
darknet of 100,000 IP addresses for real-time detection of
incident candidates. They use automatic capture of mal-
ware, Nepenthes, and code analysis. Eto demonstrated
some very cool 3D animated visualizations, at the very end
of the WiPs and the workshop.

HotOS XI: 11th Workshop on Hot Topics in
Operating Systems

San Diego, CA
May 7–9, 2007

K EY N OTE A D D R E S S

Transactional Memory: What’s the OS Got to Do with It?

David A. Wood, University of Wisconsin—Madison

Summarized by Ian Sin Kwok Wong
(iansin@eecg.toronto.edu)

Multicore processors are here but we do not have the par-
allelism we need in applications to take advantage of this
new architecture. Like Dave, most of us agree that parallel
programming is hard because people think sequentially
and as a community we have been using the same pro-
gramming models for the past 30 years and thus have not
acquired enough experience with parallel programs. An
application can be parallelized through the use of threads.
However, accesses to shared data must be carefully syn-
chronized to maintain application correctness. Otherwise,
deadlocks, live locks, or data races might result.

Transactional memory (TM) is one way to ease this burden
while allowing concurrent execution of a program. TM
originates from database systems and its declarative model
makes it an attractive proposition. The programmer says
what he or she wants and the system deals with the “how,”
while maintaining ACID properties. Software TM is slow
and Dave believes that the next logical step is a hybrid im-
plementation, which is basically a best-effort software TM
with hardware acceleration for the common case. However,
besides performance, the goals that TM systems are trying
to achieve include unlimited transactions, long-running
transactions, and unlimited closed nesting. In order to be
successful, these facilities should be provided with modest
hardware support.

Dave then gave the audience an overview of TM terminol-
ogy and introduced LogTM-SE, which can be dubbed an
“almost” virtualizable TM system. LogTM-SE is a hybrid
TM that explores eager version management and eager
conflict detection in the design space. LogTM-SE uses sim-
ple hardware support and exposes the interface to the soft-
ware, which in turn implements the required policies.

In the Q&A period, Emin Gün Sirer (Cornell) argued that
he did not believe TM to be the solution. In his opinion,
locking instructions are a simple sequence of 12 instruc-

tions but the main problems are what students are being
taught and what and how systems are being built (in refer-
ence to Linux). His question was, “Now that we have TM,
what does this do for the average programmer?” Dave’s re-
sponse was that programming language experts would be
required and that this subject was not his domain of ex-
pertise. Another interesting question from Kai Shen
(Rochester) dealt with the state of the art in “transactional-
izing” large systems. Dave replied that the main problem
behind such an effort is that the simple close-nested ab-
straction was not powerful enough for highly complex sys-
tems and dirty tricks were required because of the lack of
open-nested transaction support. He continued by arguing
that the open challenge in transactionalizing large complex
applications is to learn when simple abstractions are not
sufficient and come up with extensions that will be usable
by the average programmer.

CO P I N G W ITH CO N C U R R E N CY

Session Chair: Armando Fox, University of California,
Berkeley

Summarized by Ian Sin Kwok Wong
(iansin@eecg.toronto.edu)

Is the Optimism in Optimistic Concurrency Warranted?

Donald E. Porter, Owen S. Hofmann, and Emmett Witchel, The
University of Texas at Austin

Donald Porter argued that the conservative mutual exclu-
sion provided by locks, especially when locking is coarse-
grained, is detrimental to performance. However, using a
fine-grained locking scheme for better concurrency is very
complex. Optimistic concurrency, achievable through
transactional memory, removes the serialization points that
locks suffer from. Donald argued that porting systems to
leverage optimistic concurrency is a lot of work for poten-
tially marginal benefits and his talk focused on quantifying
the benefits of optimistic concurrency on multicore plat-
forms.

He explained how his tool, called Syncchar, measures data
independence in applications by analyzing the conflicts in
the address sets that are accessed within critical sections.
The tool was then used in a case study to measure data in-
dependence in a standard Linux 2.6 kernel. Although they
found that most locks used in Linux were fine-grained,
they also found 95% data independence on the dcache
lock—which indicates a good opportunity for improve-
ment. The study also compared Linux against TxLinux, an
implementation that converts 32% of spinlocks to use
transactions. Donald outlined some limitations, such as
the pathological behavior of linked lists, which caused
many conflicts and was due to the way the data structure
was organized. The talk concluded with the question of
whether optimistic concurrency will help your average sys-
tem and the answer was, “It depends.”

90 ; L O G I N : V O L . 3 2 , N O . 4

In the Q&A session, Dave Wood (Wisconsin) asked
whether the linked-list pathological case was similar to
open-nested transactions and whether it would be benefi-
cial to raise the level of abstraction throughout Linux.
Donald indicated that he looked into this and found the
best way was to get rid of the data structure altogether to
avoid the conflict. Although this might not be the best so-
lution, it would be a first step before building nesting and
correctness conditions. Ding Yuan (Illinois) followed with
a question regarding how Syncchar dealt with multiple
locks being held for a critical section. The answer was that
each lock is treated individually for now, but ideally Sync-
char should coalesce related locks. Sandhya Dwarkadas
(Rochester) then asked whether Linux was the best place
to use transactional memory and whether this would make
the system simpler. Donald argued that transactional mem-
ory gives more options for tuning the system for perfor-
mance and that is part of the reason for using transactional
memory on the Linux kernel.

Thread Scheduling for Multi-Core Platforms

Mohan Rajagopalan, Brian T. Lewis, and Todd A. Anderson,
Programming Systems Lab, Intel

With significant architectural differences in many-core
processors compared to traditional SMT architectures,
Mohan argued that we need to rethink the way threads are
scheduled for better performance. Most important, we
need to know what threads to run, and on which cores to
run them such that they benefit from cache locality. The
goal of this work is to develop an automatic solution that
is both portable and easily programmable, although it
might not perform as well as a hand-tuned application.

