to keep track of which proces-
sor has the most up-to-date copy of the block. This involves a lot of hidden
interprocessor communication, which can degrade performance. Some cache
coherency protocols give one core ownership of a block, and only the owner
may write to a block. However, if two cores simultaneously try to work on
the same block, they can end up fighting over who owns it, with disastrous
results for performance. This may occur even if the cores (or processors) are
actually trying to modify different locations in the same block, a situation
called false sharing.

These issues with cache are made more severe by multicore processors.
There are additional levels of cache to worry about, and the aforementioned

effects can occur at one or all levels. Issues such as cache coherency and
false sharing only arise in systems with multiple cores or processors. With
the advent of multicore processors, off-chip memory bandwidth is not likely
to grow as rapidly as on-chip computational performance, so off-chip band-
width is even more likely to be a bottleneck. Finally, if a thread is suspended
and restarted on a different core or processor, it will have to reload all its
data into the cache on that core, possibly displacing data used by another
thread. Yet another form of thrashing can take place between threads if to-
gether they need more data than will fit in the cache.

To avoid these issues, several steps need to be taken by the programmer.
First, data should be allocated aligned to cache boundaries, and nodes of
data structures should be padded if necessary to align to cache boundaries.
This may waste some memory space but will avoid false sharing. Also, data
structures that have good spatial coherence should be chosen over those
with an excessive number of pointers. For example, a B-tree is often better
than a simple binary tree, since a B-tree uses large, fixed-size blocks inter-
nally (which can be aligned to cache boundaries) and has a shorter number
of pointer jumps from the root to its leaves. Finally, offsets between data el-
ements that are a power of two should be avoided if possible. In image pro-
cessing and matrix operations, for example, power-of-two tile sizes should
be avoided by padding row lengths as necessary, because access to elements
in adjacent rows may accidentally cause a cache conflict. Unfortunately, ex-
actly what powers of two cause trouble and what alignments are needed vary
by processor and the cache structure it uses. Also, avoiding large power-of-
two offsets to avoid cache conflicts can be at odds with the desire to align
to small powers of two for cache blocking. Some odd multiple of the cache
block alignment should be selected.

exPLIcITLY mANAGeD memorY

Cache is automatic, which is useful for naive code. However, to avoid the
many issues that caches raise in multicore systems, some processors have
opted for explicitly managed local memory. This is the case with the Cell
BE processor, and also to some extent with GPUs (although current NVIDIA
GPUs actually have both cache hardware and explicitly managed local
memory).

In the Cell BE processor, each core gets a dedicated local memory. A sepa-
rate Memory Flow Controller (MFC) can be programmed to transfer data
to and from DRAM to this local memory, and also to and from other local
memories on the same chip. These transfers can take place in parallel with
computation.

A cache can still be simulated in software on such an architecture. Although
slightly slower than a hardware cache, a software cache can be sized and
tuned to the properties of the data structure it is caching. In particular, a
block size and replacement policy can be chosen that are most suitable for
the access patterns and data structures used.

Programming

We have now summarized the main hardware mechanisms available for
exploiting parallelism in modern processors and also the properties of the
memory system. It should be clear at this point that there is a lot “under the
hood.”

; lo g i n : a PRi l 20 0 8 acH i e v i n g H i g H Pe RFo R M a n ce By ta Rg e ti n g Mu lti Ple Pa R a lle l i sM M ecH a n i sMs �1

�� ; lo g i n : vo l . 33, n o. 2

Unfortunately, programming at this level of detail is very challenging, and
consequently it is rarely done. Also, portable software may not be able to
exploit a particular hardware feature, such as SIMD instructions, that is not
consistently implemented on all hardware targets. As a result, most portable
software is relatively inefficient.

The other point worth noting is that threading only targets a few of the lev-
els of parallelism noted, and if not properly managed it can lead to inef-
ficiencies in the memory system. Throwing a large number of threads at a
multicore system and letting them fight over resources is unlikely to pro-
duce optimal results. Instead, a thread should just be seen as a mechanism
for getting access to a single core, and then on that core appropriate steps
should be taken to manage the memory and exploit the other forms of paral-
lelism available. Steps should also be taken to avoid moving threads between
cores (to avoid cache thrashing) and to keep computations close to the mem-
ory banks they are accessing in NUMA systems.

There are now several software development platforms that seek to reduce
the complexity of programming multicore systems. The fundamental ob-
servation of these systems is that there are actually only two key abstract
design principles that need to be targeted: parallelism and data locality. In
particular, many mechanisms for implementing parallelism in hardware are
available, but if a large amount of latent parallelism is available at an abstract
level, it is not necessary for a programmer to target each mechanism individ-
ually. Instead, it is possible for a semiautomated system to map an abstract,
portable programming model to whatever is available. Likewise, if an inter-
face is provided in which the programmer can express an abstract version of
data locality, then it can be mapped onto what the physical memory hard-
ware requires.

