
Turducken: Hierarchical Power
Management for Mobile Devices

Jacob Sorber, Nilanjan Banerjee, and
Mark D. Corner, University of
Massachusetts; Sami Rollins, Mount
Holyoke College

Jacob Sorber explained that the
main principle of hierarchical
power management is to pick the
most energy-efficient component of
the system for a task. The challenge
is in partitioning a given task into a
set of subtasks and assigning each
to the most efficient component.
Such an approach automatically
maximizes system lifetime. It is de-
sirable to have minimum user in-
tervention in such a system.

The authors developed the Tur-
ducken system for hierarchical
power management in laptops. 
Turducken consists of a laptop at-
tached to a PDA and a mote sensor
node. The role of the mote is to
maintain clock synchronization
with a time server. The laptop and
the PDA derive their clock from the
mote upon their wakeup. The PDA
is responsible for caching Web
pages and waking up the laptop to
display the pages once they are
fully loaded. The user interacts di-
rectly with the laptop. The laptop
responds to user queries (e.g.,
email retrieval). Turducken signifi-
cantly lowers average power con-
sumption compared to convention-
al systems.

The audience provided some very
interesting comments and sugges-
tions. The power supply design of
such a system was discussed. It was
concluded that it would be most
energy efficient to have separate
batteries for each system compo-
nent. Usage of the lower-tier com-
ponents during the transition inter-
val of a high-tier device from one
state to another was considered.

HotOS X: Tenth Workshop on 
Hot Topics in Operating Systems 

Sante Fe, New Mexico
June 12–15, 2005

R E L I G I O U S  WA R S

Summarized by Alexandra Fedorova

Are Virtual Machine Monitors
Microkernels Done Right?

Steven Hand, Andrew Warfield, Keir
Fraser, Evangelos Kotsovinos, and Dan
Magenheimer, University of Cambridge
Computer Laboratory and HP Labs

Steven Hard argued that microker-
nels and virtual machine monitors
(VMMs) both emerged to achieve
isolation of the software system
from the underlying hardware, but
used different means to do so. He
highlighted similarities and differ-
ences among VMMs and microker-
nels, talked about architectural les-
sons learned with these systems,
and suggested that it is best to de-
sign architectures that borrow the
best from VMMs and microkernels,
as opposed to sticking to a particu-
lar architecture.

He summarized the differences as
follows: Whereas VMMs multiplex
entire operating systems, microker-
nels multiplex many small tasks as
threads. VMMs are closely aligned
with hardware, so the interface
looks like hardware; microkernels
expose a higher-level interface, and
tasks communicate using synchro-
nous IPC. VMMs offer one address
space per scheduled entity; micro-
kernels offer multiple scheduled
entities per address space. Architec-
tural lessons learned from research
with these systems are:

Avoid liability inversion. Moving
trusted system code to the user
level, as is done in microkernels,
involves having to trust user code
to perform essential system func-
tions (e.g., user-level page in
Mach). 

Make synchronous IPC irrelevant.
Synchronous IPC in microkernels
is expensive. But as we learned
from Xen, IPC does not need to be
on a critical path. 

OS is a reusable component. VMMs
have achieved complete compo-
nent reusability, because they treat
OS as the reusable component.

During the Q&A session, the most
fire came from Gernot Heiser, who
disagreed with the analysis. Gernot
argued that liability inversion is not
inherent to microkernels (in UNIX
you have system daemons imple-
mented as user processes that run
in privileged mode). He also insist-
ed that IPC in microkernels is not a
problem: New fast hardware allows
cheap implementation. Besides,
Liedtke, using L4 as an example,
demonstrated that microkernels
can be fast.

OS Verification—Now!

Harvey Tuch, Gerwin Klein, and Gernot
Heiser, National ICT Australia

Harvey Tuch argued that there is an
urgent need to develop practical
formal verification tools that can be
used in high-performance industri-
al operating systems. This is a chal-
lenging task, and requires the right
OS architecture: basically, a micro-
kernel. VMMs won’t work because
they increase the size of the TCB.

The rest of the talk was a survey of
available formal verification meth-
ods. Formal verification is done by
constructing a system model, a sys-
tem specification, and a verification
tool that checks for desired proper-
ties using the model and specifica-
tion as input. Examples of formal
specifications are HOL temporal
and Bayer-Moore logic, microker-
nel APIs. Model checking is usually
done by automatic reachable state-
space exploration or by theorem
proving. They have already imple-
mented some preliminary verifica-
tion tools for the L4 microkernel.

During the Q&A, Aaron Brown
pointed out that real customers are
using OSes as giant application

; LOGIN: O C TO B E R  2 0 0 5  CO N F E R E N C E S UM MA R I E S 75



76 ; LOG I N : V O L . 3 0 , N O . 5

servers; they run databases and ap-
plication servers on them, and it is
not clear how much leverage you
are going to get from verifying just
the OS kernel. Several other atten-
dees, including Eddie Kohler and
Rik Farrow, asked how they were
going to deal with changing operat-
ing systems. Harvey responded that
there are two types of changes, im-
plementation changes and API
changes; they have a way of dealing
with implementation changes, but
API changes are more difficult.

Making Events Less Slippery with eel

Ryan Cunningham and Eddie Kohler,
University of California, Los Angeles

This talk continued the old debate
concerning threads and events.
Events are fast but difficult to pro-
gram. The speaker described eel, a
programming tool designed to sim-
plify programming with events. eel
uses program analysis techniques
to improve programmability while
preserving the event model, and
provides the libeel event library, vi-
sualization, and debugging tools.

Programming events is hard be-
cause it is difficult to understand
the flow of the program and diffi-
cult to debug. eel’s visualization
tools make it easy to visualize the
control flow, and the debugger al-
lows you to step through each pro-
gram flow separately; you follow
the callbacks related to the same
connection, so each flow of related
events appears sequential. The
speaker concluded that events don’t
need to be hard to program. You
can use simple tools to extract pro-
gram control flow and to help with
visualization, verification, and de-
bugging.

