
FAST ’05: 4th USENIX
Conference on File and
Storage Technologies

San Francisco, CA
December 13–16, 2005

K EY N OTE A D D R E S S

Greetings from a File-System User

Jim Gray, Distinguished Engineer,
Microsoft Bay Area Research Center

Summarized by Stefan Büttcher

Jim Gray’s message was that we
have arrived at an era of infinite
storage. He argued that in today’s
storage systems, I/O bandwidth
and seek latency are limiting fac-
tors. In order to keep a single CPU
core busy, 100 hard drives are
needed; for future 10-terabyte
hard drives, it will take 1.3 days to
read all data sequentially and five
months to read them randomly.

File systems are becoming so large
that we need database systems in
order to be able to use them effec-
tively: how do we find data in a file
system containing 30 million files
of 1GB each? Integrating a data-
base into the file system and com-
bining the hierarchical structure
with a content-based addressing
mechanism would help.

According to Jim, we are heading
towards a backup-free world,
because the file systems are getting
so large that it would take too long
to restore the contents. Since we
have more storage space than we
need, we might as well keep many
versions of the data (snapshot file
systems) instead of backups.

As a side blow in the direction of
Garth Gibson, one of the inventors
of RAID, Jim pointed out that
RAID-5 is the wrong tradeoff, as it
sacrifices bandwidth for more effi-
cient space utilization. In the
Q&A, Garth, of course, disagreed,
noting that for many people stor-
age space efficiency is still very
important.

F I L E SYSTE M S S E M A NTI C S

Summarized by Vijayan
Prabhakaran

A Logic of File Systems
Muthian Sivathanu, Google Inc.;
Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Somesh Jha,
University of Wisconsin, Madison

Muthian began the talk by dis-
cussing how important it is to
ensure the correctness of file sys-
tems. The current approaches,
such as stress testing and manual
exploration, are inadequate and
error-prone. A logic of file systems
is a formal framework for reason-
ing about file systems. It focuses
on file system interaction with
disk and targets file system design
rather than implementation.

Then Muthian gave some back-
ground on file systems, describing
metadata and data consistencies.
The key challenge in reasoning is
the asynchrony which arises in file
systems due to buffering and
delayed writes. There are three
basic entities in the model: con-
tainers, pointers, and generations.
A file system is a collection of con-
tainers linked through pointers. A
container is a placeholder of data,
and generation is defined as an
instance of a container between
reuse and free. Muthian then
explained the concept of contain-
ers and generations through an
example.

Concepts such as beliefs, actions,
and ordering operators (e.g.,
before, after, and precedes) were
explained. The proof system fol-
lowed by the logic is based on
event sequence substitution.
Muthian gave examples of basic
postulates, for example, “If con-
tainer A points to B in memory, a
write of A will result in the disk
inheriting the belief.”

Three case studies that are
described in detail in the paper
were briefly explained by Muthian.
The first case study verifies the
data integrity under various file

system mechanisms, such as soft
updates and journaling. The sec-
ond case study examines a per-
formance bug in ext3. The last
case study looks at the non-roll-
back property under journaling.
Other case studies detailed in the
paper deal with generation point-
ers and semantic disks.

Providing Tunable Consistency for a
Parallel File Store

Murali Vilayannur, Partho Nath,
and Anand Sivasubramaniam,
Pennsylvania State University

Parallel file systems distribute por-
tions of a file across diff servers.
With multiple data servers and
client-side caches, consistency
becomes an important issue. Cur-
rent configurations provide either
much weaker consistency (e.g.,
PVFS) or much stronger consis-
tency (e.g., Lustre). However, the
applications running on a parallel
file system know better about their
concurrency/consistency needs
than does the file system.

The approach taken in CAPFS is to
export the mechanisms and leave
the policy to the applications,
which provides tunable granular-
ity. CAPFS uses content-address-
able data stores and optimistic
concurrency control mechanisms
to provide serialization.

The architecture consists of two
server components: hash servers,
which are the metadata servers,
and content addressable servers
(CAS), which are the data servers.
Hash servers provide a NFSv4-like
interface. The CAS servers are
multi-threaded servers. Murali
then described how writes are
handled. Whenever a write is
issued it goes to the hash server
first, which computes the hash,
and then the write goes to the
CAS. During commit, the old hash
of the data is compared with the
new hash. If they match, the com-
mit succeeds. Write serialization is
achieved this way. The system is
verified with a 20-node experi-
mental setup.

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 103

S E N S O R STO R AG E

Summarized by Shafeeq
Sinnamohideens

MicroHash: An Efficient Index
Structure for Flash-Based Sensor
Devices

Demtrios Zeinalipour-Yazti,
University of Cyprus; Song Lin,
Vana Kalogeraki, Dimitrios Gunopulos,
and Walid A. Najjar, University of
California, Riverside

Dimitrios Gunopulos first
described a sensor network devel-
oped for, among other applica-
tions, a U.C. Riverside Conserva-
tion Biology project to monitor
soil organisms. While the network
has a large number of sensors,
sensing several parameters over
a long period of time, only a few
time points or parameters are
interesting. The sensor nodes are
based on the RISE platform, have
local flash RAM as their main stor-
age, and limited network and
power resources. Since nodes in
their system only transmit data in
response to queries, each node
must store and index the data it
collects in its local flash memory.
The problem is that while existing
storage and indexing structures
are well suited to the properties of
RAM and hard disks, flash mem-
ory has a few unique properties of
its own: it can only be erased a
whole block (several pages) at a
time; a page can only be written
into an already erased block; and a
page physically wears out after
being written 10,000–100,000
times.

Using structures meant for other
media will result in poor perform-
ance as a result of having to read
and rewrite an entire block when-
ever any of its contents change, as
well as wearing out some pages
more rapidly than others. The
goal of their proposed structure
(MicroHash) is to efficiently sup-
port value-based and time-based
queries for single data points or
ranges while maximizing the life-
time of the flash memory.

MicroHash contains data records
that are both hashed into buckets
and indexed. It uses four types of
pages: data pages that store data
records, index pages that store
indices to the data, directory pages
containing information on hash
buckets, and a root page that
stores properties for the structure.
Pages are always written to flash in
a circular order to provide wear-
leveling. In normal operation, as
the sensor generates data records,
it inserts them into a data page.
When the data page is full, it is
written to flash in the next avail-
able position. The corresponding
index record is updated and the
index page written to the next
position, if necessary. As writing
proceeds, the oldest page will be
overwritten when there are no
more free pages. Because the index
is always updated after data is
written, an index page is never
deleted until the data it indexed is
also deleted. If a particular hash
bucket contains too great a pro-
portion of indexed records, a
repartitioning step will split it into
two less-full buckets.

Searching by time is simple, since
all pages are written in chron-
ological order. Searching by value
requires first hashing the value to
select a dir page. The dir page will
point to the most recent index
page for that value. The index
page will either point to a data
page with the data or to another
index page that can be followed.

Jason Flinn asked how the number
of directory buckets ever shrinks.
The answer is that when splitting
produces two new buckets, the old
bucket is eventually reclaimed by
the normal overwriting process.