To make this more concrete, we can look at an example from the RapidMind
platform, which does just this. RapidMind is based on three types that can
be used within standard C++, using existing compilers: values, arrays, and
programs. A value represents a scalar type (e.g., a number or Boolean), ar-
rays manage collections of data, and programs manage code. A sequence of
operations on values can be stored in a program, then applied to a collection
of data stored in an array.

First, we will declare some one-dimensional arrays to hold the data:

Array<1,Value1f> A, B;

We won’t bother sizing or filling these arrays with data here, although in a
real application this would have to be done.

Now we will construct a really simple example program to increment a
value:

Program p = BEGIN {
 In<Value1f> a;
 Out<Value1f> b;
 b = a + 1.0f;
} END;

In a real application, such programs might contain thousands of operations
and might include control flow, declarations of temporary variables (includ-
ing local arrays), random accesses into other arrays, any number of inputs
and outputs, and calls to C++ functions and other RapidMind programs.
RapidMind programs can be thought of as dynamically constructed func-
tions, for the most part.

Finally, we can apply the program to one of these arrays:

B = p(A);

This will apply the program to all the elements in A and place the result in
B. As it happens, this will execute in parallel.

Applying a function to an array is a very simple way of invoking a parallel
computation, conceptually. But what really goes on in the platform to ex-
ecute this operation efficiently, given everything that we have discussed so
far?

Conceptually, the parallelism intrinsic to this example is of the form shown
in Figure 1.

F i g u r e 1 : t H e a b s t r a c t P a t t e r n o F l a t e n t P a r a l l e l i s m
 s P e c i F i e d i n t H e e x a m P l e

The important thing is that the semantics of program application provides
a large amount of latent parallelism but has not constrained the order in which
these operations can be done or how they can be grouped. Therefore the code
generator and runtime system are free to reorganize them in any way that
makes sense. For example, suppose we are targeting a two-core machine
with a pipelined floating-point unit, four-way SIMD instructions, and two
cores. The platform could then automatically organize this same computa-
tion as shown in Figure 2.

F i g u r e 2 : a c o m b i n a t i o n o F c o n c r e t e P a r a l l e l m e c H a n i s m s ,
i n c l u d i n g s i m d i n s t r u c t i o n s , P i P e l i n i n g , a n d m u lt i c o r e
 e x e c u t i o n , t H a t c o u l d b e u s e d t o e x P l o i t t H e l a t e n t
 P a r a l l e l i s m s P e c i F i e d i n t H e e x a m P l e

Of course, if the hardware target changes, the code might have to be reorga-
nized in a different way. For instance, a target with more cores, or a differ-
ent SIMD width, might require a different decomposition. However, the code
is portable, since the programmer has not constrained the computation to
any particular ordering or decomposition. The code given here, for example,
runs on various flavors of x86 multicore processors, the Cell BE SPUs, and

; lo g i n : a PRi l 20 0 8 acH i e v i n g H i g H Pe RFo R M a n ce By ta Rg e ti n g Mu lti Ple Pa R a lle l i sM M ecH a n i sMs ��

�� ; lo g i n : vo l . 33, n o. 2

GPUs without change. Memory optimizations can also be made. The plat-
form will break the work into blocks and prefetch one block into on-chip
memory while working on another, work units can be broken into tiles that
are suitable for the memory architecture and cache alignment, and arrays
can be allocated with appropriate alignments and padding to avoid cache
conflicts and false sharing. More complex code would require more complex
transformations and management (e.g., control flow inside programs re-
quires load balancing), but the same general principles apply.

conclusion

Multicore processors are complex, but this complexity is in the form of sev-
eral mechanisms that all fundamentally depend on two things: parallelism
and data locality. It is possible to abstract away the complexity of multi-
core processors and still achieve high performance if abstractions are cho-
sen that allow the programmer to focus on structuring computations around
these two main concepts while not overconstraining the implementation. It
is then possible to automatically reorganize the computation to exploit the
various parallelism mechanisms available and optimize it for good memory
behavior.

ADDITIoNAL reADING

The Editor suggests additional reading from past ;login: articles:

[1] “Algorithms for the 21st Century,” by Steve Johnson:
www.usenix.org/publications/login/2006-10/openpdfs/johnson.pdf.

[2] “Multi-Core Processors Are Here,” by Richard McDougall and James
Loudon: www.usenix.org/publications/login/2006-10/pdfs/mcdougall.pdf.

[3] “Some Types of Memory Are More Equal Than Others,” by Diomedis Spi-
nellis: www.usenix.org/publications/login/2006-04/pdfs/spinellis.pdf.

