
2007 USENIX/ACCURATE Electronic Voting
TechnologyWorkshop

Boston, MA
August 6, 2007

A N A LYS I S I

Summarized by Kyle Derr (derrley@rice.edu)

Studying the Nedap/Groenendaal ES3B Voting Computer: A
Computer Security Perspective

Rop Gonggrijp and Willem-Jan Hengeveld, Stichting “Wij
vertrouwen stemcomputers niet”

Rop Gonggrijp gave a narrative summary of his experi-
ences in dealing with the general issue of electronic voting
in The Netherlands, and he presented the findings from
his security analysis of the Nedap ES3B voting computer.

Gonggrijp began his talk by explaining that while the ar-
gument for voting on paper with pencil is rather com-
pelling in the United States, it is even more so in Holland,
owing to the simple (and short) nature of the information
that the average voter intends to communicate. When elec-
tronic voting machines were installed and used in Amster-
dam for the first time in 2006, it was cause for significant
alarm from an expert in computer security living in Ams-
terdam (as he was at the time). Not only were these ma-
chines most likely not secure, but they were also mostly
unnecessary, as there does not exist a Netherlands ana-
logue to what happened in the United States in Florida in
the 2000 presidential election. The low-tech solution was
entirely adequate.

Gonggrijp’s security analysis yields two feasible attacks,
which he spent the majority of his talk explaining.

The first attack demonstrates that because of the lack of
physical security on the device coupled with the vintage
nature of the hardware, reverse engineering, modifying,
and installing malicious software is a trivially simple task.
In fact, his team was able to do just this in under a
month’s time. The security of the physical components can
easily be compromised by an intruder; the model of physi-
cal lock used to keep intruders from accessing the ma-
chine’s internal components only has a single, universal
key, which can be purchased for less than $5 from any one
of several retailers which can be found via a simple Google
search for the key’s product number. The software that
drives the machine is programmed on a pair of EPROMs,
which are inserted into a pair of sockets on the mother-
board. This property allows an attacker to swap the good
pair of EPROMs with a set that contains malicious code
(such as the software his team developed, which silently
steals votes from randomly chosen candidates and delivers
them to a preconfigured party) in less than 60 seconds.

The second attack demonstrates that voter privacy and
anonymity can easily be compromised without any physi-

cal access to the device. The LCD used to display instruc-
tive information to the voter only supports mostly-ASCII
text. A certain number of non-ASCII special characters can
be used on the display. In the case where these non-ASCII
characters are displayed, because the display controller
must wait for this additional character information to be
given to it from the computer, the refresh frequency of the
display drops. This change in frequency is audible in some
cases as far as 20 meters away with the assistance of a
short-wave radio receiver. Because a popular Dutch politi-
cal party has such a character in its name, a vote for this
party can be detected from outside the polling place.

Gonggrijp’s responses from audience questions focused
mostly on rectifying confusion regarding why such an au-
dible frequency change was being emanated from the de-
vice. In addition, Gonggrijp also forcefully noted, again,
that paper ballots are more than adequate in The Nether-
lands. Citizens must go for the throat of manufacturers
such as Nedap, insofar as their systems do not provide a
significant advantage over paper, all things considered, ac-
cessibility gains included. When questioned specifically
about the DRE’s accessibility wins, Gonggrijp responded
that the gain in accessibility is negligible compared to the
loss in trustworthiness of the system as a whole.

Security Analysis of the Diebold AccuVote-TS Voting
Machine

Ariel J. Feldman, J. Alex Halderman, and Edward W. Felten,
Princeton University

Ariel Feldman presented the results of his team’s inde-
pendent analysis of the Diebold AccuVote-TS. Diebold has
the largest market share among US vendors: This family of
Diebold machines (the AccuVote-TS and the AccuVote-
TSx) currently records more than 10% of the vote nation-
wide. His team’s contributions include a program that can
silently, undetectably, and arbitrarily alter election results
and a virus that can propagate this program.

Feldman first described the vote-stealing software his
group designed and implemented. Because the AccuVote-
TS family machines are simply general-purpose computers
running a general-purpose operating system (in this case,
Windows CE), Feldman and his team were able to design
their software to run as a separate Windows process;
patching the actual Diebold source code that runs on elec-
tion day was unnecessary. The vote-stealing software sim-
ply directly edits the cast ballot data and modifies the log
data such that it is consistent with the fraudulent cast bal-
lot data. It accomplishes this by taking advantage of the
fact that although this stored data is encrypted, it is en-
crypted with a well-known DES key (which is hard-coded
in the source).

Feldman next described three different mechanisms that
an attacker could exploit to install such malicious soft-
ware: An attacker could boot from a malicious EPROM in
an onboard socket, install a malicious boot loader by using

96 ; LOG I N : VO L . 3 2 , NO . 6

the software upgrade mechanism, or develop a voting-ma-
chine virus that propagates using the software upgrade
vulnerability.

Whereas gaining access to the motherboard to install a ma-
licious EPROM is a bit cumbersome, installing a memory
card that contains a malicious boot loader disguised as a
legitimate software upgrade is a fairly trivial task. Poll
workers install and remove these memory cards as part of
election day procedures; therefore all that stands between
an attacker and the memory card is a locked door. Because
all Diebold machines are known to be fitted with locks
that can all be opened with a universal key (a key that can
be obtained via several Internet retailers, including Die-
bold), this lock would not pose a problem to an attacker.
Feldman’s team was even able to clone one of these keys
simply by using as a source a photo of such a key taken
from the Diebold Web site. Once the malicious memory
card is secured, the machine needs to be rebooted. Upon
rebooting, the machine will install the software included
on the memory card without asking for any sort of crypto-
graphic guarantee that the software is from a credible
source.

In addition, Feldman explained that an attacker could
also exploit this software upgrade facility to create a vot-
ing-machine virus, making physical contact with every
target voting machine unnecessary. The malicious boot
loader installed from the attacker’s memory card can
clearly do much more than install the vote-stealing pro-
gram: It could also disable future upgrades and copy itself
to any memory card inserted into the voting machine in
the future. The reason this is a credible threat can be re-
duced to procedure: It is common practice (indeed,
Diebold-recommended practice) for a county to use several
machines as accumulators in the tallying process at the
end of the day. This process requires that memory cards
that contain cast ballot data be inserted into the machine
being used as an accumulator for the purpose of including
this cast ballot data in the tally. If the accumulator ma-
chine were to be infected, it could easily infect hundreds
of other machines in the course of one tally. By the same
mechanism, a machine could infect the accumulator,
which in turn would infect all other machines it touched
throughout the course of the tally. It is reasonable to as-
sume that a somewhat motivated attacker armed with a
virus such as Feldman’s could gain control of all voting
machines in a county during the course of one election,in
order to drastically affect the outcome of the next.