The contribution of this work is an automatic scheduling
framework that makes it relatively easy for the average
programmer to achieve good performance without an in-
depth knowledge of the underlying multiprocessor archi-
tecture. This is achieved through minimal programmer an-
notations, whereby related threads are tagged with a Re-
lated Thread ID (RTID). The system uses the RTIDs and
their attributes for a best-effort placement of threads and
updates them at runtime. Thread placement can also be
explicitly guided by the expert programmer.

Timothy Roscoe (ETH Zürich) asked Mohan where the op-
erating system (OS) was in this work. To Timothy, this is a
runtime system. Mohan responded by saying the design
was a runtime one but the scheduling problem is the same
as traditional OS scheduling. A hanging question from
Michael Isard (Microsoft Research) was whether threads
were the right level of abstraction.

Automatic Mutual Exclusion

Michael Isard and Andrew Birrell, Microsoft Research, Silicon
Valley

Andrew Birrell argued that in software development we
want correctness, efficiency, and maintainability. Increas-

ingly, people want to program for parallel architectures and
threads, together with locks as synchronizing primitives,
as a popular way to implement parallel programs. He ar-
gued that the use of locks gets harder as a project grows in
size and relies on the programmer to make decisions to
maintain application correctness (e.g., to preserve the
acyclic locking order). Failure to program locks correctly
results in deadlocks, data races, and oversynchronization,
among other problems. An alternative is the transactional
memory paradigm. The complexity is moved from the pro-
grammer to the experts, but the programmer still needs to
reason about the concurrent parts of a program.

They propose to solve these problems by using automatic
mutual exclusion (AME). AME is similar to an event-based
system augmented with transactions that can run concur-
rently. Transactions are presented differently to the pro-
grammer. Essentially the whole program is run as a trans-
action and the programmer must explicitly indicate when
a code fragment is expected to run outside of a transac-
tion. AME is composed of a thread pool and asynchronous
methods. Each async method runs as a transaction and
transactions execute concurrently with the help of threads.
What is produced is a correctly synchronized concurrent
program that the runtime system needs to execute effi-
ciently. The responsibility of making intelligent decisions
is thus moved from the programmer to the intelligent run-
time system. To deal with blocking IO calls, AME imple-
ments a yield system method that breaks a method into
atomic fragments. Any method may call one or more yields
but the caller must be aware of this, since their state be-
comes visible.

After the talk, Jon Howell (Microsoft Research) agreed that
labeling things to be outside transactions makes sense but
wondered about yield propagation. From previous experi-
ence, he argued that most functions end up having the
yield annotation, making them practically useless. Andrew
replied by saying that they don’t know yet and are in the
process of implementing the system.

M O D E R N A B STR AC TI O N S

Session Chair: Landon Cox, Duke University

Summarized by Ramakrishna Gummadi (ramki@cata-
rina.usc.edu)

Hype and Virtue

Timothy Roscoe, ETH Zürich; Kevin Elphinstone and Gernot
Heiser, National ICT Australia

Timothy Roscoe presented a call to think about virtual ma-
chines differently for research purposes than what is done
today. He argued that research on virtual machines has not
provided new insights into operating system abstractions
or structures; instead, it has focused more on building bet-
ter hypervisors or on developing new uses or applications
around them. However, the work of building hypervisors

; LO G I N : AU G U ST 2 0 0 7 CO N F E R E N C E S U M M A R I E S 91

involves reimplementing many of the abstractions of tradi-
tional OSes, such as protection and sharing of hardware re-
sources, and efficient communication. So, the VMM re-
search in this space has not been productive from a re-
search perspective. Moreover, VMMs suffer from problems
such as implementation complexity, poor performance,
and large TCBs (Trusted Computing Blocks).

However, Roscoe noted that a key area in which VMMs
represent a clear advance is in providing an application-
level abstraction, since one can bundle entire applications
as ready-to-run packages. So, OS designers can leverage
this benefit of VMMs to save themselves the burden of
porting applications while building new OS abstractions
and facilities. The speaker outlined some really new re-
search directions for disruptive virtualization, such as new
kernel and OS API designs based on transactional memory,
concurrent hardware, and high-level languages, as well as
new kernel implementation techniques based on verifiable
languages and machine-checkable formal specifications. He
also called for OS and VMM designers to carefully examine
the performance of resulting systems using improved and
more meaningful metrics for measuring VMM isolation
and scalability. The ultimate outcome of such efforts would
thus be new and disruptive OS research that actually has
the chance to succeed in the real world because of the
availability of crucial application support provided by
VMMs.

Gün Sirer from Cornell asked what to do with applications
where one wants to keep some of the old POSIX interface
yet include a new API. Roscoe answered that we might
need to decide between having a legacy or a new interface.
Margo Seltzer from Harvard remarked that the Program
Committees at conferences should become more open-
minded about accepting OSes that didn’t necessarily sup-
port the usual suite of compatible applications and/or pre-
sent performance numbers for such applications. Jeff Mo-
gul from HP asked whether there is an analogy between
the narrow waist occupied by IP in the Internet stack and
VMMs in OSes. Roscoe replied that we shouldn’t standard-
ize a thin waist and that not having a thin waist in OSes is
not a problem.

Relaxed Determinism: Making Redundant Execution on Mul-
tiprocessors Practical

Jesse Pool, Ian Sin Kwok Wong, and David Lie, University of
Toronto

Jesse Pool suggested a system that provides relaxed deter-
minism guarantees in order to practically allow redundant
execution of threaded processes on multiprocessors. The
motivation is that future multiprocessors will have enough
resources to allow processes to be executed redundantly in
order to provide guarantees such as reliability, as well as
security through diversity. Unfortunately, today’s systems
don’t allow practical multithreaded applications to run re-

dundantly because of various nondeterministic execution
scenarios encountered under real-world settings.

