
6 ; L O G I N : V O L . 3 1 , N O . 5

S T E P H E N C . J O H N S O N

algorithms for the
21st century

P R E S E N T E D AT T H E 2 0 0 6

U S E N I X A N N U A L T E C H N I C A L

C O N F E R E N C E , B O S T O N , M A

Steve Johnson spent nearly 20 years at Bell Labs,
where he wrote Yacc, Lint, and the Portable C
Compiler. He served on the USENIX board for 10
years, 4 of them as president.

scj@yaccman.com

T H E A L G O R I T H M S TA U G H T T O C O M -
puter science students haven’t changed
all that much in the past several decades,
but the machines these algorithms run on
have changed a great deal. Each of these
algorithms is analyzed and justified based
on a model of the machine running the
algorithm. The analysis is often in terms of
asymptotic behavior (usually described as
the behavior on large problems).

This article claims that the machines we run today
do not resemble, in performance, the models
being used to justify traditional algorithms. In
fact, today’s caches and memory systems seem to
reward sequential memory access, but they may
actually penalize memory patterns that seem to
have considerable locality of reference. This
behavior is especially noticeable for the kinds of
very large problems that are driving us to 64-bit
architectures.

Traditional Assumptions

Traditional classes that teach analysis of algo-
rithms and data structures use a model, often an
implicit one, of how an algorithm performs on a
computer. This model often has a uniform memo-
ry model, where loads all take the same time and
stores all take the same time. The cost of making
function calls, allocating memory, doing indexing
computations, and loading and storing values is
often ignored or dismissed as unimportant.

A couple of decades ago, numerical algorithms
were analyzed in terms of FLOPs (floating point
operations). Various schemes were used; some
counted loads and stores, and some treated divide
as more expensive than multiply. Over time, it
became clear that the FLOP count for an algo-
rithm had only the most tenuous connection with
the running time of the algorithm, and the prac-
tice fell into disuse.

I hope to awaken a doubt in you that such tradi-
tional techniques as linked lists, structures, binary
trees, and “divide and conquer” algorithms are
always good for large problems on today’s
machines. Let’s start with some simple measure-
ments. You are encouraged to try this at home on
your own computer.

But First, a Word About Time

Most modern computers have CPU cycle counters. These have the advan-
tage that, for desktop machines, they can produce extremely accurate and
repeatable timings. The times in this paper are all obtained using cycle
counters.

However, there are disadvantages. There appears to be no portable way of
turning cycle counts into clock time (e.g., determining the clock speed of
your computer), or even getting at the cycle timer itself. In the case of lap-
tops, the situation is quite bizarre—most laptops run faster when plugged
into the wall than they do when running on batteries. Also, laptops tend to
slow down when they get hot (i.e., when they are doing work!). So run-
ning tests on laptops can be misleading and the data can be quite noisy. All
the data in this paper was gathered from desktop machines.

So please try this at home, but preferably not on a laptop. This article gives
all the code you will need to replicate this data on an Intel-based Linux
system using gcc.

I used a simple C++ class to do the basic timing. There are two methods of
interest: tic and toc. Calling tic reads the cycle counter and saves the value;
calling toc reads the counter again and returns the difference. The CPU
timer class is:

class CYCLES
{

long long var;
public:

CY(void){};
~CY(void){};
void tic(void);
long long toc(void);

};
static long long int cycle_time;

static void tsc(void)
{

__asm__ volatile (“rdtsc” : “=A”(cycle_time));
}

void CYCLES::tic(void)
{

tsc();
var = cycle_time;

}

long long CYCLES::toc(void)
{

tsc();
return(cycle_time - var);

}

Summing a Million Elements

The first program examines how the process of summing a million double-
precision numbers is affected by the order in which we do the summation.
We can add the numbers sequentially through memory. Or we can add
every other number, then come back and get the numbers we missed on a

; LO G I N : O C TO B E R 2 0 0 6 A LG O R ITH M S F O R TH E 2 1 ST C E NTU RY 7

second pass. Or we can add every third number, and then make two addi-
tional passes to get the ones we miss. The relevant part of the program is

CYCLES c; // cycle counter
#define N 1000000
double a[N]; // the array to be summed
// initialize a
for(int i=0; i<N; ++i)

a[i] = 1.0;
double S = 0.;
long long t; // the cycle count
// time a sum of stride s
c.tic();
for(int i=0; i<s; ++i)

for(j=i; j<N; j += s)
S += a[j];

t = c.toc();

In fact, the data to be presented are the average of 10 runs, covering
strides from 1 to 1040. The cycle counts are normalized so that the stride 1
case is 1.0.

This example is not as contrived as it may appear to be, since it simulates
array access patterns in large two-dimensional arrays. For example, stride
1000 simulates the reference pattern in a 1000x1000 double-precision
array where the “bad” dimension varies most rapidly (the “bad” dimension
in C is the first one; in FORTRAN and MATLAB it is the second one).
Figure 1 shows the data for an AMD 64-bit processor, when the program is
compiled unoptimized.