Adaptive Data Placement for
Wide-Area Sensing Services

Suman Nath, Microsoft Research;
Phillip B. Gibbons, Intel Research Pitts-
burgh; Srinivasan Seshan, Carnegie
Mellon University

These sensor nodes differ in scale
from those in the previous talk;

they are assumed to have more
computing power and may be dis-
tributed anywhere in the Internet.
Query-issuing clients may also be
anywhere in the Internet. In addi-
tion to sensor nodes, the system
may include other infrastructure
nodes, which can also replicate
data, perform data aggregation,
and process queries. The system
aims to assign functions to nodes
automatically, in order to optimize
efficiency, robustness, and per-
formance across the entire system.
Additionally, the IrisNet infra-
structure may be supporting sev-
eral different sensor networks,
with different access patterns
which may change over time.

The IrisNet Data Placement (IDP)
algorithm attempts to determine,
for a given network hierarchy and
node capabilities, the data place-
ment that optimizes query latency,
query traffic, and update traffic. It
is a distributed algorithm that runs
on each node, using only local
knowledge to approximate the
globally optimal solution, while
rapidly responding to flash
crowds. Each node builds a work-
load graph representing all data
objects necessary for its queries,
with edges weighted by the traffic
across that edge. The algorithm
must select fragments (subgraphs)
to partition and allocate to each
node. The optimal solution is
O(n3), which is too slow to be
used. By only considering sub-
trees, an approximate solution can
be found in O(n). By contrast, all
better-performing algorithms
require global knowledge, and no
distributed algorithms perform as
well.

After partitioning, IDP must
choose where to locate each frag-
ment of the workload. It does this
using two heuristics. One attempts
to cluster data objects together.
This reduces the number of nodes
involved, but requires considera-
tion of whether nearby machines
can handle the extra load. The
other places fragments as close to

104 ; L O G I N : V O L . 3 1 , N O . 2

the data source or sink as possible.
This reduces traffic and latency,
but may involve additional nodes.
Repartitioning or replication is
performed when load on a node
exceeds a set threshold. When
replicas are available, a query can
select either a random replica or
the nearest one. If the nearest is
selected, it may become persist-
ently overloaded, whereas select-
ing a random one will cause all
replicas to have an equally light
load. As a compromise, IDP selects
a replica randomly, but with
weighted distribution, so nearby
replicas are selected more often.

Christopher Hooper asked wheth-
er energy consumption was con-
sidered and whether IrisNet could
take advantage of heterogeneous
power availability. The answer was
that power had not been consid-
ered, but could be considered one
element of a node’s capacity.

FAU LT H A N D L I N G

Summarized by Kevin Greenan

Ursa Minor: Versatile Cluster-based
Storage

Michael Abd-El-Malek, William V.
Courtright II, Chuck Cranor, Gregory
R. Ganger, James Hendricks, Andrew J.
Klosterman, Michael Mesnier, Manish
Prasad, Brandon Salmon, Raja R. Sam-
basivan, Shafeeq Sinnamohideen, John
D. Strunk, Eno Thereska, Matthew
Wachs, and Jay J. Wylie, Carnegie
Mellon University

Awarded Best Paper!

John Strunk presented the work
on versatile cluster-based storage
at CMU’s Parallel Data Lab. To get
the audience into the right state of
mind, Strunk presented a quick
brain-teaser which illustrated the
fact that a single storage system
generally stores different data sets,
with different requirements.
Unfortunately, all of the data in the
system may share the same fault
model and encoding scheme.

Even though cluster-based systems
provide more cost-effectiveness

and scalability than today’s mono-
lithic approaches, these systems
do not necessarily provide versatil-
ity. Ursa Minor attempts to solve
the challenge of versatility in clus-
ter-based storage.

Essentially, Ursa Minor is a cluster-
based storage system which sup-
ports multiple timing models, fault
models, and encoding schemes
among multiple data sets in a sin-
gle system. In addition, changes to
the distribution of data can be
made online, thus configuration
choices are adaptive. The architec-
ture of Ursa Minor is quite simple
and provides object access similar
to NASD architecture and the
emerging OSD standard. Basically,
clients are required to consult an
object manager for metadata
requests and I/O request authori-
zation. Versatility is accomplished
using a protocol family that sup-
ports consistent access to data in
the storage system. Each member
in a protocol family is defined by
three parameters: timing model,
fault model, and encoding scheme.
Online data distribution changes
are made using back-pointers from
the new data locations to the old
data locations. The object manager
can then revoke access to the old
locations, forcing the client to
request the new location of the
data.

In the end, we find there is a lot to
gain from defining specialized
configurations for different work-
loads in a cluster-based storage
system, especially when the work-
loads are running at the same
time.

A great many questions came up
during the Q&A. One member of
the audience asked how an object
is re-encoded upon distribution
change. A distribution coordinator
works its way through the object
by actively re-encoding in the
background, ensuring that newly
written data does not get overwrit-
ten. A few of the questions were
directly related to the encoding
schemes used in Ursa Minor. Cur-

rently, the user is responsible for
choosing which information dis-
persal encoding is used for a given
data set. Lastly, Strunk was asked
whether failures were assumed
during migration, and he an-
swered they are not.

Zodiac: Efficient Impact Analysis for
Storage Area Networks

Aameek Singh, Georgia Institute of
Technology; Madhukar Korupolu and
Kaladhar Voruganti, IBM Almaden
Research Center

Aameek Singh presented work on
impact analysis, starting with a
photograph of a woman pulling
her hair out, which was strategi-
cally placed to symbolize the frus-
tration involved in storage man-
agement. The work focuses on
the change-analysis problem. The
Zodiac framework is provided to
help system administrators deter-
mine the impact of changes to a
SAN (storage area network) before
actually making the change. This
framework integrates proactive
change analysis with policy-based
management; thus, the impact of
an administrator’s action is as-
sessed with respect to a set of user-
defined policies. In the context of
impact analysis, policies can be
thought of as best practices.

Singh briefly explained the four
primary components of Zodiac:
SAN-state for incremental opera-
tion within a single analysis ses-
sion; optimization structures
for efficient policy evaluation; a
process engine for impact evalua-
tion; and a visualization engine,
which acts as the output interface
to the user. The main SAN data
structure is represented by a graph
of entities connected by network
links; thus graph traversals are
required when policies are added
or evaluated. In order to make pol-
icy evaluation more efficient, the
authors exploit policy classifica-
tion, caching at every node in the
SAN graph, and aggregation. All of
these optimizations allow for a

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 105

reduced graph traversal space
when evaluating policies.

Singh showed that the three policy
evaluation optimizations signifi-
cantly decrease the latency of pol-
icy evaluations and allow for more
scalable evaluations as the size of
the SAN increases. Overall, this
work provides an efficient frame-
work that provides what-if analy-
sis under a policy-based infrastruc-
ture.

A member of the audience asked
whether this framework could be
used for root-cause analysis. Singh
replied that this work did not
focus on finding a root cause, but
such a tool used in conjunction
with their framework would be
very helpful.

Journal-Guided Resynchronization for
Software RAID

Timothy E. Denehy, Andrea C. Arpaci-
Dusseau and Remzi H. Arpaci-Dusseau,
University of Wisconsin, Madison

Timothy Denehy presented an
approach to software RAID re-
synchronization after a system
crash, which was done with some
of the other folks at the University
of Wisconsin, Madison. Denehy
pointed out that it is hard to main-
tain consistency at the RAID layer,
since a very long window of vul-
nerability may exist during
updates. Failures that occur within
this window of vulnerability may
leave a stripe within a RAID array
in an inconsistent state. The
authors show that this window
of vulnerability can be removed
through the use of a write-ahead
log, which may result in poor per-
formance.