Jesse described their system called Replicant, which pro-
vides reasonable performance while tolerating nondeter-
minism. Their key insight is that, in many cases, the event
ordering seen by applications will not result in significant
differences in application behavior, so some event order-
ings can be profitably relaxed. This approach is similar to
the relaxed memory consistency models used in modern
processors to achieve respectable performance. Thus,
Replicant loosely replicates the order of events among the
executing replicas, and it relies on determinism hints in-
serted by the developer in order to enforce a precise order-
ing of event delivery across replicas.

Replicant incorporates several system facilities to achieve
such a nondeterministic but correct execution. First, each
replica is executed in an OS sandbox called a harness,
which captures the process-specific OS state. Second, a
matcher component in the kernel is used to fetch and
replicate inputs from the external world and deliver them
to the harness. It is also responsible for determining when
outputs from the harness should be made externally visi-
ble. The Replicant system has been implemented for
Linux, and it has successfully managed to run several ap-
plications in the SPLASH-2 benchmark suite.

Jason Flinn from Michigan asked whether one can also use
annotations as performance hints. For example, the repli-
cas could all use shared memory, and the locks in the code
can be thought of as annotations that indicate this possi-
bility. Jesse responded that this was likely to slow down
performance. Diwaker Gupta from UCSD asked whether
the replicas can be thought of as state machines, and the
speaker said that the replicas have only to provide identi-
cal outputs, so their implementation need not conform to
the state-machine execution model. Diwaker also won-
dered whether Replicant would scale to more than two
replicas and Jesse responded that they had tried more than
two replicants. Emmett Witchel from Texas asked how the
matcher could accurately deliver answers to inherently
nondeterministic system calls such as gettimeofday. Jesse
replied that the same answers to all replicas have to be re-
turned for such system calls only when such calls were
used in sequential regions of threaded code.

Compatibility Is Not Transparency: VMM Detection Myths
and Realities

Tal Garfinkel, Stanford University; Keith Adams, VMware;
Andrew Warfield, University of British Columbia/XenSource;
Jason Franklin, Carnegie Mellon University

Tal Garfinkel pointed out that recent worries about being
vulnerable to stealthier rootkits are unfounded, because
building transparent VMMs is effectively impractical. This
is because there are numerous easily detectable anomalies
between real and virtual hardware, as described in the

92 ; L O G I N : V O L . 3 2 , N O . 4

paper, and possible countermeasures to such anomalies are
demonstrated to be infeasible. The take-away conclusion
of the talk and the paper was therefore that transparent
VMMs are unrealizable from both a performance and an
engineering standpoint.

Tal talked about various discrepancies that an application
running inside a VM can detect. For example, some CPU
instructions are nonvirtualizable, so applications can exe-
cute them and observe their side effects in order to detect
whether they are running in a virtualized state. Second,
the emulated hardware is out of date with the CPU capa-
bilities, because a VM typically emulates old but well-un-
derstood hardware resources such as chipsets and disks
from the 1990s. Also, applications can easily detect fea-
tures of emulated hardware resources such as TLB sizes
that behave differently on virtualized hardware than on na-
tive hardware. Finally, there are a lot of timing discrepan-
cies exposed through both local and remote time sources
that allow an application to construct covert channels for
detecting that it is running on a VMM. Although it is theo-
retically possible for a VMM to provide perfect trans-
parency to applications through techniques such as time
dilation, the resulting emulation overhead and the overall
performance impact would make implementations imprac-
tical, while potentially opening up further, more subtle
sources of vulnerabilities. Tal concluded that virtual ma-
chines can never truly approximate real hardware and that
there are both good and bad outcomes as a result.

Timothy Roscoe from ETH Zürich pondered whether an-
other form of nontransparency in VMs is when nonvirtual-
ized programs running on virtualized hardware end up au-
tomatically exploiting the nontransparent behavior of VMs
to do bad things, such as polymorphic viruses using non-
deterministic cycle counts. Tal said that was an interesting
idea, pretending to be a VM to fool malware into believing
it is being run in a sandbox, at which point it exits. Tal
mentioned some work at Symantec along these lines. John
Wilkes from HP wondered whether there exists hardware
to detect rootkits, and whether such hardware would be
practical. Tal suggested that you write something that per-
mits only authorized VMs to run. Emin Gün Sirer declared
that he didn’t believe in digital signature schemes, referring
to authorizing VMs.

A LG O R ITH M S F O R P RO F IT

Session Chair: Emmett Witchel, University of Texas at
Austin

Summarized by Vinod Ganapathy (vg@cs.wisc.edu)

Don’t Settle for Less Than the Best: Use Optimization to
Make Decisions

Kimberly Keeton, Terence Kelly, Arif Merchant, Cipriano San-
tos, Janet Wiener, and Xiaoyun Zhu, Hewlett-Packard Labora-
tories; Dirk Beyer, M-Factor

Kim Keeton said that complex systems problems often
present a large search space, with complex tradeoffs, with
the best and worst solutions differing by as much as an
order of magnitude. Currently, ad hoc domain-specific so-
lutions are used to arrive at solutions to these optimization
problems.

Keeton then went on to argue that the approach to this
problem should be to use mathematical programming to
solve these optimization problems. A math program has
input parameters, objective functions, and constraints. The
first step should be to formally describe the problem, fol-
lowing which commercial solvers can be employed to ar-
rive at a solution. An alternative is to use meta heuristics,
such as genetic algorithms, to arrive at solutions to opti-
mization problems. Keeton described the generic structure
of a genetic algorithm and showed how it can be used to,
for example, minimize total penalty in an optimization
problem.

