
2 ; LOG I N : VO L . 3 2 , NO . 6

R I K F A R R O W

musings
rik@usenix.org

WE LCOME TO TH E N I N TH S E CU R I T Y
edition of ;login:. As one of the authors in
this issuementions, the existence of a focus
issue on security is evidence that security is
still a concern.Of course,we all have plenty
of first-hand experience, and evidence, that
our computer security problems remain un-
solved. At best,we havemoved the goal-
posts a bit and redesigned the playing field.
But our computer systems appear to be as
insecure as ever.

Not that there hasn’t been progress. Go back to the
1990s, when UNIX and Linux systems included
exploitable services, running as root, out of the
box. Over time, Linux in particular has improved
in default security, a very good thing indeed (with
BSDs way ahead in security by the late 1990s).
And open source programs in general may not be
bug-free, but their support teams can boast of be-
ing many times faster at releasing patches than
most of their commercial counterparts.

For reading that at least brings a smile to my face
every time, I can recommend the Symantec Inter-
net Security Report [1]. You might think me cyni-
cal (and you would be correct) when I write this,
but the stats included in their executive summary
are incredible. For example, the good ol’ USA is
number one in a number of areas other than pollu-
tion, but Beijing is fast catching up. The U.S. boasts
of more attack and malicious activity, phishing
servers, and command and control systems, while
being both the greatest source and the largest target
of spam. Beijing, however, has more bot-infested
computers than any other city in the world, and
China has 29% of the world’s bots as well. So the
Chinese have another interesting problem to deal
with, beyond the pollution created by their rapidly
expanding economy.

The Symantec report is hardly a source of encour-
aging news, but there are some bright spots. HP
has exchanged places with Sun (or is it Java?) as
the slowest vendor to release a patch to a vulnera-
bility (112 days). Microsoft was the winner for
having the most enterprise-level unpatched vulner-
abilities for the first six months of 2007, un-
changed from winning this contest in the last half
of 2006. Okay, so I am still being really cynical.

Apple does well in the report, with fewer reported
vulnerabilities in Safari than IE or Mozilla but
more than Opera. Apple can also boast of having
the shortest time to patch browser bugs, beating



out the Mozilla Foundation this time, with an average window of exposure
of four days (Mozilla’s was only two days in the previous report). But speak-
ing of Apple . . .

Sour Apples

By the time you read this, Apple’s “bricking” of unlocked iPhones will be old
news. You will remember the flurry of hacking activities that followed the
release of the iPhone in late June and the discovery that the iPhone (and
iPod) actually run Mac OS X. Deeper inspection of the iPhone revealed that
all applications run as root, evidence either that the iPhone was rushed to
market or that Apple programmers are extremely lame. I know the second
conjecture is not true, so I must presume the first.

Many people I know have raved about the design of the iPhone, and they
seem to be very happy with the cell phone as it exists. But other people I
know were quite anxious to extend the capabilities of the iPhone to include
shell access, an SSH client, WiFi scanner, and other tools that Apple neglect-
ed to include, even after several updates. Update 1.1.1 disabled all added ap-
plications, and changes to the firmware of the iPhone disabled the cell
phone functionality, “bricking” the phone, of those iPhones that had been
unlocked (allowed to work with the SIMs from carriers other than AT&T).

I don’t intend to muse about the propriety of Apple destroying the function-
ality of a device people had purchased (at an inflated price). Instead, consid-
er the implications of update 1.1.1. With this update, Apple, belatedly,
added protection to the iPhone’s firmware that prevents unlocking. Why
wasn’t that in the first version? To the OS that runs your cell phone—any
cell phone, to my knowledge—the radio looks like a modem. Remember
how you commanded modems back in the day, using AT commands? Cell
phone radios work similarly. So the cell radio appears to the OS as a serial
device, and any application that runs as root can access that serial device
and send it AT commands.

Depending on the cell radio, the set of commands that can be issued may in-
clude changing the radio frequencies that the phone uses, as well as the
power used when transmitting. In the U.S., the FCC (Federal Communica-
tions Commission) regulates the use of the radio spectrum, and it takes a
dim view of putting this level of flexibility, and control, into the hands of cell
phone users. Carriers are also loath to allow their customers to change set-
tings, because in doing so they may disrupt the operations not just of the ad-
justed phones, but also of other cell phones operating in the area. The cell
radio interface must be protected.

This brings us back to the iPhone, where all applications run as root. That
implies that any application installed on the iPhone may have access to the
cell radio. I like to see well-designed security, particularly when a device
must comply with national laws, and the iPhone appears to fall far short of
this goal. But with this design, it should be obvious that Apple had to pre-
vent third-party applications from running on the iPhone.

Apple has had other security issues this year. The mDNSResponder, a
friendly service that broadcasts information about your Mac to any device
that can listen, as well as accepting information from any system in range,
has had at least two root exploits this year (one that has not been reported).
I checked to see if the patched mDNSResponder was still running as root af-
ter the patch, and it was (I’ve since disabled it, so can’t be sure if this is still
true). But mDNSResponder, which, according to the Darwin source code,

; LOGIN: DECEMBER 2007 MUSINGS 3



only needs to be able to do one thing as root, does everything as root. Notice
a pattern here?