Margo Seltzer pointed out that
while eel helps clarify the event-
based program after it’s written, it
does not appear to help with the
actual writing of the program. The
speaker responded that by allowing
the programmer to visualize newly
written code, eel does make writing
easier. Margo was not convinced

that using events is worth all this
trouble. The speaker said that using
events is preferable because they
are much faster. Pei Cao responded
that based on her experience of de-
signing large software projects peo-
ple use both threads and events.
Events are a pain, so people use
them only when performance is ab-
solutely critical, which does not
happen very often.

STO R AG E

Summarized by Steve VanDeBogart

Parallax: Managing Storage for a
Million Machines

Andrew Warfield, Russ Ross, Keir Fraser,
Christian Limpach, and Steven Hand,
University of Cambridge Computer
Laboratory

Andrew Warfield spoke about Par-
allax, a system for dealing with the
increased demand on storage sys-
tems created by the use of virtual
machines. With the adoption of vir-
tual machines in cluster environ-
ments, the number of system im-
ages per disk has increased by a
factor of 10 to 100. Some organiza-
tions expect that within the next
few years they will be supporting
one million live system images in a
single data center. Furthermore,
techniques that take advantage of
historical versions of VM state
(e.g., for intrusion detection or
configuration debugging) imply ad-
ditional demand on storage sys-
tems. Parallax is designed to solve
these problems by being able to
scale to many images while sup-
porting fast and frequent snap-
shots.

The key insight behind Parallax is
that block-level write sharing
should not be on the critical path.
The common case is that all active
system images started from a small
number of base images and then di-
verged. While it is possible that dis-
tinct systems have the same soft-
ware added on top of the base
image, this is not the major source
of shared blocks. Parallax handles

this by maintaining a radix tree of
the blocks in the active image. 

Armando Fox and Mary Baker
asked about the fault tolerance of
the system. Andrew responded that
nodes are monitored for failure
(both loss of connectivity and
deadline failure) and that blocks
are sent to at least three nodes to
reduce the chance of losing infor-
mation.

Stupid File Systems Are Better

Lex Stein, Harvard University

Lex Stein discussed some experi-
ments he conducted to validate the
file system speed tricks accumulat-
ed over the last 30 years. The clas-
sic assumption in file systems is
that the closer the block numbers,
the faster it will be to access blocks.
However, with virtualized block
numbers on modern storage sys-
tems, this is not necessarily the
case. To determine how much the
smart allocation of blocks affects
performance on a modern storage
system Lex removed the smartness
by randomizing the block values in
a trace.

Two traces were used to conduct
tests, one taken during the compi-
lation of a Linux kernel, the other
under the Postmark benchmark.
The block numbers in these traces
were then randomly permuted. The
modified and unmodified traces
were played back in a disk-accurate
simulator with a varying number of
disks used as JBOD (Just a Bunch
of Disks), RAID 4, and RAID 5. The
simulation results show that with a
modest number of disks the ran-
domized traces started to perform
better than the smart traces.

John DeTreville suggested that
maybe the smart traces were trying
to schedule the blocks into too
short a time frame and thus not
taking advantage of the parallel
seek capacity of the multiple disks.
Lex replied that maybe there is a
point where things should get par-
allelized and that this might be a
new trick to improve the perfor-



mance of file systems. Russ Cox
added that maybe instead of dumb-
ing down the file system, since it
still does help performance on a
single disk, the volume manager
should do a better job of distribut-
ing blocks. Petros Maniatis suggest-
ed adding traces that evenly distrib-
uted the work among the disks for
comparison: maybe performance is
improved, not by randomness per
se, but through hot-spots eliminat-
ed in the random trace.

Aggressive Prefetching: An Idea Whose
Time Has Come

Athanasios Papathanasiou and Michael
Scott, University of Rochester

Athanasios Papathanasiou put forth
the idea that the performance char-
acteristics of common memory and
storage architectures have changed
enough that in order to get good
performance (where performance
may affect energy consumption),
aggressive prefetching must be
done. There have been drastic im-
provements in CPU power and
storage capacity with moderate im-
provements in I/O bandwidth, but
I/O latency has hardly improved at
all. This means there is decreased
risk and increased need to do pre-
fetching. 

Bandwidth has increased 40% per
year, but latency has only increased
10%. In order to lower the latency
to the same level as before, in-
creased prefetching is required.
Furthermore, the amount of mem-
ory available to do speculative op-
erations has increased. Memory
slack has increased by a factor of
100 over the past 15 years. 

Having pitched the idea of aggres-
sive prefetching, Athanasios pre-
sented some research challenges
that would have to be met in order
to make aggressive prefetching
worthwhile: device-aware prefetch-
ing; characterization of an applica-
tion’s I/O demand; coordinating I/O
requests with device power states;
speculative predictors that provide
sufficient data coverage; and better

metrics to account for the true cost
of cache hits and misses.

Several attendees pointed out that
good access models are needed in
order to prefetch the right data.
Athanasios agreed, adding that we
need to come up with some generic
models with parameters that can be
tuned for specific devices or appli-
cations.

O UTS I D E  TH E  COM F O RT  ZO N E

Summarized by Steve Zhang

Why Markets Could (But Don’t
Currently) Solve Resource Allocation
Problems in Systems

Jeffrey Shneidman, Chaki Ng, and David
Parkes, Harvard University; Alvin
AuYoung, Alex Snoeren, and Amin
Vahdat, University of California, San
Diego; Brent Chun, Intel Berkeley Re-
search Lab

Jeffrey Shneidman argued for using
markets to solve the resource allo-
cation problem in large-scale sys-
tems. Utilization data from systems
like PlanetLab shows how demand
exceeds supply, especially during
peak times, and demonstrates the
need for an allocation policy. Using
markets would allow for an effi-
cient policy where those who value
the resources the most receive
them. 