Keeton also exploded several myths regarding optimiza-
tion. (1) Myth: “Simple heuristics are good enough.” Real-
ity: Simple heuristics may be good enough, but what does
“good enough” mean? (2) Myth: “One may have to over-
simplify the problem to make it amenable to a math pro-
gram solver.” Reality: One can use alternative optimization
techniques; one does not have to shoehorn the problem
into the solver available. (3) Myth: “Optimization is too
slow.” Reality: This claim cannot be made in general; the
cost of optimization depends on the specific problem to be
solved. (4) Myth: “Inaccurate data can lead to bad deci-
sions.” Reality: This cannot be helped, and so a sensitivity
study is necessary.

Someone asked whether there are any guidelines on when
math programming is useful, or when machine learning is
useful. Kim replied that you should use statistical machine
learning to uncover what variables are important. Brian
Knoll of Michigan wondered whether the main challenge
was in trying to express all costs in the same currency. Will
this not result in bad data, which results in inaccurate re-
sults? Kim answered that we must express everything in
the same currency. In their paper they did so using dollars
(real currency) to quantify the costs of various options.

; LO G I N : AU G U ST 2 0 0 7 CO N F E R E N C E S U M M A R I E S 93

Hyperspaces for Object Clustering and Approximate Match-
ing in Peer-to-Peer Overlays

Bernard Wong, Ymir Vigfússon, and Emin Gün Sirer, Cornell
University

Bernard Wong explained that the motivation for this work
is that services such as Gnutella provide a search primitive
that can conduct approximate search (so a search for “Brat-
ney Spears” will still yield files related to the real goal of
the search “Britney Spears”). However, Gnutella is slow.
One solution is provided by systems such as Chord, Pastry,
etc., all of which use distributed hash tables (DHTs). How-
ever, DHTs do not support approximate search, but need
the exact key.

Wong then went on to present the hyperspace model,
which achieves the best of both worlds by supporting ap-
proximate search on P2P overlays. A hyperspace is a high-
dimensional space in which objects that are “close by” in
the sense of having small edit distance are located close to-
gether in the hyperspace (i.e., the Euclidean distance be-
tween these objects is small). The main challenge in a hy-
perspace is to correctly choose the basis for the high di-
mensional space, and the cost of a poor selection of labels
is that it can lead to poor clustering, and thus poor search
results.

The questions mainly concerned how difficult it was to
choose an appropriate basis. Wong mentioned that basis
selection must be repeated over time, depending on the
current search queries that were popular.

Optimizing Power Consumption in Large Scale Storage
Systems

Lakshmi Ganesh, Hakim Weatherspoon, Mahesh Balakrish-
nan, and Ken Birman, Cornell University

Lakshmi Ganesh began by saying that much money and
energy get wasted at data centers (e.g., $7.2 billion in a re-
cent year, of which $2.4 billion was spent to cool disks).
Thus, a technique is needed to reduce this amount (e.g.,
by spinning down disks from which data is not immedi-
ately needed).

Ganesh then went on to present a file system–level solu-
tion to the problem by using a log structured file system
for this purpose. Using a log structured file system ensures
that new data is appended only to the end of the log.
Thus, all the disks that are not currently being written to
can be spun down provided that the data that is accessed
most often from these disks get cached. In addition, log
cleaning can be used to concentrate popular data on the
same disk.

Q&A: In terms of how many reads hit the cache, someone
mentioned that server disks are more sensitive to power
than laptop disks and wanted to know if using laptop
disks would mitigate this problem. Another audience
member suggested that this problem might be mitigated by
buffering before actually performing writes to the disk.

One questioner asked whether the power reduction num-
bers presented in the talk and in the paper take into ac-
count the full machine or just the disk subsystem. The an-
swer was that they only take into account the disk subsys-
tem.

G UA R A NTE E S F O R TH E F UT U R E

Session Chair: Amin Vahdat, University of California, San
Diego

Summarized by Ramakrishna Gummadi (ramki@cata-
rina.usc.edu)

Can Ferris Bueller Still Have His Day Off? Protecting Pri-
vacy in the Wireless Era

Ben Greenstein, Intel Research Seattle; Ramakrishna Gum-
madi, University of Southern California; Jeffrey Pang,
Carnegie Mellon University; Mike Y. Chen, Intel Research
Seattle; Tadayoshi Kohno, University of Washington; Srini-
vasan Seshan, Carnegie Mellon University; David Wetherall,
University of Washington and Intel Research Seattle

Ben Greenstein argued that today’s wireless devices se-
verely compromise a user’s privacy because of various limi-
tations in the design and implementation of wireless proto-
cols. Such privacy threats should be seen as imposing an
economic cost on the threatened users, because the ex-
posed information includes data about browsing history,
location history of previously visited access points, infor-
mation about applications running on a user’s computer,
and details about capabilities and features of the hardware
on the user’s computer.

Using measurements from a publicly available SIGCOMM
’04 trace of 802.11 network usage, Ben pointed out that
exploiting these vulnerabilities allows an adversary to
identify and track the locations of more than 25% of the
user population with an accuracy of 99% or better. He
then outlined the systems challenges involved in building
privacy-preserving wireless protocols, such as a privacy-
enhanced 802.11 MAC. Such research challenges fall into
three main categories: building a naming architecture with
anonymity properties better than those afforded by pseu-
donyms; building resource discovery and binding proto-
cols that let a user search for, select, bind, and then mi-
grate to resources such as access points; and limiting infor-
mation leakage by preventing the inadvertent exposure of
implicit identifiers that allow an attacker to identify and
classify the hardware and software being used by a user
with high accuracy.