Instead of relying on a write-ahead
log or offline scanners, the authors
propose a solution that leverages
the functionality of a client-jour-
naling file system, such as ext3.
Denehy gave a quick overview of
ext3 with respect to transactions
and journaling. A new mode of
operation, declared mode, is added
to the underlying file system. This

new mode of operation, which is
similar to ext3’s ordered mode,
requires the write record for each
data block to reside in the journal
before issuing the actual write.
Unlike ordered mode, this results
in a record of outstanding writes,
which can be used to restore con-
sistency upon a system crash.

In addition to the new mode of
operation, an interface is created,
which allows the file system to
communicate inconsistencies to
the RAID layer. This interface
between the file system and soft-
ware RAID is very straightforward.
The file system can tag a block
with a synchronize flag, which
results in a verify read request at
the software RAID layer. At the
RAID layer, the corresponding
stripe is read and checked. If the
parity is inconsistent, a new parity
for the stripe is computed and
written.

The process of file system recovery
and RAID resynchronization is
done using the new functionality.
After a system crash, the file sys-
tem can scan the journal and com-
municate possible inconsistencies
to the RAID layer. These possible
inconsistencies are handled at the
RAID layer using the verify read
request.

Denehy further justifies the effec-
tiveness of declared mode by
comparing it to ordered and data-
journaling mode on a set of bench-
marks, which shows that declared
mode generally outperforms data-
journaling mode and incurs very
little overhead with respect to
ordered mode. Another important
side effect of this new form of
RAID resynchronization is the
reduction of the window of vul-
nerability from 254 to 0.21 sec-
onds.

C AC H I N G

Summarized by Ali R. Butt

DULO: An Effective Buffer Cache
Management Scheme to Exploit Both
Temporal and Spatial Localities

Song Jiang, Los Alamos National
Laboratory; Xiaoning Ding, Feng Chen,
Enhua Tan, and Xiaodong Zhang,
Ohio State University

Song explained that the motiva-
tion for their work is the increas-
ing gap between disk and proces-
sor speed. Hard disks remain a
performance bottleneck when
accessing data at high speeds. He
explained that the main reason
for this bottleneck is the lack of
sequential accesses to the disk,
which, among other things, causes
expensive disk-head movements.
Although the application accesses
are more sequential than random,
the filtering effect of the buffer
cache results in the accesses to
disk becoming randomized. To
address this issue, Song presented
a new buffer cache-replacement
algorithm, DULO, which uses
both temporal and spatial patterns.
The main goal of the paper is to
increase the sequential accesses
that are issued to disk.

Song explained that there are two
schemes that are employed to
improve the number of sequential
accesses: namely, disk request
scheduling and file prefetching.
The buffer cache sits on top of the
file prefetcher and I/O scheduler.
The cache filters the requests from
the application to the lower layers,
and has the potential problem of
filtering the patterns, which in
turn makes the pattern more ran-
dom. Hence, the buffer cache has
the ability to shape the disk
requests. Since other schemes only
consider temporal locality of the
blocks being accessed, they may
result in a smaller number of
blocks being read from the disk,
but these blocks may have poor
sequential properties, resulting in
more disk head movements.

106 ; L O G I N : V O L . 3 1 , N O . 2

In the Q&A someone asked
whether the authors have com-
pared DULO to LIRS (an algo-
rithm also proposed by the same
authors). Song responded that he
has not yet done that but is con-
sidering extending DULO to a
more general scheme that can
accommodate any cache-replace-
ment algorithm rather than only
LRU. Kai Shen from Rochester
University inquired how DULO
compares to the optimal case in
this situation. Song replied that it
is hard to define “optimal” in this
scenario, due to the complexity of
the components involved.

Second-Tier Cache Management
Using Write Hints

Xuhui Li, Ashraf Aboulnaga, Kenneth
Salem, University of Waterloo; Aamer
Sachedina, IBM Toronto Lab; Shaobo
Gao, University of Waterloo

Examples of second-tier cache
management, the topic of the
paper presented by Kenneth
Salem, are the file server acting as
the lower cache, and the client as
the top cache, or, more interest-
ingly, the lower cache as the stor-
age server and the top cache as a
database system. An important
thing to note in this context is that
database systems that handle
OLTP workloads perform a lot of
write requests.

There are two difficulties that are
faced in two-tier cache manage-
ment. One is that of cache inclu-
sion, i.e., a page is stored in both
the caches, which essentially
wastes space. Therefore the chal-
lenge is to maintain exclusivity
between the two caches. The sec-
ond challenge is that the second-
tier cache exhibits poor temporal
locality. Kenneth pointed out that
other people have looked at vari-
ous schemes to manage two-tier
caches by employing hierarchy-
aware schemes, interpreting stor-
age data, using explicit notifica-
tions between caches, and
providing hints to the higher tiers.
The approach presented in this

paper is based on hint-based
schemes that require only simple
changes to the first-tier cache
management. The main focus of
the work is on write requests so as
to improve the hit ratio of the sec-
ond-tier cache.

In the Q&A session, Song Jiang of
LANL inquired about the effect of
the first-tier cache management
algorithm on the second tier, and
he pointed out that the interaction
may adversely affect the cache per-
formance. Kenneth agreed that
this was possible, which is why
they are interested in evaluating
the scheme for more applications.
Prashant Pandey of IBM Research
said that in the current scheme the
second tier is expected to interpret
the hints on its own and asked
whether there will be any benefit
in telling the storage exactly what
to do. Kenneth replied that they
have made an effort to keep the
hints open for interpretation by
the second tier, but it would be
interesting to see if the second tier
can simply use the hints as classifi-
cation. However, this aspect
remains part of their future work.
Another questioner asked about
the distinction between write hints
and eviction hints. Kenneth
replied that they currently only
interpret the hints at the second
tier, but possibly could introduce
two additional bits in the hints to
ask the second tier for direct evic-
tion.

WOW: Wise Ordering for Writes—
Combining Spatial and Temporal
Locality in Non-Volatile Caches

Binny S. Gill and Dharmendra S.
Modha, IBM Almaden Research Center

Binny presented an innovative idea
that aims at improving the per-
formance of writes to hard disks.
He pointed out that the writes
have often been ignored in caching
research, which mainly focuses on
improving performance of reads.
The presentation started with a
brief history of caching’s important
part in improving the I/O time of

disks. But although read caches
have significantly improved the
performance of disks, there are six
times more writes in terms of disk
seeks. He also pointed out that
write caches are typically 1/16th
the size of read caches. Hence,
improvement in write time can
have a significant impact on the
overall I/O performance, but the
small size of write caches requires
careful planning in order to get
any benefit from them.

Binny then presented WOW,
which uses reordering of writes in
the NVRAM write cache to reduce
the disk seeks associated with
writes. The order in which writes
are destaged to disk is critical.
WOW aims to use the smallest
amount of disk time for writes and
to use most of the time to service
read requests. For this purpose, it
utilizes both temporal and spatial
locality of the writes. To create
spatial locality, WOW uses reor-
dering.

The WOW algorithm is produced
via an innovative marriage of the
CSCAN and CLOCK algorithms,
and has the good qualities of both.
Basically, WOW uses CLOCK bits
for temporal locality information,
and weights of CSCAN to give the
spatial order information. WOW
keeps the sorted order of CSCAN
and temporal bits of CLOCK to
give both spatial and temporal
locality information. The evalua-
tion of the scheme shows that
WOW indeed provides improved
throughput and response time.