He outlined some problems that
would face any allocation policy.
First, it would have to be selected
and supported by the users. In ad-
dition, it would be difficult to di-
vide resources, since different re-
sources in a system may be con-
nected in subtle ways. Consumers
would also need to predict needs
well and accurately value their
needs based on the currency cho-
sen. Finally, the implementation of
a market policy requires a method
for expressing bids easily and effi-
ciently. Despite these problems,
and although using market econ-
omies have been studied before, he
believes today’s environ-ment (e.g.,
demand much higher than supply,
a semi-cooperative user base, re-

peated large resource allocation,
improved OS support for resource
isolation) could make revisiting
this old idea fruitful.

Several people expressed doubt
that demand outpacing supply is
only a problem for free usage test-
bed systems. Others noted the diffi-
culty in choosing a viable currency
for such a market economy. Al-
though history has shown that arti-
ficial currencies tend to work poor-
ly, using real money is generally
unpopular with user bases, since
users would not start on an equal
footing. Finally, real economies
have problems that are generally
addressed by government-con-
trolled regulatory agencies, and an
analogous solution would need to
be found for a market-based alloca-
tion policy.

Operating Systems Should Support
Business Change 

Jeff Mogul, HP Labs

Jeff Mogul expounded on why
building systems with business
changes in mind (e.g., starting or
changing services, meeting new
regulations, mergers, and spinoffs)
is extremely important for most en-
terprises. AT&T wireless’s down-
fall, HP’s SCM rollout, and Comair’s
crew-scheduling fiasco were men-
tioned as anecdotal evidence of the
difficulties in adapting to business
changes and the high costs of being
unable to do so efficiently. Agile
businesses tend to dominate their
markets. However, most business
systems are so complex that
changing or replacing them is ex-
tremely costly, and with most IT
departments’ current focus on cost-
cutting, change is never easy or
quick. 

Jeff believes that research should
focus on allowing application-level
flexibility, which requires standard-
ization at the lower layers at enter-
prise scales. OS-level flexibility,
which has been the historical focus
of many researchers (e.g., micro-
kernels, extensible OS), actually
undermines standardization. Al-

; LOGIN: O C TO B E R  2 0 0 5  CO N F E R E N C E S UM MA R I E S 77



though formal verification may be
unrealistic for years to come, OS
conformance testing should be a
first-class research topic. Also, cap-
turing an accurate snapshot of an
IT infrastructure at many levels and
quantifying the value of IT (how
much money a machine or a system
is making) would be vital for man-
agement to gauge the costs and
benefits of system changes accu-
rately. Finally, with the prevalence
of outsourcing, auditability of sys-
tems becomes critical for third-
party auditors to verify that a cus-
tomer’s requirements are being met
by the supplier. 

Researching these areas is challeng-
ing, however, because enterprise
applications tend not to be open
source and may require millions of
dollars and several person-years to
install and configure. Studying con-
trolled testbed systems in a lab en-
vironment is not a replacement for
looking at real deployed systems.
In addition, it is not clear how to
measure the success of any method
in addressing these concerns.

IT ’ S  N OT  A I , IT ’ S  SYSTE M S

Summarized by Steve Zhang

Designing Controllable Computer
Systems

Christos Karamanolis, Magnus
Karlsson, and Xiaoyun Zhu, HP Labs

As a prelude to Christos Karamano-
lis’s talk, Elizabeth Bradley of the
University of Colorado, Boulder,
gave a brief introduction to control
theory. She talked about simple
methods and tools that work for
linear time-invariant systems.
However, operating system prob-
lems tend to be nonlinear and time-
varying, the solutions for which are
usually ad hoc. Although it’s possi-
ble to simplify many of these cases
to work with a linear system-based
approach, it’s very important to be
mindful of the assumptions that
must be made for these solutions to
be valid. 

Christos Karamanolis talked about
his experience in applying control
theory to systems management.
Recent surveys have shown that
75%–80% of IT costs go into man-
aging existing systems. A feedback-
based control system would allow
humans to be taken out of the loop
and thus cut costs immensely.
However, because computer sys-
tems change quite frequently, adap-
tive control is needed to dynamical-
ly estimate models to be used by
the controller.

The authors experimented with
using an automated controller as a
scheduler that handles different
classes of clients, and attempted to
have the system maintain a consis-
tent throughput based on a service-
level agreement. Some important
lessons were learned: First, more
recent controller actions must have
higher impact on current measure-
ments than earlier actions. Second,
the action-measurement relation-
ship must be close to linear; where
that is not the case, different ac-
tions and/or measurements must be
tried until a linear pair is found.
More properties from control theo-
ry were translated into system re-
quirements in order to help system
architects design systems more
amenable to automated control,
and these are listed in the paper.
During the Q&A session, it was
established that although control
theory is at least four decades old,
researchers have only recently ex-
plored taking formal control-theory
approaches to systems issues. How-
ever, informal ad hoc methods
based on control-theory principles
have been used for quite some
time.

Three Research Challenges at the In-
tersection of Machine Learning,
Statistical Induction, and Systems

Moises Goldszmidt and Ira Cohen, HP
Labs; Steve Zhang and Armando Fox,
Stanford University

Terran Lane from the University of
New Mexico set the stage for this
talk by providing an overview of

machine learning, focusing on su-
pervised learning and reinforce-
ment learning. In supervised learn-
ing, the goal is to build a model
that can predict system output
from sensor values, whereas in
reinforcement learning the goal 
is a model that can control the sys-
tem according to sensor values to
achieve some desired behavior. 
For supervised learning, there are
well-established techniques that
can handle high-dimensional data,
but reinforcement learning tech-
niques work best for low- (5–10)
dimensional data. The speaker only
briefly touched upon unsupervised
learning but believes that many
system problems may require such
techniques. 

Moises Goldszmidt then talked
about the challenges of applying
any statistical learning technique to
systems. More specifically, he relat-
ed the problem to his work with
correlating low-level system met-
rics with higher-level objectives.
Finding such correlations not only
would help novice system adminis-
trators deal with simple problems,
but would also be useful to experts
by providing better visibility about
the behavior of large-scale systems.