Jason Flinn from Michigan asked whether the privacy and
performance metrics in the paper represent commonly ac-
cepted metrics, and the speaker replied that he hoped so.
Steve Hand from Cambridge asked what the most identify-
ing feature in 802.11 was, and Ben replied that it was the
set of IP destinations accessed by a user. Margo Seltzer
from Harvard asked whether there is a difference between

94 ; L O G I N : V O L . 3 2 , N O . 4

her generation and the current one in terms of privacy ex-
pectations: Younger people today seem to be more willing
to openly reveal their locations and activities on sites such
as MySpace. The audience thought that adverse impact in
terms of future study and employment opportunities
owing to lax attention to privacy could soon cause people
to take their privacy more seriously. The final question
dealt with the implications of changing the MAC address
frequently to provide anonymity, because many protocols
use MAC addresses for various functions such as authenti-
cation. Ben replied that one could change the MAC ad-
dress slowly, such as each time you associate to an AP, so
that the changed address could be used for authentication,
in conjunction with a more permanent address.

Auditing to Keep Online Storage Services Honest

Mehul A. Shah, Mary Baker, Jeffrey C. Mogul, and Ram
Swaminathan, HP Labs

Mehul Shah talked about the importance of providing a
third-party auditing facility for online services such as
storage and the challenges involved in provisioning reli-
able internal and external audit facilities for such services.

Mehul described a catastrophic data-loss scenario for a
user using an online storage service provider. The user
could not make a well-guided selection of the storage ser-
vice she used because of lack of reliable information about
the relative service qualities offered by competing storage
providers. The speaker pointed out that, in the real world,
there is already considerable appreciation of the function-
ality provided by auditors and insurance agents who con-
tract them. He said that there are two main approaches to
auditing: external and internal. In external auditing, exter-
nally visible interfaces are used to measure and predict the
properties of a service. In internal auditing, information
about the extent to which a service follows best practices
and processes internally to ultimately meet its service ob-
jectives is assessed. Both types of audits are needed, and
they complement each other. Mehul pointed out several
goals and properties of audits and said that auditing was
motivated by demands placed by insurance providers or by
government regulations.

Mehul then explained the interfaces and hooks that are
necessary for storage services to maintain the service’s
SLAs. A main challenge is to preserve privacy while ensur-
ing data longevity and integrity. The auditing process must
also be bandwidth-efficient. Mehul then proposed a pri-
vacy-preserving approach for auditors to verify that the
data stored by the service providers is correct. It uses
hashes on encrypted data and ensures that the key used to
encrypt the data need not leave the service provider, while
simultaneously guaranteeing that the service provider has
not lost any of the user’s data. He concluded by saying that
there is therefore both a need and a mechanism for effi-
ciently and privately verifying the performance of online
storage providers.

David Lie from Toronto asked how one can audit rapidly
changing data. Mehul proposed the use of batching. Lan-
don Cox from Duke asked whether an alternative ap-
proach would be to keep a separate copy of the data with
the customers themselves, or, alternatively, to keep a copy
with the auditors. Mehul replied that one of the assump-
tions of the work is that the customers are not expected to
keep any copy of the data they originated with themselves,
and that auditors should not necessarily be trusted with
the original data. Hakim Weatherspoon from Cornell asked
whether it is possible for the auditor to be anonymous.
Mehul replied that the solution is then to use data sam-
pling. Gün Sirer from Cornell asked whether the reputa-
tion provided by auditing is really meaningful, and Mehul
replied that auditing indeed helps develop reputation. Fi-
nally, the audience wondered whether moving toward data
assessment through auditing or more simply toward better
data backup is ultimately the right thing to do.

AWeb Based Covert File System

Arati Baliga, Joe Kilian, and Liviu Iftode, Rutgers University

Liviu Iftode presented a Web-based covert file system
called CovertFS. Liviu first outlined the requirements for a
steganographic file system centered on Web services for
media sharing and storage: providing plausible deniability,
allowing online access and sharing, and providing infor-
mation hiding for confidential documents and information.
He then presented the main design concepts of CovertFS
and the challenges involved in providing a file system ab-
straction build on top of a Web-based system for sharing
photos.

In CovertFS, both data and metadata such as inodes are
stored in photos. The root of the file system is then ac-
cessed through a hash of the encryption passphrase en-
tered by the user. CovertFS includes techniques to hide ac-
cess patterns that may reveal its hidden purpose behind
photo accesses. They include ways to manage frequently
changing image data owing to file system writes by using
immutable allocation maps and avoiding photo access
hotspots resulting from metadata accesses, which could tip
off an external party, by using image chains. CovertFS also
includes facilities for access control, such as allowing read-
only access on publicly shared photos, and replication to
manage Web site unavailability. Finally, plausible deniabil-
ity can be provided by having multiple levels of CovertFS,
the top few of which are potentially less incriminating. Fi-
nally, Liviu talked about how to manage both active adver-
saries who can perform steganalysis and passive adver-
saries who can mount traffic analysis. He concluded by
saying that they are currently building a working proto-
type that they hope to evaluate in terms of latency, scala-
bility, security, and privacy.

Mary Baker from HP wondered whether write accesses can
be more covertly managed by pretending that images are
being manipulated for common operations such as red-eye

; LO G I N : AU G U ST 2 0 0 7 CO N F E R E N C E S U M M A R I E S 95

removal. The speaker agreed. Margo Seltzer from Harvard
asked whether one can build a cooperative steganographic
service and whether the threat model would be different.
Gün Sirer from Cornell wondered whether it is possible to
use file systems optimized for write-once, read-many
workload, such as an ISOFS. Finally, Jason Flinn from
Michigan wondered why a file system should be used for
covert sharing in the first place. Liviu answered by saying
that a file system is an abstraction familiar to users.

PA N E L : P UT TI N G TH E S C I E N C E I N COM P UTE R S C I E N C E

Session Chair: Margo Seltzer, Harvard University

Summarized by Vinod Ganapathy (vg@cs.wisc.edu)

Panel Members: Dawson Engler, Stanford University; Butler
Lampson, Microsoft; Jay Lepreau, University of Utah, virtual-
ized by Jeff Mogul, HP Labs; Brian Noble, University of Michi-
gan, virtualized by Yuanyuan Zhou, UIUC

Brian Noble started by saying that the good news was that
the OS community had begun to think about usability and
not just performance. However, the bad news is that we
are really poor at evaluating our work. Most work pro-
ceeds by conducting a toy user study or presenting anec-
dotal evidence with excuses such as “We don’t need a user
study,” “Our colleagues thought that our system was neat,”
and “User studies are too hard!” Noble went on to con-
clude that the main reason we don’t conduct user studies
was because of fear of the unknown.