S E C U R IT Y

Summarized by Aameek Singh

Secure Deletion for a Versioning
File System

Zachary Peterson, Randal Burns, Joe
Herring, Adam Stubblefield, and Aviel
D. Rubin, The Johns Hopkins University

Due to increasing federal regula-
tions and other business require-
ments, versioning file systems are
being deployed rapidly. These file

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 107

108 ; L O G I N : V O L . 3 1 , N O . 2

systems maintain multiple ver-
sions of the data and can be used
to restore to an earlier version.
For space efficiency, different ver-
sions can share data blocks. This
paper makes two contributions:
(1) secure deletion of a file, imply-
ing that a deleted file cannot be
retrieved by any forensic tech-
niques; (2) authenticated encryp-
tion, ensuring that data has not
been corrupted between a disk
write and its corresponding read.

Some of the earlier approaches—
repeated overwriting, encrypting,
and deleting the key—require
more storage or need data blocks
to be contiguous. This paper’s
approach minimizes the amount of
secure overwriting and eliminates
the need for contiguity. The main
idea is to use a keyed transform to
create a short stub representing
the data blocks with the additional
property that deleting the stub by
secure overwriting automatically
deletes the data.

The authos also presented tech-
niques that are better optimized
for deleting an entire version
chain. The techniques have been
implemented in ext3cow version-
ing file system.

TOCTTOU Vulnerabilities in UNIX-
Style File Systems: An Anatomical
Study

Jinpeng Wei and Calton Pu, Georgia
Institute of Technology

Time-of-check-to-time-of-use
(TOCTTOU) vulnerabilities occur
in UNIX-style file systems when
applications perform two non-
atomic steps—first establish an
invariant about the state of the file
system and then perform an opera-
tion assuming the invariant to
hold. For example, Sendmail first
establishes that the mailbox is not
a symbolic link (a malicious user’s
attempt to corrupt an important
system file) and then writes to the
mailbox. Between these two steps,
a malicious user can modify the
file system so that the invariant
does not hold, but the application

does not check for it in the second
step.

The paper attempts to define a for-
mal model, called CUU, that can
be used to identify such TOCT-
TOU vulnerabilities. For this, they
identify pairs of operations that
establish invariance and then
operate on it: for example, <stat,
open>. Such pairs, called TOCT-
TOU pairs, can then lead to poten-
tial attacks.

The paper identified 224 such
pairs in various utility programs
such as Sendmail, vi, and RPM.
They also checked the feasibility of
attacks on vi, which shows that
such attacks can have nearly a 50%
success rate for large files.

A Security Model for Full-Text File
System Search in Multi-User
Environments

Stefan Büttcher and Charles L.A.
Clarke, University of Waterloo

With increased interest in desktop
search, there are many tools avail-
able now from companies such as
Google, Microsoft, Apple, and
Yahoo. However, a multi-user
environment presents new and
interesting challenges. Keeping a
separate index for each user in the
system is inefficient, since many
files are actually accessed by multi-
ple users and thus a single file sys-
tem change would need to be
pushed into each index.

A second approach, that of keep-
ing a single index and postprocess-
ing search, requiring that files that
a user should not see are removed,
suffers from a subtle problem:
since query ranking uses statistics
that in a single index case would
be systemwide, carefully formed
queries can leak out potentially
critical information.

As a solution, the paper proposes
GCL, a structured query language
developed in the 1990s by one of
the authors which evaluates on-
the-fly query ranking using secu-
rity primitives, ensuring that no
file or its influence on statistics is

revealed through the results. One
of the shortcomings is the memory
caching of security properties of
each file, which is 32 bytes for
each inode.

The system shows good perform-
ance and is available at http://www
.wumpus-search.org.

M U LTI - FAU LT TO L E R A N C E

Summarized by Florentina Popovici
and Timothy Denehy

Matrix Methods for Lost Data
Reconstruction in Erasure Codes

James Lee Hafner, Veera Deenadhay-
alan and K.K. Rao, IBM Almaden
Research Center; John A. Tomlin,
Yahoo! Research

Jim Hafner addressed two general
problems pertaining to erasure
codes, with the ultimate goal of
recovering lost data whenever it is
information-theoretically possible.
First, can the system recover from
uncorrelated errors and, if so,
how? Second, how can the system
efficiently recover partial strip
data? To solve these problems, the
author presented the following
theorem: for any linear erasure
code and a set of sector failures,
there exists a simple mechanism
that identifies which sectors can-
not be recovered and provides for-
mulas for the reconstruction of
those sectors that can be recov-
ered. Jim presented their method,
based on matrix theory and
pseudo-inverses, which com-
pletely solves the first problem and
provides the formulas for solving
the second problem.

He also presented a hybrid
approach which uses the matrix
methods along with the code-spe-
cific recursive reconstruction
methods to improve efficiency.
Finally, he demonstrated their
methodology for recovering lost
array sectors with a TCL/Tk appli-
cation.

The first questioner asked if the
ordering of sector recovery mat-
ters? Jim responded that if the sec-

tors are lost simultaneously, the
ordering of recovery does not mat-
ter. Garth Gibson asked how often
an additional sector can be lost
and recovered under existing era-
sure codes. In his experience, Jim
estimated that a third lost sector
could be recovered about 50% of
the time.

STAR: An Efficient Coding Scheme for
Correcting Triple Storage Node
Failures

Cheng Huang, Microsoft Research;
Lihao Xu, Wayne State University

Cheng Huang asked how to ensure
both reliability and performance
for storage systems. Some of the
characteristics of such systems are
that they are built from less reli-
able components in order to
achieve large capacity, and that
they may also be geographically
distributed.

Reliability is achieved by redun-
dancy. Usually the codes used are
(n,k) threshold codes. n is the
number of nodes where the shares
of the data are distributed, and k
represents the minimum number
of shares that need to be gathered
to reconstitute the original data.
Most systems use MDS schemes,
which allow for the recovery of r =
n – k nodes, where r is called the
reliability degree of an (n,k)
scheme.

But all practical schemes use Reed
Solomon schemes as MDS, and
they are slow, so the question is
whether there are other, better-
performing schemes. The alterna-
tives are MDS array codes such
as XOR (rr = 1) and EVENODD
(r = 2). There is a generalized
EVENODD algorithm that recov-
ers from three failures, but the
authors wanted to reduce its
decoding complexity further and
so propose a new algorithm, called
STAR.

Cheng exemplified the recovery
schemes for the EVENODD and
STAR algorithms and showed how
the algorithms recover from fail-
ures. The extended EVENODD

algorithm uses diagonal parities
with slopes of one and two. STAR,
however, uses diagonals with
slopes of one and negative one.
Cheng showed how this geometric
symmetry used by STAR leads to
faster decoding.

WEAVER Codes: Highly Fault Toler-
ant Erasure Codes for Storage Sys-
tems

James Lee Hafner, IBM Almaden
Research Center

Jim Hafner started by discussing
why there is a need for another
erasure code. The focus is on dis-
tributed storage systems and dis-
tributed RAID with more vulnera-
ble components, and there is a
need for another performance
metric.