Interesting questions from the audience included one from
Peter Neumann, who pressed Feldman to reveal an even
more recent exploit, which allows the attacker to not have
to reboot the infected machine, but simply use a buffer
overflow in the running Diebold software. When asked if
his virus could change the votes in real time (so as to alter
printer output), Feldman responded that his team had not
attempted it. When asked if a voter (as opposed to a poll

worker) could easily launch the attack, he seemed skepti-
cal, because of how obvious it would look if a voter tried
to walk up to a machine and install a memory card. The
session was wrapped up with Dan Wallach’s wondering
how Feldman responds to the common claim by election
officials that election procedures defend effectively against
these kinds of attacks. Feldman answered that procedures
aren’t always followed, and even if the ones in question
were followed to the letter, they still wouldn’t adequately
defend against the kinds of attacks his team has developed.

An Analysis of the Hart Intercivic DAU eSlate

Elliot Proebstel, Sean Riddle, Francis Hsu, and Justin
Cummins, University of California, Davis; Freddie Oakley and
Tom Stanionis, Yolo County Elections Office; Matt Bishop,
University of California, Davis

Elliot Proebstel summarized four attacks and related miti-
gation strategies his team developed while conducting a
Red Team, Black Box analysis of the eSlate DRE on behalf
of Yolo county. The team found that a motivated attacker
could use a covert channel to gain knowledge of a voter’s
choices, could cause the VVPAT printer to print duplicates
easily mistaken for unique ballots, could modify vote tally
data mid-day, and could use the lack of randomness in
voter ID numbers to create a ballot-stuffing attack. Proebs-
tel also offered a number of attack scenarios that could
cause record inconsistencies.

The particular class of eSlate machine Proebstel’s team ana-
lyzed was a Disabled Access Unit. This means it contains
two features that help disabled voters. For the hearing im-
paired, Hart has added an audio jack near the rear of the
machine, whose job is to emanate a reading of the screen
content, as well as to audibly notify the voter of his or her
selections. Proebstel explained that although this feature
obviously makes the machine accessible to the hearing-
impaired, it is also a potential source of privacy loss for
the average voter. The audio can easily be captured by a
hidden iPod-sized device. Because the audio must help
disabled voters both through the process of entering their
voter ID numbers and through the process of expressing
their voting preferences, this hidden device would be able
to capture enough information to link a voter to a cast bal-
lot. Proebstel also explained that a more recent study indi-
cates that a shortwave radio can pick up this audio, mak-
ing the hidden device and physical access to the machine
unnecessary. As a mitigation strategy, Proebstel offered that
poll workers should be trained to detect such suspicious
behavior.

Proebstel next explained a feasible ballot-stuffing attack.
The machine that his team studied was connected to a
thermal printer, whose purpose is to record, on paper, the
voter’s preference so that a manual recount is possible in
case it is needed. Each printout contains a plain-text
recording of the voter’s preferences (intended to be verified
by the voter shortly after the ballot is cast) positioned

; LOGIN: DECEMBER 2007 CONFERENCE REPORTS 97

above a barcode encoding of the same data (for ease of
counting at a later date). Proebstel’s team found that if
communication was interrupted between the eSlate and
the printer when the ballot is cast, this printer would print
duplicate barcodes (without corresponding attached plain
text). If the scanning of these barcodes is automated, this
is a feasible ballot-stuffing attack. As a mitigation strategy,
Proebstel suggested that humans sort through the print-
outs to ensure that each barcode is attached to correspon-
ding plain text. An even simpler option, Proebstel sug-
gested, is for humans to perform the entire recount.

The next attack Proebstel explained would require corrup-
tion at the poll-worker level. The eSlate machines store
the effects of each cast ballot in three locations: in internal
eSlate memory, in internal memory of the Judge Booth
Controller, and on a removable memory card installed in
the Judge Booth Controller (called a Mobile Ballot Box, or
MBB). Per Hart’s recommendation, Yolo county uses the
MBB as the single, trusted source of election data, except
in the case where a recount is necessary. Proebstel’s team
found that the MBB can be easily removed and modified
on a simple laptop computer, then reinserted into the
Judge Booth Controller, without the Judge Booth Con-
troller noticing any inconsistency. As a mitigation strategy,
Proebstel suggests strict chain-of-custody procedures be
implemented and followed and that physical tamper evi-
dent seals be used on the voting machines themselves.

Proebstel’s team also found that not only is the order in
which voter ID numbers are chosen predictable, it is the
same on all Judge Booth Controllers. When a voter walks
into the polling place on election day, the voter authenti-
cates him- or herself with election officials in some way
and then is assigned a voter ID number (which is not
recorded). This number is printed by the Judge Booth
Controller on a small piece of paper, which is then handed
to the voter. The voter then waits for a machine to become
unoccupied. The voter will only enter his or her ID num-
ber into an eSlate once one becomes available. An attacker
with knowledge of this predictable ID order could poten-
tially cast ballots for other queued voters. The Disabled
Access Unit input jack near the back of the eSlate only
makes matters worse, as the attacker could automate much
of this process. As a mitigation strategy, Proebstel suggests
that only one eSlate be used per Judge Booth Controller,
and only one voter ID be active at a time.

Questions from the audience included one that pressed
Proebstel to compare his experience in a black box analy-
sis of the eSlate to the one he conducted more recently,
where he had access to source code. Proebstel stated that
access to source made the process much easier, and he
opined that now that source access is being established as
precedent, future analyzers should require this. When
asked if he had any advice for researchers who want to try
to get election officials to work with them, rather than
against them, he said he did not. In his case, Yolo county
officials initiated the conversation.

D E S I G N I

Summarized by Kyle Derr (derrley@rice.edu)

Casting Votes in the Auditorium

Daniel Sandler and Dan S. Wallach, Rice University

Daniel Sandler gave a narrative of his experience collecting
post-election evidence on ES&S machines used in a Demo-
cratic primary election in Webb County, Texas, and how
this experience motivated him to design Auditorium, a se-
cure and distributed logging environment that makes post-
election auditing easier and makes audit data much more
tamper-evident and tamper-resistant. Sandler also de-
scribed several potential attacks that would succeed on
standard-issue logging environments but that Auditorium
would prevent. The description of these attacks is omitted
for brevity.

In 2006, Dan S. Wallach was hired as an expert witness by
the close-second-place finisher in a Democratic primary in
Webb County, Texas, after said second-place finisher re-
ceived more votes on paper than he did on the ES&S DRE
machine. Wallach’s job was to perform a post-election
audit of the records found on these ES&S machines. If
enough evidence could be gathered from audit logs to
prove the tallies retrieved from the ES&S machines were
inaccurate, this second-place finisher would have a decent
case in court. Sandler was the primary investigator in this
endeavor.