Noble mentioned the need to collaborate and work with
experts in the HCI area to conduct meaningful user stud-
ies. He encouraged the community to learn the rules, as
IRBs are typically not the enemy. He did, however, men-
tion the long cycle times needed to conduct a user study
and also the need to overprovision the resources needed
[because a subject, once used in a study, cannot be used in
that same (redesigned) study once again]. Therefore there
is a need to conduct several little pilot studies before the
final study.

The second speaker, YY Zhou, spoke about the need to put
“Nerdiness” into “Hackers.” She had began in Princeton as
a theory student, and therefore as what she believed was a
“nerd.” Her advisor then convinced her to become a
“Hacker,” and so she is now what she calls a “Neker.”

Zhou then described a typical research cycle, in which we
select a problem, either based on demands, trends, and
challenges in the real world or as a response to other pa-
pers from the community, then abstract it, solve it in the
abstract, and develop a proof-of-concept solution. The
next step is to conduct a user study to evaluate these
proofs of concept. She then mentioned that it is time for
hackers to admit that nerds can be cool too. For example,
in her own work she uses machine learning and data-min-

ing techniques, and she said that the community must
consider publishing in venues such as SysML and control
theory conferences.

The third speaker, Jeff Mogul, presenting Lapreau’s slides,
mentioned the need to not just have “reproducible re-
search” but “replayable results.” The goal is to have the
ability to replay the entire system, i.e., software plus hard-
ware, so that we can fiddle around with parameters and
see how the system responds. This is possible using a vir-
tual machine infrastructure, data repositories, experimen-
tal management systems, and grids.

The fourth speaker, Butler Lampson, proposed that to
bring science to computer systems research, it was very
important to write precise specifications for the systems
that we build. The techniques and tools needed to write
specs have all been developed in research over 10–15 years
ago. The basic idea is to build a system and write a simula-
tion proof that the system built indeed conforms to the
spec.

Lampson said that by writing a spec, it is often possible to
learn things about the system that the designers couldn’t
have learned otherwise. He mentioned the example of a
student whose thesis committee he was on. This student
was designing a CVS-like system on P2P over a DHT but
had a flaw in his design that became obvious when he en-
couraged the student to write a spec of his system. Lamp-
son then switched gears to say that scientists, contrary to
popular belief, do not replicate experiments.

The audience then joined the discussion. One member
asked whether a bad user study is better than no user
study at all, to which Noble replied that what we currently
have are only bad user studies, which is why we need to
collaborate with HCI folks. Another audience member
mentioned that the time and effort needed to conduct a
detailed study such as the one that the panelists were re-
ferring to takes a lot of time, which means that the stu-
dents will graduate without enough papers—students
nowadays need at least three or four decent papers in top
venues to get good jobs, so isn’t there a conflict here? One
panelist strengthened this view by saying that even univer-
sities nowadays don’t hire such people, so we don’t breed
that kind of culture in our universities now. Another audi-
ence member questioned the need for writing specs by
asking why specs are important. Isn’t impact on the real
world more important?

96 ; L O G I N : V O L . 3 2 , N O . 4

N E W S O LUTI O N S, O L D P RO B L E M S

Session Chair: Yuanyuan Zhou, University of Illinois at
Urbana-Champaign

Summarized by Diwaker Gupta (dgupta@cs.ucsd.edu)

Purely Functional System Configuration Management

Eelco Dolstra, Utrecht University; Armijn Hemel, Loohuis
Consulting

Keeping software up to date poses a huge system adminis-
tration challenge, in large part owing to problems with ex-
isting configuration management tools: Dependency han-
dling is not perfect, having multiple versions of software
on a system is often problematic, configuration files often
undergo destructive modifications on updates, etc. In this
talk Eelco Dolstra presented a new Linux distribution—
NixOS (http://nix.cs.uu.nl/nixos)—built around a purely
functional system configuration manager called Nix.

The key insight is that most of these problems arise be-
cause of the imperative model used by most configuration
tools—users need to describe how to get things done as
opposed to what needs to be done. Drawing motivation
from the programming language world, NixOS uses func-
tional programming paradigms such as referential trans-
parency to manage system configuration. In particular, Nix
is completely stateless, and the entire system configuration
is rebuildable from a single, declarative specification. Once
built, packages are immutable. Multiple versions of pack-
ages are supported and dependencies are propagated in the
build system.

A consequence of this design is that if one of the core li-
braries (say, libc6) undergoes modification, pretty much
the entire system has to be rebuilt, resulting in significant
storage overhead. Another practical problem arises because
NixOS generates configuration files in a declarative man-
ner as well, so there is no easy way to manually modify a
configuration file, primarily because tracing the place in
the build system where it was generated is nontrivial. Nix
does provide repositories with prebuilt packages to save
build time for end users.

Processor Hardware Counter Statistics as a First-Class Sys-
tem Resource

Xiao Zhang, Sandhya Dwarkadas, Girts Folkmanis, and Kai
Shen, University of Rochester

Processor hardware performance counters started out as
verification and debugging aids, but they have evolved into
a rich source of statistical information invaluable for sev-
eral applications such as CPU scheduling, self-managing
applications, and benchmarking tools. These performance
counters are usually managed in hardware and read using
some low-level interface by the operating system. In this
talk, Sandhya Dwarkadas made a case for hardware coun-
ters to be managed as first-class entities by the OS.