The proposal is a vertical code,
with properties of symmetry, bal-
ance, and localization. Symmetry
allows for easy implementation
and natural load balancing. Local-
ization means that I/Os do not
involve the entire stripe. There is
also more sequentiality from
longer I/Os. The array size can be
varied with fixed parity in-degree
(number of inputs). Furthermore,
the data-out degree is constant and
equal to the fault tolerance.

The focus of this work is on codes
with 50% efficiency. One of the
features is variability of fault toler-
ance. The fault tolerance level can
be changed by adding or subtract-
ing an element without remapping
or readdressing existing blocks.
The disadvantage is that there is
only 50% efficiency.

Ed Gould asked Jim to estimate
how much fault tolerance is
needed for a level of recon-
structability of 90%. Jim answered
that it depends on the compo-
nents, as different batches of com-
ponents from manufacturers have
different errors. Also, it depends
on the configuration and the com-
bination of independent versus
dependent domains.

WO R K- I N - P RO G R E S S R E P O RTS

Summarized by Matthew Wachs

Controlling File System Write
Ordering

Nathan Burnett, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau,
University of Wisconsin, Madison

The order in which writes occur to
a file system must be controlled, or
it may not be possible to restore
the file system to a consistent state
after a crash. While operating sys-
tems use techniques such as write-
ahead logging to manipulate file
system structures safely, it is diffi-
cult for an application to do the
same for data consistency within
its own files, because the operating
system does not expose primitives
for write ordering to the applica-
tion. Nathan Burnett described
two conventional ways that appli-
cations can ensure that commits to
stable storage occur in the desired
order: direct I/O and fsync().
Direct I/O allows applications to
write directly to the raw storage
device, avoiding all caches; how-
ever, it is slow (because of syn-
chronous writes) and not portable
(it is not universally available and
APIs are not consistent). fsync() is
portable, but slow as well. The fast
alternative, ignoring write order-
ing, cannot ensure recoverability
after a crash. Burnett suggested
that the OS export an interface
allowing the application to de-
scribe ordering constraints for
writes. Not all writes may need to
be ordered; taking advantage of
this might yield better perform-
ance.

He proposed two methods for
expressing ordering constraints: a
barrier() system call which (glob-
ally) prohibits reordering of writes
across the call; and asynchronous
graphs, which express the con-
straints using an implicit graph
data structure. In conventional
applications, calls to fsync() could
easily be replaced by calls to bar-
rier(). The graph approach requires
more extensive modifications:

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 109

110 ; L O G I N : V O L . 3 1 , N O . 2

write() returns an identifier for
each call, and future invocations of
write() can be passed a list of iden-
tifiers corresponding to writes (if
any) that must occur first.

The authors have simulated both
techniques and shown that the
graph approach reduces the num-
ber of writes and the number of
non-sequential writes in a TPC-B-
like workload over both synchro-
nous writes and the barrier
approach, because it allows the
coalescing, in some cases, of hun-
dreds of small writes into one large
write. They are now implementing
the techniques in FreeBSD 5.4.

Rethink the Sync!

Edmund Nightingale, Kaushik Vee-
raraghavan, Peter Chen, and Jason
Flinn, University of Michigan

Another way of thinking about
durability is at a much higher
level: transactions must not
become visible externally until
they have been committed to sta-
ble storage, but the application
issuing them may continue exe-
cuting while the transactions are
still in volatile memory. When
writes ultimately occur, they are
performed in the order issued,
maintaining the proper write
ordering. Jason Flinn presented
this approach as “external syn-
chrony” or “visible synchrony.”
The authors are implementing
this type of durability in the Linux
kernel using mechanisms from
their Speculator project (which
addresses speculative execution in
a distributed file system). Synchro-
nous operations are performed
asynchronously, and each opera-
tion is a transaction in the ext3 file
system with data journaling.

Synchronous I/Os taint the calling
process with an annotation pro-
hibiting external output (such as
to the screen or network) until all
preceding I/Os are complete. If
processes engage in IPC, taint
annotations are inherited as appro-
priate. Because progress is being
made on I/O in the background,

the latency during which external
output is withheld while pending
commits finish is expected to be
short enough not to be noticed by
a human. Postmark results using
visible synchrony show that per-
formance is within 6% of an asyn-
chronous implementation.

Amino: Extending ACID Semantics to
the File System

Charles Wright, Richard Spillane,
Gopalan Sivathanu, and Erez Zadok,
Stony Brook University

Applications such as mail servers
and text editors often need to
enforce transactional semantics on
file manipulations: atomicity, con-
sistency, isolation, and durability
(known as ACID). While data-
bases provide ACID semantics,
there is no standardized interface
to databases, which limits porta-
bility for applications that might
use them. The availability of ACID
at the file system would simplify
error handling (transactions could
simply be aborted), enhance secu-
rity (time-of-check-to-time-of-use
security vulnerabilities could be
avoided by serializing concurrent
accesses), and ensure durability.

Gopalan Sivathanu presented the
idea of providing support for arbi-
trary transactions in the file sys-
tem as a first-class service. To
make this possible, the operating
system itself must also support
transactions at layers such as the
cache. The authors have created a
prototype file system, Amino, that
provides begin, commit, and abort
calls alongside the standard POSIX
interface. Legacy applications
automatically have each system
call wrapped in a transaction;
enhanced applications can wrap
begin and commit calls around
arbitrary sequences of POSIX I/O
calls and computational activity.
Back-end storage and transactional
primitives are provided by Berke-
ley DB. The prototype is imple-
mented in user level through a
ptrace monitor, allowing existing
applications to run unmodified

and avoiding fundamental modifi-
cations to the OS.

PASS: Provenance-Aware Storage
System

Margo Seltzer, David Holland, Kiran-
Kumar Muniswamy-Reddy, Uri Braun,
Jonathan Ledlie, Harvard University

Provenance is metadata about the
history of an object. For instance,
if an application reads files A and
B, then later writes file C, the
provenance of file C includes files
A and B, the application itself, and
other environmental information
that may have been used to derive
C. Kiran-Kumar Muniswamy-
Reddy explained that provenance
is useful to scientists in under-
standing how results were arrived
at, to homeland security applica-
tions in determining the informa-
tion used to suggest a possible
threat, and to business compliance
systems in tweaking policies for
information life-cycle manage-
ment. He believes that the operat-
ing system and file system should
be in charge of tracking prove-
nance, because all data flows
through them. Provenance should
be a first-class entity which is
automatically annotatable, index-
able, and queryable; the authors
are designing a storage system that
meets these goals.

Muniswamy-Reddy highlighted
several research questions: first,
how provenance should be stored
so that it is indexable and query-
able; second, what the proper
security model for provenance
should be (does access to a file
imply access to its provenance?);
and third, how it can be sent over
“the wire.” A prototypical imple-
mentation added only 2% over-
head for a Linux kernel build.
More information can be found at
http://www.eecs.harvard.edu/
syrah/pass.

Logistical Storage

Surya Pathak, Alan Tackett, and Kevin
McCord, Vanderbilt University

Scientific computing, especially
for efforts such as high energy

physics, often requires sharing
large data sets among collaborators
around the world (for instance,
some projects generate 3TB per
day, 1PB per year). Surya Pathak
introduced L-Store (Logistical
Storage), a framework to address
this need using software agent
technology and the Internet Back-
plane Protocol. The software
agents provide automated resource
discovery and fault tolerance. The
scalability of the authors’ distrib-
uted approach has allowed them to
achieve 10Gb/sec sustained reads
and writes to distributed storage
using a RAID-5 encoding on mod-
erate hardware.