Part of what mDNSResponder (a.k.a. Bonjour) does is parse variable-length
input broadcast from other systems, and parsing variable-length input hap-
pens to be the exact same issue that plagued SNMP and other ASN.1 nota-
tion-based systems in the not distant past. I’d like to see Apple change how
mDNSResponder works by separating out the code that must run as root,
advice that dates back to Matt Bishop’s article from 1987 that provides ad-
vice about writing set-user-id programs [2]. Although Matt focused on set-
uid, the notion of partitioning a program into two parts, a privileged part
and a larger part that runs without privileges, has become part of accepted
security practice today.

Then there was the Airport exploit, during BlackHat 2006. This may appear
to be old news, but you can now read what had been hidden from view
about this kernel-level exploit [3]. At the time, Apple vehemently denied
that the exploit actually worked on Apple MacBooks [4], but Maynor ex-
plains that he was perplexed when a nontargeted MacBook crashed several
minutes after he had conducted fuzzing using WiFi beacon and probe pack-
ets. His article is useful to anyone interested in understanding panic.log files
found on Mac OS X systems after kernel crashes.

I much prefer that vendors be honest about the security of their products,
even if the news is bad. History, for example that of Windows NT, has shown
that no matter how secure you claim your system is, the more people who
use it, the more bugs will be discovered. Mac OS X does have some advan-
tages over NT, as it represents a much more mature technology than NT was
in 1998. But there are other more disturbing parallels between Microsoft
and Apple, such as the lack of any documentation about how security mech-
anisms work in Mac OS X. Like other security professionals, I prefer to un-
derstand how a mechanism works and see how it is implemented, rather
than to trust a vendor who simply states, “Don’t worry, it’s secure.” Where
have I heard that before?

The Lineup

As a tribute to the advances in exploit technology, we begin this issue with
two articles about P2P (peer-to-peer) command and control as used in re-
cent Windows trojans. I wanted to write “bots” here, but Dave Dittrich has
convinced me that bots have that name because they are controlled via IRC
servers, and I have to agree with him. The first article, by Dave Dittrich and
Sven Dietrich, explores how remote-control trojans have evolved over time,
moving from clunky handler/agent command and control to P2P. The
change to P2P makes trojans more difficult to write, but also much more dif-
ficult to detect, and nearly impossible to trace back to the owner of a collec-
tion of trojans. The authors do provide some advice about what you can do
to detect and traceback trojans in your own networks.

The next article, by Stover et al., dissects two recent trojans that use P2P for
command and control. Stover and associates focus on the network commu-
nications of both trojans, rather than disassembling them, to reveal how
they behave when viewed from outside the box. In the case of Storm, there
is one configuration file, used to seed the list of peers when the trojan begins
to communicate. With Nugache, the list of initial peers is embedded in the
executable, and communications are further hidden through the use of en-
cryption between each peer.

Tal Garfinkel and Andy Warfield entertain us next, with an article describing
current and future security uses of virtualization. Being an old-school kind

4 ; LOG I N : VO L . 3 2 , NO . 6



of guy, I like the idea of isolating services, that is, running a single service
per system. Virtualization allows us to do something similar, that is, run one
service per guest operating system, allowing much more efficient use of
hardware, along with the improvements in system management possible via
virtualization. Tal and Andy also point out future uses of VMM—for in-
stance, running anti-virus software and HIPS within the VMM. Currently,
malware commonly disables AV and hides itself using rootkit technology, so
the notion of moving the protection outside of the guest OS into the VMM
makes lots of sense. I liked the idea, but did point out during the review
process that if they move the protection into the VMM, that will change the
focus to attacking the VMM. Within a week, a vulnerability that allows exe-
cuting commands as root within domain 0 (the VMM OS) was announced,
allowing me to feel like a prophet [5].

Gernot Heiser offers his own view of the future of OS security. Gernot has
been working on the L4 microkernel for many years, and I recently learned
that seL4, a secure version of L4, was going through the process of being
formally proven. That is, the design of seL4 would be verified via theorem
provers that it matches its specifications. I had challenged Gernot to prove
to me that proving any OS really matters to anyone, and this article is his re-
sponse. To be honest, I was playing devil’s advocate in this case. I would like
to see small and verified OSes in the future of servers, desktops, and embed-
ded systems, and seL4 is a great leap forward.

I had lunch with Gary McGraw this summer, while we were at USENIX An-
nual Tech in Santa Clara. Gary waxed enthusiastic about his new book, Ex-
ploiting Online Games, and we decided that an interview-style article would
be an interesting addition to this issue. I also wanted to bring out some of
the topics we had in our own discussions that don’t appear in his book or in
the summary of the IT he gave at USENIX Security (see the summaries sec-
tion of this issue, and watch the video, listen to the MP3 of the talk, and
view his presentation slides on www..usenix.org/events/sec07/tech/).

Mike Rash, who has a new book out about Linux firewalls, has explained a
couple of the tools he has written that augment netfilter: fwsnort, which al-
lows you to add snort-based rules to Linux firewalls, so you can block TCP
connections that match these rules, and psad, which performs passive sys-
tem identification, using the same database as p0f, but using iptables log
messages. If you want to learn more about netfilter and iptables, as well as
Mike’s tools, I recommend reading this article.