Notice that stride 1 is the fastest, as we might expect. But beyond that,
there are some unintuitive features of this graph:

n There are periodic “spikes” where the time is 5x or more worse than
unit stride.

n Even small strides are several times worse than unit stride.
n The performance gets rapidly worse for small strides, then improves

for much larger ones.

Actually, the spikes, although striking, are probably the feature of these
graphs that is easiest to understand. They probably arise from the way
caches are designed in most modern CPUs. When an address reference is
made, some bits from the middle of that address are used to select a por-
tion of the cache to search for a match, to save time and power. Unfortu-
nately, this means that when the stride is close to a high power of 2, only a
small portion of the available cache space is being used. It is as if the effec-
tive cache size is a tiny fraction of that available in the unit stride case.
This effect happens, with somewhat different numerology, for each of the
caches (with modern systems having two or three).

What is surprising, especially in the later data, is the magnitude of this
effect.

The graph in Figure 1 involved unoptimized code. If we optimize
(gcc -O4), we get the graph shown in Figure 2.

Optimization does not change the essential shape or properties of the
curve, although the spikes are a bit higher. This effect is largely the result
of the code for unit stride being a bit faster (recall that the graphs are nor-
malized so that unit stride is 1.0).

8 ; L O G I N : V O L . 3 1 , N O . 5

F I G U R E 1

F I G U R E 2

We can also collect data on a 32-bit AMD processor (see Figure 3).

Notice that the shape of the curve is similar, but the spikes are closer
together. There is also a strange “hump” around 512, which appeared on
multiple runs (which doesn’t preclude it from being an artifact!). The
unoptimized version of this test on the 32-bit AMD system also had a
hump that was lower and broader. The 64-bit AMD data may show signs
of a smaller hump centered around 1024.

Figure 4 displays the curve for an Intel 32-bit system.

Note that the behavior for small strides is much worse than that of the
AMD machines, but there is no sign of the hump. The spikes are closer
together, probably because the caches are smaller.

Writing Data

We can run a similar test on writing data. In fact, we do not need to initial-
ize the array, so the code is simpler:

CYCLES c; // cycle counter
#define N 1000000
double a[N]; // the array to be written
long long t; // the cycle count
// time writing N elements with stride s
c.tic();
for(int i=0; i<s; ++i)

for(j=i; j<N; j += s)
a[j] = 1.0;

t = c.toc();

The results for a 64-bit AMD machine are shown in Figure 5.

At first glance, the data appears smoother (except for the spikes), but this
is an illusion, because the scale is much larger. In this case, the worst
peaks are up to 30x the unit stride times. Once again, the peaks appear at
strides that are powers of 2.

The 32-bit AMD data is shown in Figure 6.

Again the peaks appear at powers of 2, and again they are up to 30x worse
than unit stride. The Intel 32-bit graphs for reading and writing are quite
similar.

Writing Data Repeatedly

The programs for summing and writing data are worst-case examples for
cache behavior, because we touch each data element exactly once. We can
also examine what happens when we write data repeatedly. By modifying
our test case slightly, we can write only 1000 elements out of the million-
element array but write each element 1000 times. Once again, we vary the
strides of the 1000 elements. Note that for all strides, only 8000 bytes are
written. The program looks like:

CYCLES c; // cycle counter
#define N 1000000
double a[N]; // the array to be written
long long t; // the cycle count
// time writing N elements with stride s
// note: N must be bigger than 999*s+1

; LO G I N : O C TO B E R 2 0 0 6 A LG O R ITH M S F O R TH E 2 1 ST C E NTU RY 9

F I G U R E 3

F I G U R E 4

F I G U R E 5

F I G U R E 6

c.tic();
for(int i=0; i<1000; ++i)

for(j=k=0; k<1000; j += s, ++k)
a[j] = 1.0;

t = c.toc();

We can be forgiven for having hoped that this amount of data could fit
comfortably into the caches of all modern machines, but Figure 7 shows
the 64-bit AMD results, and Figure 8 shows the 32-bit AMD results.

Unfortunately, the peaks are still present. Large strides are still worse than
small strides by nearly an order of magnitude. And the size of the peaks is
astonishing, up to 70x.