Although Sandler could not find enough evidence in the
logs to do his advisor’s client any good, he did find many
anomalies in the audit data found on the machines, such
as logs starting mid-day (indicating a loss in audit data for
half of the election), events taking place several days prior
to the election (including 26 machines that had the same
two votes cast, indicating possible inclusion of test votes in
final tallies), and some machines that had no audit data at
all. For the audit data that Sandler did find to be benign,
he had no guarantees of the correctness or authenticity of
this log data, as ES&S audit data is stored on simple, re-
writable flash memory in plain text. His conclusion from
this investigation was that audit data needs to be replicated
in as many places as possible (to mitigate against acciden-
tal loss) and to be cryptographically authentic (to mitigate
against pre-election or post-election modification). In
short, it should be harder to make mistakes on election
day that could prevent a provable audit after election day,
and it should be easier to perform this audit after election
day, even if some accidental loss has happened.

Sandler then described Auditorium, a secure, distributed
logging network—his solution to this problem. In Audito-
rium, logs are hash chained, entangled, and broadcast. By
assuming the existence of a one-way hash function, hash-
chaining log entries allows an auditor to have a much
higher degree of certainty about their relative order, given
a certain amount of unpredictable data in each log entry.
Entangling the log entries essentially makes this hash-

98 ; LOG I N : VO L . 3 2 , NO . 6

chaining process global across all machines in a polling
place. In an entangled log, it is not the case that each ma-
chine constructs its own timeline of events: Events in one
machine’s timeline are necessarily dependent on events in
the timelines of other machines. Because entries in the log
are signed, forgery of a log event would require collusion
of every machine in the network. Finally, broadcasting log
events allows for replication. Because no single machine
can be trusted to store everything, his design forces every
machine to store everything. The result of using Audito-
rium on election day is a global log, stored on every ma-
chine in the polling place, whose entries can be crypto-
graphically proven authentic and can be cryptographically
reconstructed into a provable timeline.

Interesting questions from the audience indicated a bit of
skepticism regarding voting machines being on a closed
network. To address real-time ballot stuffing by a machine,
Sandler explained that a cast ballot would not be counted
unless a corresponding authorization to cast from a super-
visor machine is present. This means that the supervisor
machine and a voting machine would have to be in collu-
sion. Furthermore, an act of stuffing would be noticed and
logged by good machines. This is simply not possible
without a network. Sandler gave a similar response when
he was questioned about possible network partitions caus-
ing audit data loss: Because each machine requires an au-
thorization to cast the ballot, this partition would be
quickly noticed and rectified, causing at most the loss of
one vote cycle being broadcast. Correct design would miti-
gate against even this, causing the broadcast of this pend-
ing vote as soon as the machine is able to reconnect to the
network. Peter Neumann pressed for a better explanation
of denial of service mitigation. Sandler explained that such
an attack would have to disrupt every machine in order to
prevent audit data from at least being replicated once.

Extending Prerendered-Interface Voting Software to Support
Accessibility and Other Ballot Features

Ka-Ping Yee, University of California, Berkeley

Ka-Ping Yee gave a summary of the extensions he made to
Pvote (his prerendered user interface voting engine) to as-
sist the visually impaired. These extensions allow the voter
to hear as well as see the ballot being presented on screen.
He also rehashed his justification for a prerendered user
interface and small runtime code base.

Yee began by explaining that although efforts have been
made to force voting machine vendors to release their
source code for review, pressing for this solves only half
the problem. Most voting machines in use today rely on a
complex and difficult-to-audit code base. Pressing for dis-
closure of this code simply does not solve the problem if
an audit is incredibly time-consuming and cumbersome.
Yee suggested that the trusted code base needs to be ex-
plicitly small, so that an audit is simple given full source
code disclosure. Furthermore, Yee emphasized that the

best way to minimize the amount of trusted code is to
offload determination of user interface behavior to the tool
that generates the ballot. This effectively makes the user
interface prerendered. For a given election, then, all that
should be trusted is the ballot definition, with its associ-
ated user interface, and the small amount of code running
on a voting machine that allows the voter to interact with
and cast said ballot. As a demonstration of the simplicity
of this voting machine logic Yee said that his Pvote system
does just this, and it is written in 460 lines of Python.

Yee then demonstrated his system to the audience. His
software did, indeed, emanate a audible recording of the
screen’s contents. It also emanated information regarding
which option was currently selected on screen.

Comments that Yee made during his talk regarding trust-
ing general-purpose software (such as the Python inter-
preter) were the cause of most of the debate during the
question period of this talk. Warren D. Smith expressed
specific concern with trusting software insofar as it is gen-
eral-purpose: The generality of the software, Smith claims,
actually proves nothing regarding its trustworthiness. Yee
acknowledged that it is an open question whether or not
to trust general-purpose software, but his opinion is that
because the software existed before this particular applica-
tion of it, and because the software isn’t made specifically
to run voting machines, it should be more trusted than
specific voting software. Ron Rivest suggested that Java
might be a better option than Python, because Java run-
time environments are quite a bit more studied.

Verification-Centric Realization of Electronic Vote Counting

Joseph R. Kiniry, Dermot Cochran, and Patrick E. Tierney,
University College Dublin

Dermot Cochran gave a summary of his work, which in-
volved his explanation of how formal specification can be
used to ensure correctness of critical path voting machine
modules (such as the vote counter). His talk focused on
how verification-centric software engineering practice pro-
duces software that is more trustworthy. This paper’s con-
tribution is a protocol for good verification-centric soft-
ware engineering practice, as well as a case study.

Cochran went over the process his team used for extend-
ing KOA, a research platform for electronic voting tech-
nologies, to support the Irish proportional representation
Single Transferable Vote system, whose algorithms are
legally specified. In the analysis and design phases, EBON
(Extended Business Object Notation) is used to model the
problem, as well as to strictly model contractual relation-
ships between different modules of the design. These con-
tractual bindings include preconditions, postconditions,
and more general behavioral assertions. During the specifi-
cation phase, this generic EBON specification is formalized
using JML (the Java modeling language). JML specifica-
tions for each method and class can be formalized in
JavaDoc comments, and verification that the Java code

; LOGIN: DECEMBER 2007 CONFERENCE REPORTS 99

meets the specification written in JML can be done by the
JML tool chain. Currently, in the implementation and test-
ing phase, not only can passing unit tests ensure confi-
dence in the correctness of the code, but the code can also
be tested against the formal JML specification defined in
the previous phase.

Cochran showed several code snippets from his case study,
highlighting Java code next to its formal JML specification.

During the question period, David Wagner pressed that
some of Cochran’s examples seem to hint that frequently
the JML expresses exactly the same semantic concept as
the Java code itself. Wagner wondered whether the JML
was simply expressing the same thing and was therefore
superfluous. Although admitting that this is sometimes
the case, Cochran said that often it is not the case (since
sometimes complex preconditions and postconditions can
be more succinctly specified in JML). What’s important is
that the contractual specification happens before the im-
plementation happens and that this specification can be
formalized in such a way that the actual code can be
checked against it.