David Blank-Edelman has fully joined our conspiracy to discuss security in
this issue. David writes about using Perl modules to embed the use of nmap
and p0f. I had heard about embedding nmap into Perl scripts, a technique
that adds a lot to the usability of nmap in large scans. Using p0f within Perl
was a new concept for me.

Dave Josephsen also plays along with the security theme. Dave explains how
to analyze netflows to monitor your networks and to improve their security.
Steve Romig wrote about the use of netflow logs in security way back in the
September 1999 [6] issue of ;login:, and I’m glad that Dave decided to bring
us up to date on this topic.

Heison Chak was invited to the security table, but he chose instead to ex-
plain speech recognition software as used in Asterisk. Heison, like most of
us, finds little charm in most automated phone systems, and he shows us
how to embed speech recognition within Interactive Voice Response (IVR)
systems that will, hopefully, be well-designed and not drive callers to acts of
anger and frustration.

; LOGIN: DECEMBER 2007 MUSINGS 5



Robert Ferrell, staying with our security focus, attacks the naming conven-
tions used by AV companies. Not content with boring names such as
Win32/DEL.100907.ZZA, Robert has some interesting suggestions for the
worms and trojans of the near future.

In the book reviews section, Elizabeth Zwicky starts off with a quick review
of the new edition of The Practice of System and Network Administration and
then covers a book on designing reliable sites. Sam Stover, not content with
just writing an article, reviews the tome named The Art of Software Security
Assessment and comes away very favorably impressed. Finally, Ming Chow
reviews the book I mentioned earlier, Exploiting Online Games, with unspar-
ing accuracy.

We have many conference reports in this issue, starting with USENIX Secu-
rity in Boston. I wrote some about cell phone issues in this column. There
was a panel, an Invited Talk (about Symbion viruses), and a paper about cell
phone security at the symposium, and you will find in-depth summaries
about these talks and others here. Five workshops were co-located with
USENIX Security, and we have summaries from three of them here:
USENIX/ACCURATE Electronic Voting Technology Workshop, First
USENIX Workshop on Offensive Technologies, and MetriCon 2.0: Second
Workshop on Security Metrics. Finally, Matt Bishop sent us summaries of
the 2007 New Security Paradigms Workshop.

Afterthoughts

I just tried imagining what it would be like if we had secure computer sys-
tems. Sure, I would be out of a job, but I like to consider the benefits to the
wider world. If our computers were secure, we could use online banking
with little fear (although the banks could still screw up our accounts). We
could communicate with complete assurance that no one could read our
email (and then there’s the NSA). We would no longer have to pay fees to AV
companies whose software is, at best, only partially able to protect systems
from malware. We could view the Web without fear of our systems being in-
fected with spyware, adware, or trojans (porn without fear!). And we could
trust that our personal data, whether financial or health-related, would re-
main secure on the servers where it is stored.

Honestly, at this point in time, imagining a future of secure operating sys-
tems and software is hard to do. But perhaps, having already used a sports
analogy, I can use a car analogy as well. Just imagine what cars were like in
the 1920s: Horseless carriage was a good description. Today’s cars are both
safer and a lot more reliable than cars from just 20 years ago. Perhaps when
software is 100 years old, it will reach the level of reliability that we see in
cars today.

I just don’t want to have to wait that long.

REFERENCES

[1] Symantec Internet Security Report: http://www.symantec.com/business/
theme.jsp?themeid=threatreport (see pp. 3–8 for the executive summary).

[2] Matt Bishop’s paper on writing setuid programs: nob.cs.ucdavis.edu/
bishop/secprog/1987-sproglogin.pdf.

6 ; LOG I N : VO L . 3 2 , NO . 6



[3] David Maynor’s article about how he uncovered the flaw in the Apple
Airport driver and created a proof of concept exploit: http://uninformed
.org/index.cgi?v=8&a=4&p=2.

[4] “Apple Fixes Mac Wi-Fi Flaws”: http://searchsecurity.techtarget.com/
originalContent/0,289142,sid14_gci1217510,00.html.

[5] Bug in pygrub used within Xen: http://bugzilla.xensource.com/bugzilla/
show_bug.cgi?id=1068.

[6] S. Romig, M. Fullmer, and S. Ramachandran, “Cisco Flow Logs and
Intrusion Detection at the Ohio State University”: http://www.usenix.org/
publications/login/1999-9/index.html.

; LOGIN: DECEMBER 2007 MUSINGS 7

USENIX SECURITY ‘08:
17TH USENIX SECURITY SYMPOSIUM

July 28–August 1, 2008, San Jose, CA

The USENIX Security Symposium brings together researchers, practitioners, system
administrators, system programmers, and others interested in the latest advances in
the security of computer systems and networks. All researchers are encouraged to
submit papers covering novel and scientifically significant practical works in security
or applied cryptography. Check out the Call for Papers to find out more.

Paper submissions due: January 30, 2008

www.usenix.org/sec08




