
P A U L A N D E R S O N

why configuration
management is
crucial
Paul Anderson has a background in pure mathemat-
ics and over 20 years of experience in system admin-
istration. He is currently a principal computing offi-
cer with the School of Informatics at Edinburgh
University. He is the primary author of the LCFG con-
figuration system and the organizer of the LISA con-
figuration workshop series. His homepage is
http://www.homepages.inf.ed.ac.uk/dcspaul/

dcspaul@inf.ed.ac.uk

T H E P A S T F E W Y E A R S H A V E S E E N
an increasing interest in “Configuration
Management.” Some of us believe that the
lack of good tools and procedures in this
area is rapidly becoming the major barrier
to the deployment of reliable, secure, and
correct systems. I am going to try to define
the configuration problem more clearly and
to explore some possible reasons for these
difficulties. However, it is worth starting
with a few simple examples:

j Reliability—If we decommission a server, can
we be certain that nothing else depends on this
server in any way? Perhaps it might have been
the only DHCP server on some little-used sub-
net, and problems will only become apparent
when some host on that subnet fails to boot.

j Security—Can we be certain that the configura-
tion files on a group of machines are set up so
that there are no unexpected trust relationships
between the machines? What if a supposedly
secure machine installs new versions of an
application from a remote file system on a less-
secure server?

j Correctness—Can we be certain that every
compute node in a cluster is running the
required (new) version of a particular library,
before starting a critical job?

An ideal configuration management system would
prevent such problems by design. Current tools,
used with best practice, should at least make it
possible to identify and avoid them. However,
sites with less-developed configuration manage-
ment would even have difficulty in deciding
whether or not such problems existed! For exam-
ple, the information may only be available on the
remote nodes themselves, and a certain percentage
of these will always be unavailable at any one time.

Most sites have probably used some form of “con-
figuration management” tool as a way of coping
with large numbers of very similar “clients.” This
certainly addresses a whole class of configuration
problems, such as the last of the above examples.
However, modern computing installations form a
complex web of related services. Managing the
“servers” and the relationships they imply is much
more difficult—this is the root cause of the deeper
problems illustrated by the first two examples.
The increasing scale, and particularly the com-
plexity, of modern sites means that manual

; LO G I N : F E B R UA RY 2 0 0 6 W H Y CO N F I G U R ATI O N M A N AG E M E NT I S C R U C I A L 5

approaches to configuration of these relationships are no longer adequate;
human system administrators simply cannot manage the complexity of the
interactions, or foresee the full consequences of individual configuration
changes.

Achieving high reliability in complex systems also requires the capability
for fully automated reconfiguration. An autonomic system must have the
ability to reconfigure some other machine as replacement for a failed serv-
er. In a multi-tier Web service, for example, this is likely to involve exten-
sive reconfiguration of related services.

What Is “System Configuration”?

The basic system configuration problem is quite simple to describe:

j Starting with:
j A large number of varied machines with empty disks.
j A repository of all the necessary software packages and data files.
j A specification of the functions that the overall system is intended to

perform.
j Load the software and configure the machines to provide the required

functionality. This usually involves a good deal of internal infrastructure,
e.g., DNS, LDAP, DHCP, NFS, NIS services.

j Reconfigure the machines whenever the required service specification
changes.

j Reconfigure the machines to maintain conformance with the specifica-
tion whenever the environment changes—for example, when things
break.

In practice, the task of “configuring the machines” probably involves edit-
ing configuration files (or perhaps supplying the configuration information
via some API or GUI). However, it is not the mechanics of this process that
is important; the real difficulty is in determining a suitable configuration
for each service on each host that will make the overall system behave
according to the specification.

To solve difficulties such as those in the first two examples, a configuration
system must have a model that can represent the relationships implied by
the configuration of the individual machines. Conceptually, we can think
of a configuration tool as a type of “compiler,” whose input is a set of
requirements for the entire system and whose output is a set of configura-
tion parameters for each service on each host in the system. Of course, a
real configuration tool involves a lot more practical details, such as format-
ting and distributing the configuration information, but these parts of the
process are comparatively straightforward.

Ultimately, we would like the input language for our configuration compil-
er to be at a very high level. For example, we might specify a Web service
with certain behavioral properties, and the compiler would generate the
appropriate configurations for all of the individual services, on all of the
participating hosts. Unlike most programming languages, these configura-
tion specifications need to be declarative—i.e., we want to specify the
required properties of the resulting configuration and have the tool auto-
matically work out the procedures for achieving the end result.

6 ; L O G I N : V O L . 3 1 , N O . 1

“Copy this disk image onto these machines”

⇓

“Put these files on these machines”

⇓

“Put this line in sendmail.cf on this machine”

⇓

“Configure machine X as a mail server”

⇓

“Configure machine X as a mail server for this cluster”
(and the clients will automatically be configured to match)

⇓

“Configure any suitable machine as a mail server for this cluster”
(and the clients will automatically be configured to match)

⇓

Configure enough mail servers to guarantee
an SMTP response time of X seconds

F I G U R E 1

Present-day technology is some way from being able to translate such
high-level specifications automatically; current best practice involves a
combination of manual procedures and automatic tools that provide a
smooth translation of the service requirements into implementable config-
uration details. Many factors, including the capabilities of the specific tool,
will affect the level of detail at which the configuration needs to be manu-
ally specified. Figure 1 shows some possibilities, starting with very low-
level tools which require all configuration decisions to be made manually,
to very high-level tools which accept more abstract service requirements.

The final example defines a required behavior, and this is ultimately the
type of specification that we would like to be able to make. However, this
requires dynamic monitoring of performance levels, and the ability to do
this in any general way is not yet part of any common configuration tool.

So What’s the Problem?

The current situation with system configuration tools has many similarities
with the early days of computer programming:

j Vendors sold mutually incompatible hardware. Changing platforms
required a significant investment of time and resources.

j It was not possible to share code between machines without rewriting.
j The basic principles of programming had not yet been developed. Pro-

grams were created in unstructured ways that made them error-prone
and difficult to verify or maintain.

j The low-level nature of the program code made it difficult to implement
clear high-level objectives.

It was only the advent of high-level languages, with their underlying theo-
ry and portable compilers, that enabled this situation to improve.

In the system configuration field, there is a real need for new tools, based
on sound theory and targeted at a much higher /level of configuration
description. Programming-language development required a new genera-

; LO G I N : F E B R UA RY 2 0 0 6 W H Y CO N F I G U R ATI O N M A N AG E M E NT I S C R U C I A L 7

tion of specialists to achieve a similar evolution, and it seems likely that
real progress with configuration tools is not possible without a comparable
development. This will require new specialists with a good understanding
of theory, software development, and system administration practice.

As with programming-language development, the resulting systems will
demand from working system administrators a significant change in
approach. Worrying about which physical host is running a particular ser-
vice should be as rare as worrying about which machine register is holding
a particular Java variable!

8 ; L O G I N : V O L . 3 1 , N O . 1

NEW!

;login: Surveys
To Help Us Meet Your Needs

;login: is the benefit you, the members of USENIX, have rated

most highly. Please help us make this magazine even better.

Every issue of ;login: online now offers a brief survey, for you to

provide feedback on the articles in ;login: . Have ideas about

authors we should—or shouldn’t—include, or topics you’d like to

see covered? Let us know. See

http://www.usenix.org/publications/login/2006-02/

or go directly to the survey at

https://db.usenix.org/cgi-bin/loginpolls/feb06login/survey.cgi