A Unifying Approach to the Exploita-
tion of File Semantics in Distributed
File Systems

Philipp Hahn and Carl von Ossietzky,
University of Oldenburg

Many distributed file systems
exist, but few are widely used in
practice. One reason for this may
be the fact that they are often spe-
cialized for particular types of
environments or applications. File
systems that have seen widespread
adoption because of their general-
ity may suffer from “compromise”
designs that optimize for average
performance and excel at nothing.
Philipp Hahn suggested that it
would be ideal to have a universal
abstraction for a distributed file
system that allows for per-file opti-
mizations and special cases and
permits requirements to change
over time. Various dimensions of
configurability include concur-
rency, latency, availability, and
consistency; the anticipated fault
mode, access frequency, and access
pattern; and the caching, version-
ing, encryption, and compression
strategies employed.

Benefits from his work might
include being able to bypass lock-
ing for backups, to avoid strong
consistency in disconnected oper-
ation, to suppress replicas for tem-
porary files, and to use different
replica placement strategies for
different files. He seeks to achieve

this flexibility by creating a frame-
work for a distributed file system
with pluggable modules that al-
lows the user to control all of these
options up to administrator-con-
figured limits, and falls back to a
default configuration when none is
specified. Hahn anticipates that
self-tuning may relieve some of the
burden of configuration.

A Centralized Failure Handler for
File Systems

Vijayan Prabhakaran, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau,
University of Wisconsin, Madison

Commodity file systems have
“broken” failure handling, because
they assume that disks fail in a
fail-stop manner. Moreover, failure
handling is complex, because the
code that actually performs I/O on
behalf of applications is diffused
throughout the system (for in-
stance, journaling code or the sync
daemon), and thus the code that
must handle failures is distributed
throughout the system. Vijayan
Prabhakaran believes that this
results in illogically inconsistent
policies, because the reactions to
the same error depend upon which
component received it: some may
propagate while others retry. It is
also difficult to separate policies
from mechanisms in this regime;
and each component is subject to
bugs.

The authors’ proposed solution is
a centralized failure handler,
which addresses each of these
shortcomings; it also relieves pro-
grammers of the need to add error-
handling code to each new func-
tion, because the global handler
already takes care of errors. Prab-
hakaran pointed out three issues
with this approach: semantic
information about a particular
I/O needs to be available at the
handler so it can respond to errors
appropriately; the handler has
parts that must be specialized to a
particular file system while other
parts are generic across file sys-
tems; and I/O paths are time-criti-
cal, requiring the common com-

pletion path to be separated from
the error case.

Storage Benchmarking for HPC

Mike Mesnier, James Hendricks, Raja R.
Sambasivan, Matthew Wachs, and
Gregory Ganger, Carnegie Mellon Uni-
versity; Garth Gibson, Carnegie Mellon
University and Panasas

High-performance computing
(HPC) applications are one impor-
tant class of programs that use
storage systems, but it is difficult
to simulate their access patterns
with existing benchmarks. In par-
ticular, the coordination and data
dependencies between multiple
compute nodes that are accessing
storage may need to be modeled in
a benchmark to capture the true
nature of HPC workloads. Mike
Mesnier discussed the idea of
explicitly capturing this coordina-
tion in an existing workflow-speci-
fication language; specifications
could then be used by a distrib-
uted workload simulator to syn-
thetically generate multi-client
accesses similar to those of a given
HPC application.

The modeling language might
include data sources and sinks
with flows between them passing
through compute nodes that per-
form transformations on the data.
At the same time, the language
must also incorporate I/O charac-
teristics such as read/write ratio,
request size, and randomness
for the simulator to follow. The
authors plan to select and extend
an appropriate workflow modeling
environment and to begin a reposi-
tory of specifications expressed in
this language by providing refer-
ence specifications—for example,
HPC codes—and then soliciting
the contributions of domain
experts from different fields such
as computational chemistry, bioin-
formatics, and so on.

POSIX I/O Extensions for HPC

Brent Welch, Panasas

Just as it is important to bench-
mark HPC applications, so, too, is
it fruitful to optimize for them at

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 111

each level of a storage system. The
POSIX semantics for I/O, which
are intended for single-node
access, are not ideal for environ-
ments using collective I/O and
clustered compute-node access to
shared storage. Brent Welch dis-
cussed an initiative, being under-
taken by a large working group, to
draft proposed API enhancements
to POSIX that may boost the per-
formance of this class of applica-
tions. Many of the changes are
based on the ideas of relaxing
expensive semantics and providing
hints to the storage system.
Among the proposals are support
for vector I/O, coherence (propa-
gation or invalidation of data),
lazy attributes in metadata, lock-
ing schemes, shared file descrip-
tors, and layout hinting. For
instance, a statlite() call extends
stat() to poll only those attributes
actually needed by the application;
and ACLs match the new NFSv4
semantics rather than the old
POSIX ACL semantics. More
information can be found at
http://www.pdl.cmu.edu/posix.

Storing Trees on Disk Drives

Medha Bhadkamkar, Fernando Farfan,
Vagelis Hristidis, Raju Rangaswami,
Florida International University

Many modern applications store
tree-structured data, such as those
using XML, those storing directory
hierarchies, and those implement-
ing suffix-tree alignments for
bioinformatics. Because of this,
being able to store tree-structured
data efficiently is an important fac-
tor affecting the performance of
these applications. Currently used
schemes (such as relational data-
bases or flat files) do not take
advantage of the tree structure or
the performance characteristics of
disk drives.

Raju Rangaswami proposed tree-
structured placement, a way of
matching the data structure of a
tree to the semi-sequential access
patterns of a disk drive. Under this
technique, the root is placed at the
outermost track, with its children

residing on the next free track,
placed such that accessing the first
child results in a semi-sequential
access (that is, one which incurs
no rotational delay because it falls
under the disk head just as the
seek to that track completes). Sub-
sequent children are placed just
after the first one and incur only a
slight rotational delay. The draw-
backs of this approach are high
space fragmentation and poor ran-
dom access times. A second strat-
egy, the optimized tree-structured
placement strategy, places child
nodes in non-free tracks and per-
mits some limited rotational la-
tency to reach the first child on
that track, increasing the flexibility
of placement; it also stores multi-
ple nodes in a single disk block.
In the future, the authors plan to
explore how to store arbitrary
graphs more efficiently on disks.

Efficient Disk Space Management for
Virtual Machines

Abhishek Gupta and Norman Hutchin-
son, University of British Columbia

Virtual machines are being used
for various purposes, but the prob-
lem of efficiently providing storage
for each virtual machine has not
been entirely solved. Frequently,
multiple VMs share the same disk
image and software configuration;
existing solutions such as LVM
(the Linux Volume Manager) and
Parallax share blocks between the
images and provide copy-on-write
to achieve good space utilization.
Abhishek Gupta described weak-
nesses in these systems: LVM has a
high cost when the VM running
on the master image overwrites a
block (the original copy of the
block must then be propagated to
all the mirrored images or else
they will see the changed block,
unless they have performed a
copy-on-write to that block). LVM
also does not support hierarchical
copy-on-write images (recursive
snapshots).