Although there is generally plenty
of raw data available for problems
in this arena, thanks to mature
measurement and monitoring
tools, there is a lack of labeled data
that would aid the evaluation and
comparison of different approach-
es. Another challenge is that learn-
ing schemes must be adapted to
handle online streams of data. Al-
though the machine-learning com-
munity has yet to provide any gen-
eral solutions, it is possible to use
domain-specific knowledge to con-
struct efficient algorithms for the
systems area. The speaker also
noted that in most cases, obtaining
true root-cause analysis is neither
practical nor necessary. Instead,
one should strive for diagnosis that
can easily map to possible repair
actions. 

78 ; LOG I N : V O L . 3 0 , N O . 5



Panel: Control Theory/Machine
Learning

Christos Karamanolis, Elizabeth
Bradley, Terran Lane, Moises
Goldszmidt

This panel focused on the feasibili-
ty of applying control theory and
machine-learning techniques to
large-scale distributed systems. 
The consensus seemed to be that
without centralizing data from in-
dividual nodes, it would be very
difficult if not impossible for these
approaches to effect conformance
with systemwide high-level policy.
It was noted, however, that while a
globally optimal solution may be
impossible for distributed systems,
locally stable methods (e.g.,
TCP/IP) are often practicable.

This led to a reference to biological
systems and how nature has solved
the problem of achieving global
goals from local control. Terran
Lane responded that Mother Na-
ture has reached such solutions
through billions of years of experi-
ments on an infinitely parallel su-
percomputer. He added that if one
had a problem that had an accurate
analogy in nature, using nature’s
solution would be feasible. Howev-
er, most problems do not fit such a
model.

C L E A N I N G  U P  TH E  M E S S  
W E ’ V E M A D E

Summarized by Alexandra Fedorova

Making System Configuration More
Declarative

John DeTreville, Microsoft Research

System configuration is hard. A
huge fraction of every user’s time is
spent futzing in a computer system.
This is the biggest performance
bottleneck. The issue is that a con-
figuration is a shared mutable state.
We update the state in place when
we install and uninstall. A system’s
correctness depends on every in-
stall and uninstall we have ever
done. The proposal is to use declar-
ative configuration: record every-
thing that describes system config-

uration, all files, all system vari-
ables. Then we have a chance of
checking whether the configura-
tion is correct. But in order to do
this, we need a system model.

The system model can incorporate
submodels. Programmers, publish-
ers, and remote administrators can
write these submodels. Models ex-
press rules for composing the pro-
grams into systems. The expecta-
tion is that system models will be
easier to compose from submodels.
As a result, no sequence of installs
and uninstalls can result in a badly
formed system instance. The draw-
back of this approach is that system
models/policies may be too difficult
to express. In conclusion, John
pointed out that earlier efforts at
declarative configuration were not
widely adopted, because they were
targeted at programmers.

Joe Hellerstein asked how to deal
with distributed applications. John
said that this is a hard problem but
that improving local system admin-
istration is a good start. Jay Lepreau
pointed out that standard program
installers are already designed to
handle program interdependencies.
John responded that they have the
right mechanisms, but in practice
they do not handle these interde-
pendencies properly.

Reducing the Cost of IT Operations—
Is Automation Always the Answer?

Aaron Brown and Joseph Hellerstein,
IBM T.J. Watson Research Center

Aaron Brown said that costs of IT
operations are quickly outpacing
server spending. A common solu-
tion is automation, but expenses
involved in developing and deploy-
ing an automated solution often
outweigh the savings it provides.
Aaron provided a case study where
automated solution did not help to
cut costs. Then he offered a mathe-
matical framework for evaluating
the cost-effectiveness of a solution.

Basic cost model: There are fixed
costs for setup and maintenance
and variable costs for automated
inner loop and per-instance tasks.

Because there are fixed costs in-
volved, you have to look at the life-
time of automation, to amortize
fixed costs over time. Automation
lifetime can be very short, because
the software package or the in-
staller might change, for example.
Apart from cost, there are the issues
of trust and adoption. Automation
is a disruptive force for IT systems
managers. Using an incremental
transition path from manual to au-
tomatic may be the right approach.

Margo Seltzer suggested that it may
be difficult to know the lifetime of
automation. Aaron agreed and said
that they would like to be able to
predict it. Christos Karamanolis
wondered how they can quantify
fixed costs for the model. Aaron re-
sponded that this is challenging
and that user studies are needed to
evaluate the costs of complication
that come with automation. How-
ever, they do have a way of model-
ing such costs.

Human-Aware Computer System De-
sign

Ricardo Bianchini, Richard Martin,
Kiran Nagaraju, Thu Nguyen, and
Fabio Oliveira, Rutgers University

Thu Nguyen began his talk by en-
couraging the community to con-
sider the human as a first-class en-
tity in computer system design. He
argued that systems designers
should use human-aware princi-
ples, such as:

making systems more robust to
human mistakes; 

understanding human actions and
mistakes; 

developing techniques and infra-
structure to increase human under-
standing of systems to prevent,
hide, and undo mistakes; 

designing new metrics and bench-
marks to measure system improve-
ments.

He then described their work on
understanding operator actions and
mistakes in configuring Internet
services. The results of this study
could be used to fix and prevent

; LOGIN: O C TO B E R  2 0 0 5  CO N F E R E N C E S UM MA R I E S 79



user mistakes. Thu concluded by
admitting that designing good
human-factor benchmarks is hard
and recruiting human study sub-
jects with the necessary back-
ground is even harder.

Pei Cao suggested that the reason
why networking guys do a lot more
online testing is because Cisco
routers are specifically designed for
online testing. If people built better
software, maybe we would not have
such issues with installation com-
plexity. If you build complex soft-
ware, you have to have a user
model in mind.