Management means providing a high-level API for applica-
tions to use, and also virtualizing the counters on a per-
process basis. This would allow things such as measuring
the number of cache misses for a particular application.
There are several applications that would benefit from
such facilities: Resource-aware OS schedulers could use
hardware counters as input to a counter-based resource
model; hardware counters could also be used to distin-
guish between CPU-intensive and memory-intensive re-
quests to do online workload modeling.

However, there are several issues to be hashed out. Secu-
rity is a concern: Can counters act as covert channels to
leak information? Another concern is performance: Cur-
rently, counters are attractive because they are extremely
efficient. However, OS management might make counters
significantly slower, nullifying the benefits of management.
The main push of the paper was to encourage a dialog be-
tween hardware vendors and OS developers.

Microdrivers: A New Architecture for Device Drivers

Vinod Ganapathy, Arini Balakrishnan, Michael M. Swift, and
Somesh Jha, University of Wisconsin—Madison

It is well known that the bulk of the bugs in OS code
come from device drivers, primarily because device drivers
are hard to get right, extremely hard to debug, and often
written by those who are not kernel experts. Vinod point-
ed out, however, that the fundamental problem was the ar-
chitecture of monolithic kernels (e.g., Linux). Since the
device driver runs in the kernel’s address space, a faulty
driver can easily take the whole system down. Earlier proj-
ects have tried to address this issue by moving device driv-
ers to user space, but these approaches suffer from either
poor performance or incompatibility with commodity
OSes.

Microdrivers is a new approach to building device drivers
that is both efficient and backwards-compatible. The key
idea is to split each driver into a kernel driver and a user-
space driver interacting over a driver runtime. Perfor-
mance-critical functionality sits in the kernel driver; the
rest is delegated to user space. However, the real clincher
for this approach is that existing device drivers can be
semi-automatically converted to microdrivers.

The code generation takes place in two stages. First, a
“splitter” detects function-level split in driver code. Sec-
ond, the “code generator” takes as input marshaling anno-
tations required for serializing complex data structures and
outputs code for the different components.

This talk sparked a lot of discussion and questions. One of
the biggest complaints was that the evaluation in this
paper doesn’t actually implement the microdriver approach
(since everything executes in the kernel). Another obser-
vation was that many bugs usually occur in corner cases
and a split based on functionality might not be able to cap-
ture it. Clean maintenance of split drivers as the upstream
driver code evolves also poses a challenge.

; LO G I N : AU G U ST 2 0 0 7 CO N F E R E N C E S U M M A R I E S 97

4 - M I N UTE M A D N E S S

Session Chair: Rebecca Isaacs, Microsoft Research Cam-
bridge

No summary available, but see the Sirer-Farrow article in
this issue, based on a talk from this session.

W E B 2 . 0

Session Chair: David Wetherall, Intel Research and Uni-
versity of Washington

Summarized by Vinod Ganapathy (vg@cs.wisc.edu)

MashupOS: Operating System Abstractions for Client
Mashups

Jon Howell, Microsoft Research; Collin Jackson, Stanford Uni-
versity; Helen J. Wang and Xiaofeng Fan, Microsoft Research

Howell presented background on Web 2.0 technologies
such as AJAX and also browser policies, such as the Same
Origin Policy. He then presented Mashups, for example,
where housingmaps.com uses information from both
Google Maps and Craigslist to present a listing of available
houses.

Howell mentioned that the problem was the binary secu-
rity model of the Web, where content from domains can be
isolated perfectly using IFRAMES, or has no security at all
(e.g., a SCRIPT executes in the context of the page that in-
cludes it). Howell thus argued for the need for sophisti-
cated interaction among various components of a page.
The solution is a new abstraction called a ServiceInstance,
which is akin to a process on an OS. Each service instance
is associated with a single domain, and each resource
has its own service instance. Service instances are created
by using the FRIV tag (a new construct introduced in
HTML). Service instances allow for limited communica-
tion, and they are thus a hybrid of FRAMES and DIVS.
Howell also went on to mention that MashUpOS can be
implemented with script rewriting (e.g., using the Brow-
sershield framework).

The questioners asked whether service instances were akin
to adding a new element to the process hierarchy, and if
so, why this was indeed a right abstraction. Another ques-
tioner also asked how to label pages from different do-
mains: Should the browser do it, or should applications do
so cryptographically? Howell said this was an issue they
were currently examining.

Live Monitoring: Using Adaptive Instrumentation and
Analysis to Debug and Maintain Web Applications

Emre Kıcıman and Helen J. Wang, Microsoft Research

Emre Kıcıman said the motivation for this work was that
huge amounts of code were downloaded on the client side
in today’s Web 2.0 sites, with sites such as Google Maps
downloading up to 50,000 lines of code to the client side

to improve user experience. Thus lots of code executes on
the browser, and there are third-party dependencies, too
(e.g., using Mashups).

Kiciman explained the need for end-to-end visibility,
which would help Web application developers better un-
derstand and tune their applications. He argued for an on-
the-fly rewriting technique that would be deployed with
the code that is downloaded on clients, which would help
the application developer with issues such as performance
and correctness debugging of these applications. The key
was that this offers a different deployability model, where
deployment is immediate, with very fine-grained control
over who’s using what instrumentation. Also, all this is
possible in their system without any changes to the server
or the client (and is done via Javascript rewrites).

In the Q&A session, one questioner expressed concern
about the “willy-nilly” rewriting being performed by their
system, and about all this code executing in the browser,
which he mentioned did not make him feel very comfort-
able from a security standpoint. A second questioner asked
whether different instrumentation at different sites would
cause problems in understanding bugs.