AU D ITI N G A N D TR A N S PA R E N CY

Contractual Barriers to Transparency in Electronic Voting

Joseph Lorenzo Hall, University of California, Berkeley

Summarized by Kyle Derr (derrley@rice.edu)

Joseph Lorenzo Hall explained his work on analyzing the
contractual agreements state and local election jurisdic-
tions make with electronic voting machine vendors, and
he suggested how many of these agreements can blatantly
challenge election transparency. He also made several rec-
ommendations for how these contractual agreements
should be changed in the future.

First, Hall explained that this sort of research is challeng-
ing, because analysis must be done on a convenience set:
Sometimes the contracts themselves are considered propri-
etary information, making them hard to acquire for study.
Five major vendors were present in his data set of 55 con-
tracts, whose signing dates were distributed between the
years 2000 and 2006, and 82% of the contracts were with
the biggest three US vendors: Sequoia, Diebold, and ES&S.

Hall organized the subset of the findings he chose to pre-
sent into the following categories, where each category
represents a type of transparency-barring clause. Hall
found clauses that protect trade secrecy, prohibit certain
types of use, discourage public record, separate escrow
agreements, and limit disclosure of benchmarking and re-
quire mandatory software upgrades. Examples of trade se-
crecy clauses include disallowing both source disclosure
and reverse engineering. In some cases analysis of the sys-
tem is categorically prohibited. In one case, even the unit’s
pricing information is considered proprietary. Use prohibi-

tions include restrictions on what hardware can be used to
run the software and where (geographically) the software
can be run. As for public record protection, sometimes
Hall found the contract itself to be considered confidential.
He also found clauses that could limit the liability of the
company in the case where damages were sought because
of confidential information being released as a result of
legislative or judicial requirements of certain pieces of in-
formation being in public record. One of the most egre-
gious was a mandatory upgrade provision, which forced
the client to install all software upgrades no more than 10
days after their release. This, of course, means that the
software upgrade would not be certified in any fashion.

Hall made several general recommendations for future
clients looking to protect and encourage transparency in
elections. First, contracts should always be disclosed.
There is no known reason why revealing these contracts
could hurt the vendor. A more pressing reason is each
voter’s right to know what is in them. He also suggested
that limited access to source code, ballot definitions, audit
logs, and vote data should be allowed, testing should not
be forbidden, and damages should certainly not be limited
in the case where they are incurred because of public
records disclosure.

During the question session, Peter Neumann asked why
only limited access to source code should be allowed. Hall
responded that until the quality of the software improves,
disclosing it to anyone who wants it will encourage at-
tacks. Limited disclosure to trusted, third-party sources,
however, cannot be stopped, as this is a useful avenue for
performing audits. When asked whether any contracts
speak about security obligations of the localities, Hall re-
sponded that they didn’t, and that the closest thing to this
is barring security analysis. When asked how long these
contracts typically last, Hall responded that most clauses
are in effect for the entirety of a machine’s use, and in
some cases, clauses do not expire (for instance, those re-
lated to proprietary information).

On Estimating the Size and Confidence of a Statistical Audit

Javed A. Aslam, Northeastern University; Raluca A. Popa and
Ronald L. Rivest, Massachusetts Institute of Technology

Summarized by Kyle Derr (derrley@rice.edu)

Raluca Popa gave a summary of her simple formula for de-
termining the number of precincts running DRE voting
machines that need to be manually audited, given a
desired level of confidence that no precincts have been
compromised. Because it is likely that this formula will
need to be computed on a hand calculator (as trusting an-
other piece of software in elections is definitely not
wanted), this formula needs to be simple and operate on
few parameters. The form of audit she suggests is a simple
comparison of VVPAT printouts to electronic records. The
formula depends on n, the number of total precincts, b, an
upper bound on how many of them could be corrupted,

100 ; LOG I N : VO L . 3 2 , NO . 6

and c, the required confidence level. Popa showed that her
formula was almost exactly accurate, with error only in the
positive direction, and by no more than ceil((n – (b – 1)/2).

Questions from the audience included whether the strat-
egy assumed that there is a maximum number of two can-
didates per race and whether differently sized precincts
were considered. Popa clarified that her formula works
with any number of candidates per race and precincts of
varying size: Both of these factors go into the calculation
of b. When asked why not simply distribute a table rather
than the formula, Popa claimed the table could be cor-
rupted but that the formula is simple enough to be distrib-
uted and computed in the field. When asked if this scheme
could be applied to vote-by-mail, Popa claimed that some
sort of granularity would need to be applied to group the
sets of cast ballots, even if it was somewhat synthetic (as
would be the case in vote by mail).

Machine-Assisted Election Auditing

Joseph A. Calandrino, J. Alex Halderman, and Edward W. Fel-
ten, Princeton University

Summarized by Elliot Proebstel (proebstel@ucdavis.edu)

Joseph Calandrino presented a short talk on Princeton’s re-
cent work in machine-assisted election auditing. Motivated
by observations on electronic voting system flaws and the
costs associated with traditional paper audits, the authors
worked to develop software-independent auditing mecha-
nisms that would work within a fixed budget. The authors,
building on past work by C.A. Neff in 2003 and K.C. John-
son in 2004, suggest a methodology whereby ballots are
machine-tallied, printed, and stored during an election.
After the election, the ballots are scanned and sequentially
numbered by a specialized recount machine; poll workers
manually check that the recount machine correctly num-
bered the ballots and verify the ballot contents of a num-
ber of sampled ballots.

Calandrino also referenced the statistical research done by
the team, which effectively reduces the number of ballots
that must be included in a recount in order to achieve 99%
confidence in the results. By implementing ballot-based
audits using the authors’ recommendations, Calandrino re-
ported, the total number of ballots that would need to be
audited in the Webb vs. Allen race (of Virginia’s November
2006 elections) would be reduced to 2,337. This is in con-
trast to the 1.14 million (out of a total 2.3 million ballots
cast) that would need to be audited using precinct-based
auditing to achieve the same confidence. Extensions to this
work include auditing only the ballots of winning candi-
dates. In the future, the authors plan to consider cost esti-
mates and also practical concerns, such as how to deal
with errors.

Various audience members pointed out that the proposed
scheme is illegal in Virginia and also that in the U.K. and
New Zealand, ballot serial numbers are required by law.
Someone asked about a hybrid approach that includes
both precinct-based and ballot-based auditing. Calandrino

responded that it depends on your definition of “hybrid.”
When only sampling within a precinct, the savings are
smaller than expected.