A P P ROAC H E S  TO  O S  R E S E A RC H

Summarized by Prashanth Bungale

Thirty Years Is Long Enough: Getting
Beyond C 

Eric Brewer, Jeremy Condit, Bill Mc-
Closkey, and Feng Zhou, University of
California, Berkeley 

Bill McCloskey explained that the
point of this talk was to get people
to think of C as a bad habit and to
stop using it. Safety and security
have now become more important
than any other factors. Low-level
systems are still unsafe and inse-
cure, and C is the main problem.
Java has failed mainly because it is
not expressive enough and because
porting applications is expensive.
The authors believe that it’s possi-
ble to design a systems language
that is safer and better than C, Java,
or C#. Areas for improvement in-
clude memory management (GC is
not good enough), concurrency
(manual locking is too error-
prone), data layout (the program-
mer should have bit-level control
on data storage in memory), and
API adherence (compiler checks
should be automatic).

Their proposal for a new language,
Ivy, guarantees that the following
classes of errors are eliminated:
buffer overflows (via bounds
checking), dangling pointers (via
checked memory management
policies), race conditions and dead-

locks (via use of atomic sections in-
stead of explicit locking), API vio-
lations (via type qualifiers), re-
source leaks (via computation
stacks), and macro errors (via a
safer and newer preprocessor). In
conclusion, Bill pointed out the
problem of having two conflicting
goals: starting out with a safe, clean
foundation, or keeping existing
code relevant.

An audience member asked about
what linguistic features were novel
in Ivy, and why. The speaker said
that this was future work. Pra-
shanth Bungale asked why, when
previous attempts such as Cyclone
failed for this reason, we should be-
lieve that Ivy won’t end up involv-
ing enormous amounts of human
intervention. Bill replied that it is a
fundamental goal of Ivy to reduce
manual intervention as much as
possible, but it remains to be seen
how much this can be done. Jay
Lepreau said that Cyclone on
TCP/IP (which had millions of
lines of code) actually hadn’t re-
quired very much manual interven-
tion, and that perhaps what kept
Cyclone from being widely adopted
were things like resistance and in-
ertia.

Broad New OS Research: Challenges
and Opportunities

Galen Hunt, James Larus, David Tarditi,
and Ted Wobber, Microsoft Research 

Galen Hunt described his working
definition of OS research as re-
search into the base abstractions
provided for computation and into
the practical implementations of
those abstractions. 

Singularity is a research project
with the following hypothesis:
Sound verification techniques can
be combined with new OS abstrac-
tions to provide dependability,
reliability, and security (though
sometimes at the expense of perfor-
mance). It has focused on the fol-
lowing: 

Configuration and manageability:
The OS knows a lot about the hard-
ware but next to nothing about the

applications. Where’s plug ’n’ play
for software applications? 

Safe system extension: Extensions
add new value to applications from
the user’s perspective (e.g., Google
toolbar) but are unsafe. If we look
at the last few SOSP submissions,
safe OS extension has been an ac-
tive area of research. But what
about safe application extension? 

Multi-processor cores: We can ex-
pect up to 256-processor cores in
the foreseeable future, and hence
need better OS support.

The Singularity architecture in-
cludes a VMM for abstract hard-
ware (with the abstract instruction
set being type-safe, memory-safe
MSIL), closed processes (i.e., no
shared memory, no dynamic code
loading, no dynamic code-genera-
tion), and IPC channels with con-
tract guarantees.

One key feature of Singularity is
the concept of software-isolated
processes (SIPs), where each
process has its own garbage collec-
tor and its own garbage collection
domain, exclusive ownership of its
address space, and no pointers out-
side its address space (guaranteed
because of type-safety). Therefore,
to exploit this situation for perfor-
mance reasons, the entire system is
run in ring 0. According to their
IPC micro-performance results,
Singularity is an order of magni-
tude faster than hardware-protect-
ed systems, because there is no
hardware protection domain
change, and an order of magnitude
slower than an in-process proce-
dure call, because the IPC involves
a GC domain change.

Gernot Heiser asked if they also
had a new hardware model; other-
wise, how would type-safety help
device drivers? Galen responded
that their hardware model already
incorporates simple I/O ports, for
example, but it is not yet sophisti-
cated. Armando Fox was con-
cerned that while the changes re-
garding the hardware protection
domain (e.g., entire system run-

80 ; LOG I N : V O L . 3 0 , N O . 5



ning in ring 0) may only change
the performance from being “really
fast” to being “really, really fast,”
why get rid of the mechanical intel-
lect just for this reason? His con-
cern was mainly that historically,
checking through software has
been hard to get right. Jay Lepreau
pointed out that Andrew Appel
broke type-safety in secure chips.
Galen responded that if you care a
lot, you can always put the process
in a higher ring; an option can be
provided to say, “OK, I don’t trust
this code. Use a separate protection
domain.” Robert Grimm comment-
ed that using an abstract machine
as an executable platform made it
hard to predict . . . The speaker in-
terrupted him and immediately re-
sponded that everything is compiled
(no more JIT).

patch (1) Considered Harmful

Marc Fiuczynski and David Walker,
Princeton University; Robert Grimm,
New York University; Yvonne Coady,
University of Victoria

Marc Fiuczynski said that the key
lesson from his talk is that we need
better tools to improve OS evolu-
tion. The open source model is
used everywhere—embedded sys-
tems, servers, clusters, HPC—and
fosters community development.
Updates are performed through
patches, where the changes can
correspond to intraprocedural
changes (modifications to the inter-
nal logic of a function), intermod-
ule changes (changes to a func-
tion’s signature or a data structure’s
field-makeup), or behavior changes
(changes to the semantics of inter-
faces). Through examples of Linux
kernel patches containing separate
concerns, Marc showed how an ex-
tension could easily cover a hun-
dred existing kernel files, even
though it represents a logical unit
expressing a single, cross-cutting
concern. Current practice makes
OS evolution hard and dirty: Since
it is hard to understand implemen-
tation of a concern, composition of
separate concerns is very hard,
maintenance is generally hard (or

very annoying), and new concerns
bloat and dirty the mainline code
base.