End-to-End Web Application Security

Úlfar Erlingsson, Benjamin Livshits, and Yinglian Xie,
Microsoft Research

Úlfar Erlingsson said that today’s data transmitted over the
Web is rich data; that is, it can contain embedded scripts,
which can be used to launch cross-site scripting attacks.
The standard solution adopted nowadays is serverside san-
itization (e.g, by disallowing scripts). However, this is a
hard problem to solve, because the server must now parse
the scripts in exactly the same way that browsers do. Bugs
in doing so can result in security holes and worms (e.g.,
the Yamanner Yahoo! mail worm, the Samy Myspace
worm).

Erlingsson went on to argue that security applies to both
servers and clients, and he described a mechanism called
METS that achieves this. METS allows expression of secu-
rity policies. The idea is that these will be specified by the
server but will be enforced at the client (within the
browser). Thus, METS ensures high-fidelity enforcement
of security policies. The basic idea behind METS is not
new—they are much like inline reference monitors.

One questioner mentioned that currently the onus of en-
forcement was on the browser, so METS relies heavily on
browser manufacturers to ensure security. Is this practical?
A second questioner said that the problem was that today’s
Web languages such as HTML lack a real specification and
that several current problems could go away if we have a
precise specification for HTML. A third person questioned
the practicality of having Web server designers writing
METS policies. Web server designers in today’s environ-

98 ; L O G I N : V O L . 3 2 , N O . 4

ment can be as clueless as an end user. How practical is it
to assume that they will be able to write meaningful poli-
cies?

F I N D I N G A B E T TE R WAY

Session Chair: George Candea, EPFL

Summarized by Diwaker Gupta (dgupta@cs.ucsd.edu)

HotComments: How to Make Program Comments More Use-
ful?

Lin Tan, Ding Yuan, and Yuanyuan Zhou, University of Illinois
at Urbana-Champaign

All of us who have programmed understand the value and
pitfalls of source code comments. In this talk, Lin Tan dis-
cussed the feasibility of analyzing comments and detecting
inconsistencies between code and comments. This is a
fairly tall order: Bear in mind that comments are imprecise,
unstructured, and often written in prose and cannot be
tested or verified. However, empirical evidence suggests
that often programmer assumptions and expected usage
(for instance, code that requires a lock to be held) are
most succinctly captured in source code comments. Fail-
ure to convey these assumptions to users and other devel-
opers often leads to bugs.

The goal of this work is to leverage these assumptions and
example usages to detect inconsistencies between code and
comments (and thereby detect potential bugs). A code-
comment mismatch indicates either a bug or a wrong com-
ment, both of which can lead to bugs, so detecting mis-
matches is certainly useful. But how feasible is it to extract
structure from comments? This work uses Natural Lan-
guage Processing (NLP) along with clustering on topics
such as “locks” to analyze comments: Comments are
mapped to predefined templates.

The authors extracted 530 rules from 5 different Linux
subsystems and detected 12 new bugs (2 of which have
been confirmed by Linux developers). For lock-related and
call-related topics, the system “just works” and almost no
user intervention is required. For other kinds of com-
ments, more templates need to be defined.

Towards a Practical, Verified Kernel

Kevin Elphinstone and Gerwin Klein, National ICT Australia
and the University of New South Wales; Philip Derrin, Na-
tional ICT Australia; Timothy Roscoe, ETH Zürich; Gernot
Heiser, National ICT Australia, the University of New South
Wales, and Open Kernel Labs

As a foundation for building secure systems, researchers
have advocated a small Trusted Computing Base (TCB)
that can be manually audited. This paper takes a much
stronger stand: Kevin presented their efforts at building a
formally verified kernel about which properties can be
proved and a guaranteed correct implementation can be
provided. The idea is to start with an abstract model and

transform it all the way down to a high-performance im-
plementation in C and then assembly code.

One obvious implication of this approach is that any code
changes will invalidate proofs. To avoid this, the kernel
model is made as detailed as possible—this is done in Lit-
erate Haskell. The documentation is embedded in the code
of this abstract model, so a single spec can generate the
reference manual, as well as a kernel prototype in Haskell
that can be run through a user-level simulator. The kernel
is modeled as a big state machine with events as inputs—
things such as manipulation of low-level state (page ta-
bles) as well as preemption have also been modeled.

The kernel prototype in Haskell is about 3,000 lines of
code with an accompanying 53,000 lines of code of proof!
There exist a proof of termination and a proof of correct-
ness for all but one system call. The authors stated that the
transformation from Haskell to an actual C version would
be manual, since automatic code transformation would
miss significant opportunities for optimization.

Beyond Bug-Finding: Sound Program Analysis for Linux

Zachary Anderson, Eric Brewer, and Jeremy Condit, University
of California, Berkeley; Robert Ennals and David Gay, Intel
Research Berkeley; Matthew Harren, George C. Necula, and
Feng Zhou, University of California, Berkeley

Jeremy began by noting the difference between bug finding
and soundness analysis: Bug finding involves heuristics
and approximations; soundness, in contrast, ensures the
complete absence of a particular class of bugs. Soundness
has been perceived to be extremely hard to attain in prac-
tice, and the goal of this work is to make soundness analy-
sis practical for a large system such as Linux. There is
some confusion in terminology, since soundness and com-
pleteness have slightly different meanings in the literature.

The authors use a combination of lightweight annotations
and hybrid checking to make incremental progress toward
reliable software. The new goal for system evaluation is to
“minimize the amount of untrusted code” as opposed to
“maximizing the number of bugs found.” They began with
a limited subset of the Linux kernel (around 400,000 lines
of code) and subjected it to three different analyses:

Deputy: memory and type safety checks
Count: deallocation safety
BlockStop: call graph analysis to identify interrupt han-
dlers that may block

Overall the authors conclude that these analyses can be
done efficiently and new tests can be added to make the
tests more conclusive. All the code and findings are avail-
able at http://ivy.cs.berkeley.edu. Surprisingly, this ap-
proach is not effective at finding bugs.

; LO G I N : AU G U ST 2 0 0 7 CO N F E R E N C E S U M M A R I E S 99