Data Layout Issues

This data suggests that modern memory systems don’t actually do much to
improve local references to data unless those references are in fact sequen-
tial. Even rather small strides show significant degradation over the unit
stride case. This rather contradicts the trend in language design to support
structures that place related data together. We can measure the magnitude
of this effect of structures with a similar test. Suppose we wish to do a mil-
lion additions of related elements. We can create three million-element
arrays, and add the corresponding elements. Or we can create a structure
with three elements in it, make a million-element structure array, and loop
through it by doing the additions for each structure in the array. The inner
loop of the programs looks like:

CYCLES c;
#define N 1000000
double a[N], b[N], c[N];
long long t;
for(int i=0; i<N; ++i)

a[i] = b[i] = c[i] = 1.0; // initialize
c.tic();
for(int i=0; i<N; ++i)

a[i] = b[i] + c[i];
t = c.toc();

for the case of three arrays, and

CYCLES c;
#define N 1000000
struct three { double a, b, c; } A[N], *p;
long long t;
int i;
for(i=0, p=A; i<N; ++i, ++p)

p->a = p->b = p->c = 1.0; // initialize
c.tic();
for(i=0, p=A; i<N; ++i, ++p)

p->a = p->b + p->c;
t = c.toc();

for the structure case. Just to see whether the order matters, we can also
measure

p->c = p->a + p->b;

Figure 9 displays the results for the AMD 64-bit machine, with the pro-
grams compiled unoptimized.

10 ; L O G I N : V O L . 3 1 , N O . 5

F I G U R E 7

F I G U R E 8

F I G U R E 9

Note that using unit stride with separate arrays is significantly faster than
for the structure cases, by tens of percents. Note also that there is a signifi-
cant difference between the two structure cases, depending on the data
ordering in the structure. If we optimize, we get the results shown in
Figure 10.

Once again, using separate arrays is significantly faster than using struc-
tures. The order of the data in the structure is much less important when
the program is optimized.

Discussion

I have collected too much wrong performance data in my career not to
warn that these data may contain artifacts and noise caused by operating
system tasks and other background computing. More seriously, with just a
few tests we are far from understanding the effect of CPU speed, cache size
and architecture, and memory system architecture on the performance of
even these simple programs. There is enough data, however, to strongly
suggest that modern computer cache/memory systems do not reward locali-
ty of reference, but rather they reward sequential access to data. The data
also suggests that access patterns that jump by powers of 2 can pay a sur-
prisingly large penalty. Those doing two-dimensional fast Fourier trans-
forms (FFTs), for example, where powers of 2 have long been touted as
more efficient than other sizes, may wish to take notice.

I am not trying to suggest that computers have not been designed well for
the typical tasks they perform (e.g., running Apache, Firefox, and Micro-
soft Office). However, with 64-bit computers and terabyte datasets becom-
ing common, computation on datasets that greatly exceed the cache size is
becoming a frequent experience. It is unclear how such data should be
organized for efficient computation, even on single-processor machines.
With multi-core upon us, designing for large datasets gets even more
murky.

It is tempting to think that there is some way to organize data to be effi-
cient on these machines. But this would imply that the system designers
were aware of these issues when the machines were designed. Unfortunate-
ly, that may well not have been the case. History shows that computing
systems are often designed by engineers more motivated by cost, chip and
board area, cooling, and other considerations than programmability. Future
data structure design, especially for large datasets, may well end up de-
pending on the cache and memory sizes, the number of cores, and the
compiler technology available on the target system. “Trial and error” may
have to prevail when designing data structures and algorithms for large-
data applications. The old rules no longer apply.

We can speculate that “large dataset computing” could become a niche
market, similar to the markets for servers and low-power systems. Perhaps
we can work with hardware manufacturers to develop techniques for algo-
rithm and data-structure design that software designers can follow and
hardware manufacturers can efficiently support. Meanwhile, try this at
home, and welcome to a brave new world.

R E F E R E N C E S

There is an interesting book by David Loshin, Efficient Memory Program-
ming, that has a lot of material on how caches and memory systems work

; LO G I N : O C TO B E R 2 0 0 6 A LG O R ITH M S F O R TH E 2 1 ST C E NTU RY 11

F I G U R E 1 0

(even though the book dates from 1998). Unfortunately, there’s little
empirical data, and he repeats the old saws about locality of reference.

There is also a field of algorithm design called cache-aware algorithms. The
idea is to develop a family of algorithms to solve a particular problem, and
then choose one that best fits the machine you are running on. Although
this is an effective technique, it begs the question of how we design data
structures to optimize performance for today’s machines. Google “cache
aware algorithm” to learn more than you want to know about this field.

It’s worth pointing out that similar issues arose once before in the vector
machine era (1975 to 1990 or so). Vector machines so preferred unit stride
that many powerful compiler techniques were developed to favor unit
stride. It is also notable that most vector machines did not have caches,
since reading and writing long vectors can “blow out” a conventional
cache while getting little benefit thereby.

Here is the detailed information about the machines I used to collect this
data:

n The AMD 64-bit data was collected on a dual-processor 2.2 GHz
Athlon 248 system with 1 MB of cache and 2 GB of main memory. The
gcc version was 3.4.5.

n The AMD 32-bit data was collected on a three-processor AMD Opteron
250 system running at 1 GHz with 1 MB caches. The gcc version was
3.2.3.

n The Intel 32-bit data was collected on a four-processor Xeon system—
each system ran at 3.2 GHz and had a 512K cache. The gcc version was
3.2.3.

12 ; L O G I N : V O L . 3 1 , N O . 5