Marc then presented C4, a toolkit
to improve OS evolution. The prob-
lem with the existing approach of
patch (1) is that it operates at the
lexical level. By contrast, C4 func-
tions at the semantic level so that
we can build better tools to manage
complexity and analyze interfer-
ence semantically. Their approach
is to use aspect-oriented software
development (AOSD) techniques.
C4 provides a semantic patch com-
piler through which one can ex-
press behavioral changes as seman-
tic patches using aspects, which
provide a language-supported
methodology for integrating cross-
cutting concerns with a program.
The C4 toolkit consists of an un-
weaver and a weaver, which are
analogous to diff and patch, respec-
tively. The main difference is that
the unweaver actually removes the
code belonging to an aspect from
the baseline code and the weaver
puts it back in the right place,
using knowledge of C’s abstract
syntax to avoid merge conflicts.

Their current focus is the engineer-
ing effort needed to get the weaver
and unweaver working. Future
work enabled by C4 includes pro-
gram analysis tools, identifying
data structure changes, identifying
memory safety (or lack thereof),
and capturing programmer inten-
tions via declarative frameworks.

Steven Hand commented that a lot
of the problem simply lies in really
crappy open source code. Margo
Seltzer asserted that they are still
distributing patches and asked
what they distribute exactly. Marc
responded that they distribute C4
files. Chris Small asked how they
are going to get people to use these
tools. Marc replied that whether el-
egant or not, they reduce the pain
for the user, and that is what is
going to get people to use their
tools. Kirk McKusick asked why
not use CVS. Marc responded that
even then one would have to deal

with merge conflicts. Jay Lepreau
commented that the problem is
that Linux has a pope model—
there’s only one integrator.

Panel: Do We Work Within Existing
Frameworks or Start from Scratch? 

Bill McCloskey, Galen Hunt, Marc Fi-
uczynski, Robert Grimm, Russ Cox, and
Eric Brewer

Chris Small: Mike Jones once said
to me, “When you’re on an expo-
nential path, nothing you do now
matters.” So, why waste your time
on Ivy? Why not build a better lan-
guage instead? 

Eric Brewer: Do both. We’re not
going to get the language right ei-
ther; but Ivy is extensible.

Robert Grimm: Every year, the pro-
gramming language community
publishes work and more work on
Java + delta. What if you want Java
+ delta + delta? Extensions are the
answer.

Margo Seltzer: Galen’s talk seemed
so far removed from helping the
end user.

Galen Hunt: Extensible applica-
tions would help the end user to a
great extent.

Andrew Hume: Saying “The lan-
guage we’re programming in is the
problem” is a delusion.

Galen Hunt: The language directly
affects what we think.

Andrew Hume: That’s balls.

Eric Brewer: I don’t believe any of
that.

Phil Lewis: Education—what lan-
guages do you learn? Let’s not teach
people C! Ten, twenty years from
now, the problems will go away.

John DeTreville: This is not about
languages. Back in the ’70s, people
wrote their own OS, compiler, etc.
But now it’s impossible to write
your own OS. 

Michael Scott: Regarding the panel
question, look at past examples.
Two and a half models for success:
(1) Exponential curve: Java, Perl,
HTML, etc.: there wasn’t a market

; LOGIN: O C TO B E R  2 0 0 5  CO N F E R E N C E S UM MA R I E S 81



82 ; LOG I N : V O L . 3 0 , N O . 5

for it. (2) Migration path: C++
(from C), XHTML (from HTML),
Opteron (30 years of x86). (2.5) In
between: MESA, Smalltalk, VKer-
nel, maybe Plan9. So which model
should we be looking at now? 

Galen Hunt: My answer is a defini-
tive it depends. Will I ship Singu-
larity as a product? No, we will
learn ideas.

Pei Cao: Galen’s presentation’s
problem and solution seemed total-
ly far off.

Galen Hunt: Then you young peo-
ple should go work on solving the
interesting problems.

Margo Seltzer: What lessons can
the OS community learn from each
of your projects, assuming that
you’re wildly successful? 

Robert Grimm: Languages are
very important for reliability and
security.

Galen Hunt: Sound static analysis
and verification can dramatically
impact our ability to test (9,000
testers testing Windows currently,
and you know the result).

Eric Brewer: We do want to support
legacy drivers, etc.

Galen Hunt: The OS knows noth-
ing about the application. We still
have a 1970 model of what a pro-
gram is: a.out, stdin, stdout, stderr
model.

Andrew Hume: Sometimes you just
get it right! Clarity and economy of
expression . . . Are we ever going to
have “the model” of an OS, or are
we going to continually have peri-
odic purging?

Galen Hunt: I don’t know!

D I STR I B UTI O N  

Summarized by Nikolaos Michalakis 

WiDS: An Integrated Toolkit for
Distributed System Development

Shiding Lin, Aimin Pan, and Zheng
Zhang, Microsoft Research Asia; Rui
Guo, Beijing University of Aeronautics
and Astronautics; Zhenyu Guo, Tsinghua
University

Zheng Zhang started by explaining
that today’s distributed system de-
velopment process is unscalable for
humans. Debugging is painful, and
there is code divergence between
simulation and implementation.
WiDS is designed to maintain one
code for both simulation and im-
plementation, simplify debugging
by allowing debugging in a single
address space as much as possible,
and support large-scale perfor-
mance studies of the system in de-
sign. To achieve these goals, WiDS
essentially lets programmers link
their code to different libraries ac-
cording to their needs (single-node
simulation, parallel simulation,
network execution). Verification
and debugging of protocol imple-
mentations can be done through a
model checker in simulation.

Experience with WiDS shows that
distributed system development
and deployment can be greatly sim-
plified both in building complete
systems such as BitVault, a data re-
tention system, and in the large
scale, such as the RNRP protocol
on two million nodes. Research in
progress hopes to include playback
of message logs in simulation mode
to find network-related bugs. In
terms of extending APIs, whether
to use events or threads must be a
programmability-centric decision.
Zheng’s conclusion was that dis-
tributed system and tool develop-
ment should go together.

Ion Stoica noted that in reality
there are problems due to connec-
tivity asymmetries, congestion, and
unbounded packet delivery, and
asked how many of those violations

WiDS included in their simulation.
Zheng replied that they have end-
to-end connectivity simulation and
packet drops and that the best way
to incorporate newly discovered vi-
olations is to use the model checker
and update the protocol model. An-
drew Hume asked if Zheng had
found anything not covered by the
protocol checker. He replied that
this could happen if, for example,
the protocol specification was im-
plemented incorrectly or if the
model was wrong.