An Examination of the Auditability of Voter Verified Paper
Audit Trail (VVPAT) Ballots

Stephen N. Goggin and Michael D. Byrne, Rice University

Summarized by Elliot Proebstel (proebstel@ucdavis.edu)

Stephen Goggin gave a short talk on the findings of a re-
cent study on the auditability of Voter Verified Paper Audit
Trail (VVPAT) ballots. Noting that HAVA suggests VVPAT
usage, and also that 37 states legally require VVPATs, the
authors looked into the difficulty of auditing the records
generated by the thermal-receipt-style printers that have
been installed (often retrofitted) onto Direct Recording
Electronic (DRE) voting systems. The use of VVPATs has
two goals: to force the voter to verify a paper copy of the
ballot, and to produce a physical record for auditing. The
authors assumed that the first goal was met (while men-
tioning that this assumption is generous and may not
hold), and then set to study how error-prone and costly
the auditing of such records would be.

The authors generated fake ballots, closely following the
VVSG standards, trying to ensure that their ballots looked
realistic. There were 120 ballots per spool, and each ballot
was 2 feet long. In compliance with the VVSG standards,
all ballots had “rejected” or “accepted” notation. The
spools were set onto a recount fixture, and the recruited
testers were given scissors and a tally sheet. These auditors
(undergraduate students with good vision and fluent in
English) were asked to cut apart the ballots and tally the
results of a single race. After they completed this race, they
were asked to go through the ballots again to tally the re-
sults for a second race.

On average, the auditors completed the first tally in 25
minutes and the second tally in 12 minutes. When gener-
alized for full-scale elections, this represents a time re-
quirement that is untenable for large jurisdictions. Fur-
thermore, the error rates were particularly notable. The au-
thors found variation from a 17% undercount to a 19%
overcount. In particular, when the race being counted was
lopsided, auditors tended to overcount rejected ballots at a
much higher rate, suggesting that the performance of indi-
viduals counting ballots is biased by ballot contents and
expectations. Auditors reported a low level of confidence
in their performance, and the authors found that confi-
dence levels did not correlate with the actual accuracy of
individual auditors.

An audience member interjected to ask why 19-year-olds
were recruited for this task and how their performance can
be correlated to the performance of real election auditors,
whose demographics were not represented in this study.
Goggin replied that the authors had chosen the students as
a best-case scenario: Younger participants with good eye-
sight were likely to be more efficient and accurate than
older auditors. He concluded the talk by reporting that

; LOGIN: DECEMBER 2007 CONFERENCE REPORTS 101

these results indicate that recounts will require consider-
able labor and high cost, be subject to human error, and
likely be influenced by auditor bias. Future work will in-
clude a comparison of auditing VVPAT records with audit-
ing paper ballots, as well as an examination of the VVPAT
usability for voters.

Q: You may need to check your assumptions about the
process. Specifically, are you sure that real election auditors
will separate the ballots from the spool? Also, you should
look into the design of the accept and reject messages at
the tail of ballots; I’m not sure your font and size choices
were accurate representations. Finally, you should research
the counting procedures that are actually used in jurisdic-
tions and try to mimic those, especially with regard to
your choice of having a single counter auditing the ballots.
I’m not sure that’s representative.

A: First, the separating of ballots from the spool made
things easy for the participants. If they aren’t separated in
real elections, this would actually generate worse results.
With regard to the font and size choices, we tried to mimic
a real VVPAT by using the VVSG “large font” specifica-
tions. And we know that there are some counties that use
a single counter to audit ballots.

Q: I watched the eSlate counting in San Mateo. There
were three people counting. Ballots were sorted and then
counted, and this was done twice. Maybe you could do fol-
low-up work to test this?

A: Yes, that would be a good idea.

Q: Could this be addressed with machine-assisted audit-
ing?

A: There are issues of trust. It would need to involve bar-
codes or op-scan systems, both of which have trust issues.

Q: Did you display undervotes or just print who was voted
for?

A: We printed: [X] No Vote.

A N A LYS I S I I

Summarized by Elliot Proebstel (proebstel@ucdavis.edu)

On the Difficulty of Validating Voting Machine Software with
Software

Ryan Gardner, Sujata Garera, and Aviel D. Rubin, Johns Hop-
kins University

Ryan Gardener presented the work being done at Johns
Hopkins University to investigate options available to
allow poll workers to verify the authenticity of software
running on electronic voting machines. The adversarial
model used for this work assumes the attacker has full
control of the software but is unable to make any hardware
or firmware changes—even those that are seemingly be-
nign. Gardner explained that neither direct hashing nor
such hardware-based solutions as hashes signed by a TPM
would suffice, because these options both ultimately rely

on trusting sources that cannot necessarily be trusted to
report honestly. Thus, the authors searched for a primitive
that could be trusted.

Current state-of-the-art software attestation, Gardner ex-
plained, is a product called Pioneer, which is from Carne-
gie Mellon University. Pioneer resides in the memory and
allows the verifier to provide a challenge to the system and
then verify both the checksum and the time required to
produce it. Because Pioneer is designed for optimal imple-
mentation, the additional instructions required to subvert
the checksum process show up as overhead during run-
time. Gardner’s team increased the number of iterations
run by Pioneer in order to magnify the attack overhead so
that it could be human-measurable.

However, the authors found that even to raise the attack
overhead to 3 seconds, Pioneer had to be run for 31 min-
utes. Gardner reported that requiring poll workers to wait
for Pioneer to run for over half an hour and then detect a
3-second delay is not an acceptable solution. Furthermore,
the team suspected that attacks on Pioneer-type solutions
would only become more effective over time, as increased
parallelization and faster CPUs incorporated into voting
systems more effectively conceal attack overhead.

There were several questions about how Pioneer func-
tioned, including about checksumming all of memory
(which Pioneer doesn’t do). Someone else asked whether
there is a possible way to exploit the time it takes for the
human to verify the long checksum? Could the checksum
change itself after completion while the human is attempt-
ing to verify it? Gardner suggested reading the paper. An-
other person asked about the reproducibility of the timings
and whether CPU temperature affect this. Gardner an-
swered that they tested the timings at different times of day,
but they did not go too far into this. Finally, someone asked
whether the poll worker is supposed to use a stopwatch.
Gardner said that they recommend that the poll worker use
an alarm, which will go off at the expected time.

An Authentication and Ballot Layout Attack Against an
Optical Scan Voting Terminal

Aggelos Kiayias, Laurent Michel, Alexander Russell,
Narasimha Sashidar, Andrew See, and Alexander A.
Shvartsman, University of Connecticut

Andrew See reported on the vulnerability analysis con-
ducted at the University of Connecticut on the Diebold AV-
OS and, more recently, the AV-TSx. Previous vulnerabilities
discovered in the AV-OS required access to a reader/writer
for the memory card, but the authors of this work found
that they could execute attacks on the AV-OS using only di-
rect access to the device and a serial connection to a laptop.