Parallax can do recursive snap-
shots, but it is unclear how effi-
cient it is: the cost of traversing

the radix-tree data structure to
translate a block address may be
high, and there is no space recla-
mation. Gupta discussed how to
explore possible solutions to these
limitations: first, the authors have
implemented radix trees in LVM
so that they can be benchmarked
and the existing solutions can be
quantified; next, they will either
try to fix the problems in current
approaches or propose a new data
structure that will support faster
snapshots.

Intelligent Data Placement in a Home
Environment

Brandon Salmon, Carnegie Mellon
University

Consumer media devices are pro-
liferating in the home, and they
are increasingly capable of han-
dling high-quality videos, music,
and photos. At the same time,
the devices have varying degrees
of mobility, storage capacity, and
access to power. Because of this,
Brandon Salmon highlighted the
fact that there is a data synchro-
nization problem in getting
desired data to the right device at
the right time. Currently, data
transfer is typically done manually,
which is not a scalable solution.
Pushing data to all devices is not
feasible, because power or capacity
may be at a premium or some
mobile devices may be out of
range; yet on-demand access is not
sufficient, because it is often not
reliable.

Salmon’s plan is to match data to
appropriate destination devices by
using metadata (such as ID3 tags
in music files), easily observed
access patterns, and machine
learning to anticipate upcoming
requests. Unlike hoarding, he
plans to use information about
data and device access patterns to
match data to a device, rather than
using inter-file access patterns
alone. He also plans to leverage
known cliques (such as a cell
phone usually being near a laptop,
but rarely near a DVR) to optimize
caching.

112 ; L O G I N : V O L . 3 1 , N O . 2

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 113

Functionality Composition Across
Layers in a Storage System

Florentina Popovici, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau,
University of Wisconsin, Madison

Various functions, such as cach-
ing, prefetching, layout, and
scheduling, are implemented at
each component in a layered sys-
tem. For instance, a Web server
may have a cache that duplicates
data in the buffer cache, RAID
controller cache, and hard disk
cache, resulting in inefficient use
of available memory. Florentina
Popovici argued that exclusive
caching would result in superior
use of resources, and that analo-
gous coordination of other func-
tions such as prefetching and
scheduling would similarly im-
prove efficiency. She enumerated a
number of research questions,
such as where the best layer is to
implement a particular algorithm
(such as prefetching); how per-
formance is influenced by a com-
bination of decisions at different
layers; and how quality of service
is influenced by the hierarchy of
layers.

Transaction Support in the Windows
NTFS File System

Surendra Verma, Microsoft

Windows Vista’s NTFS file system
implementation is expected to
include ACID semantics for trans-
actions consisting of arbitrary file-
system operations. Surendra
Verma gave a product demo of
TxF, the code name for the trans-
actional support in Vista, showing
how file-system manipulations
wrapped in transactions being per-
formed in two different command
prompt windows were not visible
to each other. For instance, if a
directory is deleted in one window
but the transaction has not yet
been committed, then the direc-
tory is still visible from the other
window. Conflicts between con-
current transactions result in
errors and aborted transactions
to preserve the semantics.

O N TH E M E D I A

No summaries available

On Multidimensional Data and
Modern Disks

Steven W. Schlosser, Intel Research
Pittsburgh; Jiri Schindler, EMC Corpo-
ration; Stratos Papadomanolakis, Min-
glong Shao, Anastassia Ailamaki,
Christos Faloutsos, and Gregory R.
Ganger, Carnegie Mellon University

Awarded Best Paper!

Database-Aware Semantically-Smart
Storage

Muthian Sivathanu, Google Inc.; Lak-
shmi N. Bairavasundaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau, University of Wisconsin,
Madison

Managing Prefetch Memory for
Data-Intensive Online Servers

Chuanpeng Li and Kai Shen, University
of Rochester

O N TH E W I R E

Summarized by Kristal Pollack

A Scalable and High Performance
Software iSCSI Implementation

Abhijeet Joglekar, Michael E. Kounavis,
and Frank L. Berry, Intel Research and
Development

This work focused on iSCSI soft-
ware solutions rather than com-
mon hardware implementations
that use TCP/IP offload engines or
iSCSI host bus adapters. An iSCSI
software implementation offers the
advantage that it can scale with
CPU clock speed and the number
of processors. Furthermore, it was
shown in earlier work that hard-
ware offload engines can become a
bottleneck for small block sizes.

For the majority of their work, the
authors used a user-level sandbox
implementation of the iSCSI pro-
tocol, coupled with an optimized
TCP/IP implementation. They dis-
covered that the two main bottle-
necks in iSCSI processing are CRC
generation and data copies.They
therefore set out to make these
two operations more efficient.

They were able to improve CRC
generation performance by a factor
of 3 by replacing the standard CRC
algorithm, developed over a dec-
ade ago by Sarwate, with a new
algorithm, Slicing-by-8 (SB8),
which takes advantage of more
modern computer architectures.
SB8 requires fewer operations per
byte on the input stream and takes
advantage of the size of the proces-
sor cache by using appropriately
sized lookup tables. Data copy per-
formance was improved by inter-
leaving the CRC generation with
the data-copy operations.

iSCSI processing performance in
the authors’ sandbox environment
showed a factor-of-two improve-
ment by changing the CRC algo-
rithm to SB8. They gained an
additional 32% performance im-
provement when the interleaving
data copy with CRC generation
was added. With both optimiza-
tions they improved throughput
from 175MB/sec to 445MB/sec.
SB8 was then implemented in
UNHs iSCSI implementation and
improved the overall throughput
by 15%. The authors attribute this
lower gain to the significant over-
heads in the Linux 2.4 implemen-
tation of SCSI and TCP/IP.

In the Q&A session someone
asked why they chose 8 for their
algorithm. It was from empirical
results and may be processor-
dependent. Another questioner
asked how close they were to run-
ning at maximum memory—very
close to maximum, almost mem-
ory limited, was the answer.

TAPER: Tiered Approach for
Eliminating Redundancy in Replica
Synchronization

Navendu Jain and Mike Dahlin, Uni-
versity of Texas, Austin; Renu Tewari,
IBM Almaden Research Center

TAPER is a solution for synchro-
nizing data across distributed
replicas. The authors’ solution
aims to minimize the bandwidth
required for this task by using
multiple phases of redundancy

elimination. The authors intro-
duced a method for quick elimina-
tion of identical files by using con-
tent-based hierarchical hash trees.
They also developed a method for
similarity detection using bloom
filters.

These new methods were com-
bined with existing techniques to
form their overall protocol. In
phase 1 they eliminate all identical
files using their content-based
hierarchical hash tree technique.
In phase 2 they eliminate all iden-
tical data chunks in the remaining
files by using content-defined
chunks similar to LBFS. In phase 3
they use their bloom filter tech-
nique to find a similar file at the
target for each file that has not
been completely matched at the
source. The unmatched pieces of
the files at the source are broken
into fixed-sized blocks, and their
signatures are sent to the target. At
the target these signatures are used
in a sliding-block technique over
the chosen similar file to find iden-
tical blocks. Finally, in phase 4
they use their bloom filter tech-
nique again for similarity detec-
tion between the remaining un-
matched chunks and the already
matched data at the source. The
unmatched chunks are delta-
encoded against the matched data,
and the delta encodings are sent to
the target to complete the synchro-
nization.