Causeway: Operating System Support
for Controlling and Analyzing the
Execution of Distributed Programs

Anupam Chanda, Khaled Elmeleegy, 
and Alan Cox, Rice University; Willy
Zwaenepoel, School of Computer and
Communication Sciences, EPFL

Anupam Chanda began by sketch-
ing the execution flow of a multi-
tier program composed of a Web
and database server. Execution
steps are performed by “actors,”
such as system calls, over “chan-
nels,” such as sockets. As he noted,
it is sometimes useful to write
meta-applications to control and
analyze the execution flow of such
multi-tier programs. Meta-applica-
tions can be categorized as “log-
based” (e.g., Magpie) or “metadata
passing” (e.g., Pinpoint). Unlike
log-based approaches, metadata
passing across actors allows online
control of multi-tier programs and
is the approach chosen by Cause-
way, a framework that provides OS
support for building meta-applica-
tions. 

The framework is placed at the
level of the OS, since placing it at
either the application or middle-
ware level might lead some compo-
nents of the multi-tier program to
be oblivious to metadata passing,
might require modifications to all
applications, and, in the case of
middleware, might not support all
legacy protocols. Causeway associ-
ates metadata with an actor upon a
write on a channel and propagates



metadata when the actor at the
other end of the channel performs a
read, thus making metadata passing
follow the program flow. Causeway
invokes a meta-application through
callbacks. The authors implement-
ed a priority scheduler for a Web
server application in only 150 lines
of code, making a convincing argu-
ment for the feasibility of building
meta-applications using OS sup-
port. A concern to be addressed in
the future, however, is security and,
in particular, the illegal modifica-
tion of metadata by the running
program.

Petros Maniatis suggested that
Causeway could benefit from the
use of both metadata passing and
log-based analysis, since logs are
streams and could be mined as they
go by. Anupam didn’t find the idea
feasible, however. Doug Terry won-
dered what Causeway could do in
the OS layer that it couldn’t do in
the middleware layer. Anupam clar-
ified that by OS support he meant
modifications to the OS as well as
system libraries, but failed to an-
swer the question exactly.

Treating Bugs as Allergies: A Safe
Method for Surviving Software
Failures

Feng Qin, Joseph Tucek, and Yuanyuan
Zhou, University of Illinois, Urbana-
Champaign

Bugs are inevitable, and they lead
to system failures. Existing solu-
tions such as rebooting, check-
point-recovery, application-specific
recovery, and failure-oblivious
computing cannot recover from
deterministic bugs. Yuanyuan Zhou
offered a different approach to this
problem: Since deterministic bugs
are hard to cure, then “run away”
from them, essentially treating
them as allergies. This is achieved
by changing the execution environ-
ment on demand upon soft failures.
Essentially, the program is rolled
back after each change is applied to
the execution environment until
the bug disappears.

This method is developed by the
Rx system in a comprehensive,
safe, noninvasive, efficient, and in-
formative manner. Sensors detect
bugs before the program crashes,
and changes include padding allo-
cated memory to avoid overflows,
allocating memory in an isolated
location to protect against memory
corruption, and, in the worst case,
dropping user requests. However,
all changes respect the application’s
API. While preliminary results on
escaping deterministic bugs are
more than encouraging, there are
still several challenges for Rx, such
as committing on the program’s
output (one reply to user) and the
need for more powerful bug sen-
sors. Yuanyuan emphasized that to
be successful against deterministic
bugs it is necessary to make the
system nondeterministic.

Aaron Brown  asked how Rx han-
dles a bug that is detected after out-
put is sent to the user. Yuanyuan
said that once the output reaches
the user the problem is hard, but
before the output reaches the user,
techniques such as data mining
could help prevent this. Aaron then
asked how Rx handles concurrent
requests. The reply was that re-
quests are not serialized, but re-
plays after checkpointing are. Brett
Fleisch asked whether by “non-de-
terministic” she meant increasing
the percentage of hidden bugs com-
pared to deterministic bugs, and
she agreed. Petros Maniatis (Intel
Research) pointed out that changes
by Rx might break down program-
mers’ optimizations and asked how
Rx would cope with that and en-
sure safety without programmer
feedback. Yuanyuan’s reply was that
future work will include identify-
ing common assumptions made by
programmers and incorporating
them into Rx. Armando Fox asked
how Rx compared to failure-oblivi-
ous computing. The answer was
that Rx is more general. Dug Terry
asked how Rx prioritizes changes
to the execution environment so
that the effects are maximized. The

answer was that, when possible,
multiple changes are made simulta-
neously. Machine learning could be
of further help there. Mary Baker
asked how many rollbacks were
necessary for avoiding bugs in gen-
eral. The answer was not more than
four.

S E C U R IT Y

Summarized by Nikolaos Michalakis 

When Virtual Is Harder than Real: Se-
curity Challenges in Virtual Machine-
Based Computing Environments

Tal Garfinkel and Mendel Rosenblum,
Stanford University

Tal Garfinkel began by presenting
functional differences between vir-
tual and real (traditional) machines
to support the hypothesis that such
differences break existing security
management approaches, so we
have to rethink VM security. More
specifically, traditional machines
scale slowly and predictably while
virtual machines do so rapidly, and
traditional machines enforce homo-
geneity but virtual ones encourage
diversity. In addition, traditional
machines support stable popula-
tions, but virtual machines support
highly transient ones, and the dif-
ference is more acute since virtual
machines allow increased mobility,
making it harder to link the VM to
its owner.

The solution proposed is to move
security-related functionality out of
the guest OS and into a ubiquitous
virtualization layer. Such an ap-
proach will help decouple security
and management from the struc-
ture of the guest OS.