After booting the AV-OS into debugging mode, the team
was able to imitate the GEMS server with a laptop, because
the AV-OS does not perform authentication on the serial
connection. Using this access, the team was able to recover
a dump of all memory card contents. From these contents,
the team extracted the supervisor PIN and used it to enter

102 ; LOG I N : VO L . 3 2 , NO . 6

supervisor mode on the AV-OS. The team was then able to
disable the AV-OS printer, edit communication parameters,
and erase or replace memory card contents. Leveraging
public knowledge about the ballot configuration, the team
could use this access to remap candidate names to arbi-
trary locations on the ballot, allowing them to, for exam-
ple, swap votes between two candidates or invalidate all
votes for a given candidate. The attack code could also use
cues available to it, such as the time of day and total num-
ber of ballots cast on the unit, to make an educated guess
about whether it was being tested; if it suspected it was, it
could report accurate results rather than attack results.

On the AV-TSx, the team developed similar attacks on the
ballot layout. The text to be displayed for a candidate’s
name is stored in an RTF file. By swapping two RTF files
on the memory card, the team could swap votes between
two candidates. The database results would not match
VVPAT records, but this might not be detected.

The team recommends that voting machines must ensure
that ballots, VVPATs, and electronic results are consistent.
This should be designed into the system, and ballot lay-
outs should be auditable.

One audience member mentioned that Sequoia systems
had been found to have similar flaws, so Sequoia has im-
plemented the printing of (x,y) coordinates on VVPAT
records. Another audience member suggested that the
VVPAT could print the image from the screen in order to
raise compatibility with prerendered ballots.

GEMS Tabulation Database Design Issues in Relation to Vot-
ing Systems Certification Standards

Thomas P. Ryan and Candice Hoke, Cleveland State University

Candice Hoke presented work that was proposed in Sep-
tember 2006, before the team had privileged access to any
GEMS (Diebold election management software) databases.
The authors have subsequently had access via their work
at the Center for Election Integrity in Cleveland and as
public monitors for Cuyahoga County, but Hoke stressed
that this work was not born of that privileged access. Fur-
thermore, despite having participated in the California
2007 Top to Bottom Review, her contract required that she
not speak of any results from that study, because the docu-
ment review reports have not yet been released.

Hoke presented findings to prove that GEMS is seriously
flawed in architecture and technology, resulting in data er-
rors and erroneous results. The team outlined industry
standard design requirements for database software,
known as 1NF and 2NF (First Normal Form and Second
Normal Form, respectively) and explained how these re-
quirements help ensure the integrity and accuracy of data-
base contents. Then, the team provided copious examples
to demonstrate that GEMS violates both 1NF and 2NF, re-
sulting in data errors, anomalies, and no notification that
errors are occurring. Anecdotal evidence from Cuyahoga
county supports these theoretical claims: Election officials

reported that issuing the same query in different ways re-
sulted in different responses, and the public audit found
evidence of database corruption. GEMS uses Microsoft
JET, which even Microsoft has publicly warned users is in-
appropriate for systems where absolute data integrity is es-
sential.

Next, Hoke demonstrated that the federal regulatory sys-
tem encourages lower standards for database design. By re-
quiring more documentation from vendors who identify
higher quality and higher horizons for database design, the
federal regulatory system effectively streamlines the
process for vendors with lower design standards. This re-
verses the incentive structure, favors low-quality design,
and fails to level the field with uniform standards.

Hoke concluded with a strong call for technical experts
and regulatory lawyers to forge strong partnerships in
order to favor regulatory structures that will generate
higher quality electoral performance and other key public
functions. This partnership would focus on multiple
fronts—academic, legislative, administrative, and judi-
cial—as well as involving the media in an attempt to over-
come the “fog” (glazing over of technical issues). She sug-
gested that computer security experts are uniquely quali-
fied for this interdisciplinary work.

The first questioner asked about avoiding the problem of
regulations that suggest particular technical restrictions
rather than general functionality. Hoke answered that the
regulatory system structure should be discussed by both
legal and technical communities. It must be played out.
Hoke is in favor of a “federal floor but not a ceiling”; we
should have baselines, but not limits. A second questioner
commented that this work focuses on properties of rela-
tional databases instead of object-oriented databases. How
can we extend this? Hoke answered that we should have
discussions to find the best possible solution, weighing
technical and realistic aspects. However, we cannot have
federal standards that operate as a ceiling.

D E S I G N I I

Summarized by Elliot Proebstel (proebstel@ucdavis.edu)

Ballot Casting Assurance via Voter-Initiated Poll Station
Auditing

Josh Benaloh, Microsoft Research

Josh Benaloh presented Microsoft Research work on allow-
ing voters to verify that their votes are being cast as they
intend. Benaloh observed that attendees at VoComp (Uni-
versity Voting Systems Competition) in July 2007 were
confused about the verifiability of all systems except the
DRE. It wasn’t verifiable, Benaloh noted, but they trusted it
because they understood or recognized it. This raised the
challenge: Can an open-audit voting system be built with
full end-to-end verifiability without trusting the software
and look like a DRE? Benaloh claimed that it can be done,
but the details are difficult to implement.

; LOGIN: DECEMBER 2007 CONFERENCE REPORTS 103

Benaloh reported that we have solid protocols for taking a
set of encrypted ballots and verifiably processing them to
produce an accurate tally. The transformation of encrypted
ballots to a tally is a black-box process that requires no
trust in software, hardware, or people. Thus, we can solve
the “counted as cast” problem. The “cast as intended”
problem is not so easy. Voters need to be able to ensure
that machines are allowing them to cast ballots as in-
tended. Clever ideas recently developed forcibly engage
voters in the verification process, but these are mostly still
too cumbersome for users. What happens if voters are al-
lowed but not required to check ballot validity? The prin-
cipal requirement is that a voting device cannot know the
identity of the user. The user of the voting device need not
even be a qualified voter; it could be an election official or
a suspicious voter.

Benaloh explained a first effort where voting devices are
isolated, with stand-alone units charged with capturing a
voter’s intentions and turning those intentions into en-
crypted ballots. The voter can either cast this encrypted
ballot or have it decrypted to verify that it has been prop-
erly formed. As long as the selection of which ballots will
be challenged is unpredictable by voting devices, it takes
very few challenges to obtain extremely high confidence.
With lots of voters, even a small percentage of voters who
challenge their ballots results in very high confidence.
Some problems remain with this scheme, but Benaloh re-
ported that it looks promising. The scheme is this: A voter
walks into a poll station and (if legally required) provides
ID to a poll worker. The voter receives a token indicating
the correct ballot type. The voter inserts the token into the
voting device and makes selections. The voter receives an
encrypted ballot. At this point, the voter can (1) provide
the ballot to be cast or (2) have the device open the ballot
via challenge. This should be unobtrusive. After the selec-
tions are made, a voter can be asked, “Do you wish to cast
this vote?” If the voter chooses “yes,” the device digitally
signs the encrypted ballot to indicate its eligibility for cast-
ing, and the voter is instructed to take the vote to a poll
worker; the poll worker scans the encrypted vote and gives
the voter the original as a receipt. If the voter selects “no,”
the device provides a verifiable decryption which the voter
may take home.