TAPER was compared with rsync
for several software sources, object
binaries, and Web data sets. Gzip
compression was used before
sending data over the wire. In
terms of bandwidth reduction,
TAPER saved 18–25% for software
sources, 32–39% for object bina-
ries, and 12–57% for Web data
when compared with rsync.

In the Q&A session someone
asked if TAPER was compared
with any other products, such as
Tivoli. The answer was that rsync
was the most relevant comparison.
Another questioner asked if most

of the savings came from phase 2.
The answer was that 60% of the
total savings came from the first
two phases.

VXA: A Virtual Architecture for
Durable Compressed Archives

Bryan Ford, MIT CSAIL

Both general-purpose compression
and multimedia encoding schemes
have evolved rapidly over the past
few decades. This presents a chal-
lenge for digital preservation of
compressed data as encodings and
the software to read them become
obsolete. The author observes that
instruction encodings are far more
durable than data encodings. He
points out that the x86 architec-
ture has experienced few major
changes over time, and has made
efforts to be backwards-compati-
ble. The author takes advantage of
this observation by implementing
Virtual eXecutable Archives
(VXA), which save executable x86
decoders along with compressed
data.

The VXA architecture uses a spe-
cialized virtual machine to run the
decoders in. Decoders have access
to computational primitives, but
can only read from a given stream
and write the decoding back. The
decoders are extremely isolated
and cannot use any of the operat-
ing system services. An implemen-
tation of this architecture was built
using the zip/unzip tools. When
compressed files are input into the
system they are attached with
decoders to the encoding they are
already in. If the file can be com-
pressed further, a lossless com-
pression technique is used that
best matches the file type, and the
file is tagged with the appropriate
decoder. When files are read, the
appropriate decoder is loaded into
the virtual machine, then executed
on the stream of encoded data to
produce the decoded data. The
decoders are stored in a com-
pressed format using a standard
compression algorithm to reduce
their overhead as well.

The performance for the VXA
implementation was tested using
six common decoders. The storage
overhead for these ranged from
26KB to 130KB. The performance
overhead on an x86-32 execution
was 0–11%, while the performance
overhead for the x86-64 execution
was 8–31%. This can be attributed
to the fact that the VXA decoders
are 32-bit.

In the Q&A session someone
asked if the system assumptions
were violated by gzipping the gzip
compiler. The answer was that
even though he demonstrated
VXA with open source decoders,
the goal was really to use this sys-
tem for proprietary encodings that
are more likely to disappear. If one
was worried that gzip might go
away, the gzip compiler could be
left unencoded. The next ques-
tioner was concerned that this is
only for the x86 instruction set
and wondered why it and not a
universal one, such as Raymond
Lorie’s, was chosen. The answer
was that we won’t forget x86; it’s
ubiquitous. Someone asked if
extracting semantic content was
addressed, and the answer was no.
The last question was, how do you
ensure that decoder code is trusted
and how do you verify that the
sandbox environment is safe? The
answer was that you have to trust
the library for the emulator.

TO O LS

Summarized by Abhishek Gupta

I/O System Performance Debugging
Using Model-Driven Anomaly Char-
acterization

Kai Shen, Ming Zhong, and Chuanpeng
Li, University of Rochester

Performance problems in complex
systems are hard to identify and
debug, due to the presence of
manifold system features and con-
figuration settings coupled with
dynamic workload behaviors and
special cases. In a nutshell, the
approach presented by Kai Shen is

114 ; L O G I N : V O L . 3 1 , N O . 2

to construct simple and compre-
hensive models of system compo-
nents using their corresponding
high-level design algorithms.
Later, discrepancies between
model prediction and actual sys-
tem performance are used to dis-
cover performance anomalies. In
order to quantify these, Kai intro-
duced the notion of a parameter
space, a multi-dimensional space
in which each workload condition
and system configuration param-
eter is represented by a single
dimension. The occurrence of a
performance anomaly under one
setting is identified as a single
point in this space. It was observed
that if samples were chosen ran-
domly and independently, the
chances of missing a bug decrease
exponentially with the increase in
the number of samples. Since,
anomalous settings could be due
to multiple bugs, a hyper-rectan-
gular clustering algorithm was
invented to offset the shortcom-
ings of classical algorithms such
as k-means.

For evaluation purposes these
models were applied to data-inten-
sive online servers hosted on
Linux 2.6.10. These servers access
large disk-resident data sets while
serving multiple clients simultane-
ously. Using this scheme, four per-
formance bugs in Linux were suc-
cessfully discovered.

Accurate and Efficient Replaying of
File System Traces

Nikolai Joukov, Timothy Wong, and
Erez Zadok, Stony Brook University

Nikolai Joukov presented
Replayfs, an accurate and efficient
method to replay file system
traces. Replayfs can replay traces
faster than any known user-level
system, and can even handle
replaying of traces with spikes of
I/O activity or high rates of events.
In fact, with their optimizations in
place, Replayfs can replay traces
captured on the same hardware
faster than the original program
that produced the trace.

Nikolai opined that in developing
a file system trace replayer it is
often difficult to identify its suit-
able position within the operating
system stack. To this extent, user-
level replayers are easier to imple-
ment and thoroughly exercise the
file system, but they do not sup-
port memory-mapped operations
and have high memory/CPU over-
heads. Network-level replaying
avoids the high memory/CPU
costs, but it often misses out on
client-side cached or aggregated
events that do not translate into
protocol messages. Replayfs over-
comes all of these shortcomings by
installing itself, as a kernel mod-
ule, just beneath the VFS level and
above classical file systems. In
doing so it enjoys direct access to
the buffer cache, exercises control
over process scheduling, and ben-
efits from reduced context switch-
ing, though at the cost of reduced
portability.

During Q&A, Ralph Becker from
IBM Almaden Research asked how
Replayfs could handle traces from
large-scale clusters. Nikolai replied
that in such a case they would
have to run Replayfs on multiple
clients and be more intelligent
while capturing traces. Daniel
Ellard from Sun Microsystems
wanted to know if the zero-copy
optimization could be turned off.
Nikolai replied, yes, it is config-
urable.

TBBT: Scalable and Accurate Trace
Replay for File Server Evaluation

Ningning Zhu, Jiawu Chen, and Tzi-
Cker Chiueh, Stony Brook University

In this talk, Ningning Zhu pre-
sented the design, implementa-
tion, and evaluation of TBBT, a
comprehensive NFS trace replay
tool. The author described TBBT
as a turn-key solution that can
automatically detect and repair
missing operations in a trace,
derive a file-system image required
to successfully replay the trace,
initialize and age the file-system
image appropriately, and eventu-

ally drive the file server according
to a user-configurable trace work-
load.

The author began her talk by
highlighting the shortcomings of
synthetic benchmarks, which are
currently the most common work-
loads for file-system evaluations.
Time-varying and site-specific
parameters make it harder for syn-
thetic benchmarks to mimic real-
world workloads. Also, the time
taken to develop a high-quality
benchmark is often outpaced by
the time taken for changes to
trickle in to the workloads of spe-
cific target environments. TBBT is
proposed as a complementary
approach to synthetic benchmarks
and is aimed at evaluating the per-
formance of a file system/server on
a site by capitalizing on the file
access traces collected from that
site.

During Q&A, someone from Sea-
gate wanted to know how good
this approach is in replaying the
traces on a server that has capaci-
ties different from those of the one
from which the traces were col-
lected. The author replied that in
order to evaluate this they would
first have to classify traces accord-
ing to localities within them.

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 115