The encryption is deterministic. Encryption of ballot b is
performed by selecting a random value r and forming the
encryption V = E(b,r). The voting device reveals a vote V
by revealing b and r; a voter can take this home and verify
it on his or her own computer. Most voters probably won’t,
but at least they can. Ballot protection is ensured by print-
ing the encrypted ballot before the voter indicates whether
or not it is to be challenged, but the specifics of the en-
crypted ballot cannot be known to the voter before the
choice is made, in order to avoid voter coercion. Chain-
voting is still possible within this scheme and needs to be
addressed. Remote voting, however, has very substantial
coercion problems, but many people want it anyway. Ben-

aloh reported that the proposed scheme could even be
supported in Internet voting. The bottom line, according
to Benaloh, is this: Adding a single question to the end of
the voter process can add verifiability.

Someone asked whether the system could still cheat by de-
crypting “incorrectly.” Benaloh replied that you cannot
prove that the machine is recording incorrectly. You need
to be able to check in real time, online. Then someone
asked how the voter can tell that the number r is really
random. Benaloh answered that the voter can’t know this,
and that I can’t prove privacy, but neither can you. In re-
sponse to whether there can be any protection against co-
ercion, Benaloh answered, “No, you can’t prove absolute
privacy, just take good steps.”

Bare-Handed Electronic Voting with Pre-processing

Ben Riva and Amnon Ta-Shma, Tel-Aviv University

Amnon Ta-Shma presented an end-to-end scheme for elec-
tion verification that is intended to allow voters to vote
“bare-handed,” that is, without bringing their computers
to the voting booth. This should ideally be as simple as a
DRE but with cryptographic guarantees. Ta-Shma reviewed
previous work from Chaum and Neff and indicated that
neither of those schemes provides the voter with privacy
against the booth or the encryptor. This is a primary goal
that the team from Tel-Aviv University is seeking to meet;
the voter should be able to prepare his or her own ballot,
without having to trust anybody else, while still being able
to vote bare-handed. This leaves a quandary: If voters pre-
pare their votes at the voting booth, they must bring a
computer, but if they prepare their votes at home, they can
be subject to coercion.

The authors’ work seeks to avoid these problems and pit-
falls. There are three primary advantages of pre-processing:
(1) The voter can use open-source public code; (2) The
voter can use any computer hardware; (3) The scheme is
coercion-resistant, so a voter can get his or her ballot en-
crypted by a friend, a government machine, a coercer, or a
political party. The voter still gets privacy as long as the
party preparing the ballot does not maliciously cooperate
with the voting booth. This allows voter to choose what
level of privacy is desired.

The protocol works as follows: A voter comes into the
booth with a ballot for each candidate and chooses which
one to use at the booth. The booth uses a cut-and-choose
test to ensure that each voter comes with a ballot for each
candidate and that the voter can match ballots to candi-
dates. Each ballot has two sides, a front and a back. On the
front side, the ballot is in plain text; on the back, it is en-
crypted. Both front sides are published. A poll worker ran-
domly chooses one ballot, and its back side is also pub-
lished. The booth re-encrypts the front side of the remain-
ing ballot twice and prints it, covered with a scratch sur-
face. The voter chooses a candidate from one column and
uses the other column for testing the booth. To test the

104 ; LOG I N : VO L . 3 2 , NO . 6

voter, auditors check that the published back side matches
the published front side. Every candidate appears exactly
once, and the encryptions on the front side match the can-
didates on the back side.

The booth needs to re-encrypt in order to prevent a coercer
from having full information. If the booth prints the re-en-
cryptions without a scratch surface, vote-buying is possible.
For example, a coercer could say, “Vote using a re-encryp-
tion that starts with 110 and get $100,” forcing a random
vote. We want the vote to be independent of the encrypted
strings. This scheme: (1) provides unconditional unforge-
ability even against all-powerful adversaries (common also
to other crypto schemes); (2) is receipt-free: outsiders only
see the encrypted vote and the revealed column; (3) pro-
vides coercion-resistance, because there is a probability of
1/2 to coerce a voter without being caught, which deters
large-scale coercion (as there should be a significant risk at-
tached to coercion); and (4) allows the voter to vote bare-
handed. Moreover, it is a modular scheme, and it can be
based on several existing schemes. This protocol transfers
the ballot preparation from the booth to the voter (at a pre-
processing stage) and the tallying is unchanged. Future di-
rections for this work include simplifying the scheme and
relaxing the assumptions—mainly the assumption that the
public board is readable from anywhere.

The first questioner observed that at VoComp, most people
thought cryptography was a study of where dead people go
(crypts). The population won’t understand this if it in-
volves cryptography. Ta-Shma responded that they ask the
voter to come in with two ballots. The voter doesn’t have to
understand crypto; only the auditors do. Someone pointed
out that there are already variants that deal with booth-
trust issues. Ta-Shma agreed, but said that their contribu-
tion is the use of multiple ballots. Someone asked what
happens if the poll worker colludes with a coercer. Ta-Shma
conceded that the scheme fails in that case. Finally, some-
one expressed this concern about the crypto process: The
public is the auditor. Ta-Sham answered that the crypto be-
hind the scheme is very simple and easy to understand. All
you have to do is calculate some function, and the software
to do it can be downloaded from the Internet.

Three Voting Protocols: ThreeBallot, VAV, and Twin

Ronald L. Rivest, Massachusetts Institute of Technology;
Warren D. Smith, Center for Range Voting

Ron Rivest presented some “outside of the box” ideas on
end-to-end voting systems, which he claimed were a most
promising general direction for election verification. The
most common end-to-end systems are based on cryptogra-
phy, but he was able to present three options for doing it
without crypto: ThreeBallot, VAV, and Twin.

In ThreeBallot, each voter casts three plain text ballots. All
three go on a public bulletin board (PBB). The voter takes
home a copy of an arbitrarily chosen one as a receipt. It
doesn’t indicate how he or she voted, but serves as an in-
tegrity check on the PBB. Every ballot has a serial number

that is not easy to remember but is easy to type. Each row
of a ballot has at least 1 mark, not 0 and not all 3. Each
candidate gets n extra votes (where n = number of voters)
but the election outcome is the same. This works for every-
thing except rank-order choices or write-ins. Votes are cast
in a physical ballot box. The order of ballots is random and
is not tied together, but a machine checks before casting to
ensure that ballots are valid: It only checks, it doesn’t tally.
The voter arbitrarily gets to choose one as a receipt, and no
record is kept of which was the receipt. Receipts should be
unforgeable. The voter confirms the posted ballot on the
PBB after the polls close. Each ballot has a unique ID, so it
can be located. Voters should not see (and/or be able to
memorize) IDs for ballots that were not copied (to prevent
vote-selling.) Plain-text ballots are subject to short ballot
requirements, to prevent reconstruction attacks. Since an
attacker doesn’t know which ballots posted on the PBB
have copied receipts, any significant tampering is likely to
be detectable. The use of three ballots makes this coercion-
free. Voters can’t sell their votes by using their receipts.
Using only the PBB and voter receipts, neither an adversary
nor a voter can determine which three ballots were in an
original triple. However, the usability is not so good, and
the system is confusing to many. It would be possible to
mix “OneBallot” (ordinary ballots) with ThreeBallot, but no
receipts could be issued. End-to-end security provides voter
confidence; the voter can check that his or her ballot is in-
cluded in the tally and can check that collection and tally-
ing are done correctly, all without crypto.

Rivest next presented VAV (Vote/Anti-Vote/Vote), in which
the voter casts three ballots and takes a copy of one home
as a receipt, but one ballot must cancel another. The anti-
vote ballot is marked as “ANTI,” so the voter casts one
ballot the way he or she wants, another ballot the way he
or she doesn’t want, and an anti-vote to cancel the un-
wanted one. The tallier finds and removes pairs of ballots
that cancel one another and only counts the remainders.
This handles any voting system.

In Rivest’s final scheme, known as Twin, the voter gets to
take home a copy of somebody else’s ballot. The voter can
verify it from the PBB. All original ballots are put into a
bin as they are cast, and every voter (after the first ten) is
given a copy of an arbitrary ballot from the bin. Voters
cannot prove their own ballot and don’t know whose bal-
lot they have. An attacker cannot collect all copies of any
chosen receipt, because receipts are given with random se-
lection, using replacement. A constant fraction of all re-
ceipts are taken home with high probability. Rivest con-
cluded that it is possible to implement end-to-end security
without crypto, and end-to-end schemes provide improved
assurance of correctness of an election outcome.

The first question was about how to get an unforgeable re-
ceipt without crypto. Rivest answered, “Maybe water-
marked paper? A digital signature?” The next person
pointed out that, with VAV, people are more likely to take
home the one that’s the actual ballot. Rivest explained that

; LOGIN: DECEMBER 2007 CONFERENCE REPORTS 105

this is the same in other schemes, but the voter has denia-
bility here, which helps prevent coercion. The next ques-
tioner had a stumper: What prevents voters from casting
two ballots for the candidates of their choice and then an
Anti-Vote ballot against the candidates they oppose? Rivest
confirmed that there isn’t a solution to that problem yet.
Someone else wondered, if ballots are posted in plain text,
what prevents stray marks from allowing vote-selling?
Rivest said that the posted records should be digital ver-
sions of the plain text. Finally, someone pointed out that
posting ballots on a bulletin board is new. What new op-
portunities does this present for wholesale fraud? Rivest
answered that new kinds of verifiability will help in detect-
ing and preventing wholesale fraud. This is a whole new
layer of defense.

First USENIXWorkshop on Offensive
Technologies (WOOT ’07)

Boston, MA
August 6, 2007
Summarized by Dominic Spill (dominicgs@gmail.com)
and Robert N.M. Watson (robert.watson@cl.cam.ac.uk)

The First USENIX Workshop on Offensive Technologies
was opened by Tal Garfinkel. He thanked the program
committee and USENIX and gave an overview of what to
expect from the workshop.

I N V ITE D TA L K

Fast-Flux DNS and Overlay Networks Using Botnets

David Dagon, Georgia Institute of Technology

David got the workshop off to a start with a discussion of
his current work on botnets, focusing on botnets that rap-
idly change their DNS responses to avoid detection.

In botnets, which date back to the 1990s, pieces of mali-
cious code (bots) are often spread using Web sites, email,
and vulnerabilities. The bots originally communicated with
their controller using IRC channels. The countermeasure to
this was based on the DNS requests made to find the IRC
channel. As these countermeasures were used the sophisti-
cation of the botnets increased, and they began using peer-
to-peer applications for communication and replication.
These botnets were stopped because they had fixed points
in their network, and these could be tracked and stopped.

The current generation of botnets use domain names for
which the DNS response changes rapidly, with different
bots within the network taking the role of server for the
others. This is known as Fast-Flux DNS. The botnets avoid
having fixed servers and therefore attempt to avoid being
shut down; they use themselves to respond to DNS re-
quests and propagate themselves.

These botnets are then used for a number of different ap-
plications. Two of the most well known are sending unso-

licited email and distributed denial of service attacks. The
botnet provides a platform for these applications, which is
sold as a service by the controller of the botnet.

David has investigated the locations of the bots in the net-
works, using IP addresses. He found that most of the bots
were in centers of population, where the use of broadband
Internet is greatest. So David mapped the growth of the
botnets using the IPs that were given in response to re-
peated DNS requests. These graphs showed that initially
only a very small number of IPs were returned, but shortly
afterward there was an explosion in the number of IPs re-
turned, as more systems were infected by the bots.

The reason these botnets persist is that they avoid detec-
tion by constantly changing, either by repacking the binary
or by downloading an updated version from another bot in
the network. They are often observed, by antivirus re-
searchers, within virtual machines, but there is a large
amount of research into detecting virtual machines, mean-
ing that as research attempts to stop one exploit it helps
botnets continue to go undetected.

David has also analyzed the effectiveness of using existing
blacklists and user traffic analysis as predictors of infec-
tion, and he observed that although there are troubling so-
cial issues associated with usage analysis, based on usage
patterns some users are more likely to be exposed to, and
hence infected by, malware than others. This prompted a
healthy discussion of the interactions between privacy and
monitoring in malware prevention.

Robert Watson asked about the feasibility of bots com-
municating using the Tor network or botnets providing
stronger anonymity services to protect their maintainers.
David said that there are botnets that do this, but the per-
formance of the Tor network is not high enough for the
traffic required by most of the networks. Additionally, the
botnet managers may use Tor to control the botnets, but
the only anonymity they care about is their own, not that
of the systems that they have exploited, so they would not
use Tor to hide the systems with bots.

F ROM TH E M E TA L TO TH E I N F R A STR U C T U R E

Niels Provos chaired this session.

Flayer: Exposing Application Internals

Will Drewry and Tavis Ormandy, Google, Inc.

Will presented work on an advanced fuzzing tool, based
on Valgrind, with the ability to taint input and skip over
checks in the code. He also showed some of the bugs that
it had uncovered in libtiff, openssl, and openssh.

The Flayer tool is a combination of a fuzzer, an auditing
tool, and a patch analyzer. It can be used in automated
testing scripts or as a stand-alone application. Flayer taints
input to an application to allow it to be tracked through
the execution of the code. It can also bypass the execution
of branches to avoid version checks.

106 ; LOG I N : VO L . 3 2 , NO . 6