Margo Seltzer observed that this ar-
chitecture resembles a microkernel,
where the Trusted Computing Base
is pulled out of the VM. Tal replied
that microkernels were cool, and he
didn’t find anything wrong with
that. Edward Wobber asked
whether updating the VM state
from outside the VM could be use-
ful. The reply was that, depending
on the OS, it could be. Jay Lepreau

; LOGIN: O C TO B E R  2 0 0 5  CO N F E R E N C E S UM MA R I E S 83



followed up on Margo’s remark,
saying that there is no problem in
separating the security from the
VM. Tal added that such separation
can give more control to adminis-
trators and more flexibility to users.
Rik Farrow asked whether the se-
curity layer would look like an ad-
ditional virtual layer. Tal men-
tioned that the platform needs to be
beside the VM for security, but it is
an interesting question what the ac-
tual architecture will look like. 

Make Least Privilege a Right 
(Not a Privilege)

Maxwell Krohn, Cliff Frey, Frans
Kaashoek, and David Ziegler, MIT;
Petros Efstathopoulos, David Mazières
and Steve VanDeBogart, University of
California, Los Angeles; Michelle Os-
borne, New York University

Max Krohn said that a problem
faced today by servers is that
process boundaries do not always
align with an application’s security
goals. Alice can steal Bob’s data via
buffer overruns, trojans, SQL injec-
tion, or even bad access control
policies. Max presented a set of
such scenarios based on Alice and
Bob accessing the same Web site.

To avoid these issues, Asbestos OS
uses Mandatory Access Control
(MAC). Asbestos uses compart-
ments to track and control data
flow. Unlike other systems, com-
partments are introduced not only
by the kernel, but by applications
as well. The data tagger, which is a
small component that has no privi-
leges, tags data based on users.
When running an Asbestos Web
server, data flow is tagged; the more
the components of the applica-
tion/system are touched by data
without conflicting tags, the more a
compartment grows, independently
of the processes involved. Com-
partments are tagged upon reading
data, and the more elements that
are touched (e.g., processes, sock-
ets, virtual memory pages), the
more a compartment grows. If a
compartment that is already tagged
by user A is touched upon a read by

data from a new user B, the com-
partment is tagged anew with a
third tag, AB. This prevents data
from being written out to compart-
ments having tags A or B, thus pro-
tecting users’ data from each other.
When an operation is done, the
tags on a compartment are removed
and the components restored. The
system finally uses trusted declassi-
fiers that can act on behalf of multi-
ple users and traverse subprocess
boundaries.

Philip Levis asked how Asbestos
deals with database security. The
answer was to have user data on
different pages (serving as compart-
ments) and a trusted index server.
Jay Lepreau wanted to know how
Asbestos differs from Flask in
doing MAC in a distributed way.
The answer was that applications,
not only the kernel, can introduce
compartments. However, as Jay
noted, a trojan might contaminate a
declassifier and get access to other
users’ data. Max agreed that they
need to be careful with declassifi-
cation.

Pei Cao asked whether an attacker
could trick the process into restor-
ing a component. The answer was
that only the kernel enforces the
restore. John DeTreville asked
whether this fine-grained control 
is better. Max said, “The more fine-
grained, the better.” Alex Snoeren
asked whether a compartment tag
could be illegally changed in the
case of multi-threaded or event-
driven applications. The answer
was that once a compartment has
been labeled it cannot be accessed
by a flow of different tag. Margo
Seltzer asked what happens with
other data, such as registers. The
answer was the registers are flushed
similarly to a context switch. Peter
Druschel asked what happens if
user-specific data gets into a stack
and another user finds it. One way
to deal with this problem is to wipe
the stack out when restore is is-
sued.

Access Control in a World of Software
Diversity

Martin Abadi, University of California,
Santa Cruz; Andrew Birrell and Ted
Wobber, Microsoft Research

Andrew Birrell described the first
steps of a design for authentication
and access control as part of Mi-
crosoft’s Singularity operating sys-
tem project. In actual operating
systems the facts that principals are
bound to either users or “logged-
in” users and that ACLs are flat lists
of principals are inadequate for
making flexible access control deci-
sions.

The new design is based on three
components: the naming tree,
which records decisions the admin-
istrator or implementer has made
(e.g., when installing a program),
thus separating static policy deci-
sions from online control ones; a
compound principal mechanism;
and a pattern recognizer for access-
ing control lists. In the Singularity
design, the principal is just a string
constructed by a path in the nam-
ing tree and logical operators. Since
applications are part of principal
names, they are described in the
naming tree in the form of mani-
fests. Andrew argued that enumer-
ating principals in a control list will
not give the desired flexibility. In-
stead, given a list and a principal, it
must be determined whether the
principal string is contained in the
list string. The right approach,
therefore, is to do pattern recogni-
tion, and for that reason regular ex-
pressions are used.

Armando Fox asked whether time
expiration is included in the de-
sign. The reply was that this might
be useful but no compelling need
was found for that yet. Margo
Seltzer noted that regular expres-
sions create a disconnect between
flexibility of expression and usabili-
ty, because they are not understood
by mere mortals. Andrew replied
that the ACLs will be created most-
ly by installation programs, not hu-
mans. Removing regular expres-

84 ; LOG I N : V O L . 3 0 , N O . 5



sions does not solve the problem.
The goal is to be expressive. Mi-
chael Jones asked how reputation-
based access control could be in-
corporated. Andrew replied that he
would not like to add more com-
plexity than that of the naming
tree. Reputation makes him nerv-
ous. Michael Scott suggested that
regular expressions could be used
to find bad access control rules,
something that Andrew agreed to
look into. Alex Snoeren noted that
since semantic value is put on the
strings in the naming tree, there is 
a danger that if the tree is changed
it will hurt the system. Andrew
agreed that they better get these
names right; relative paths would
help there. Petros Maniatis asked
whether they could do combina-
tions of authentication methods in
a scalable manner. Andrew replied
that it was not possible in regular
expressions; they would need to
enhance their language.

S E N S O R  N E TS  

Summarized by Steve VanDeBogart

PRESTO: A Predictive Storage
Architecture for Sensor Networks

Peter Desnoyers, Deepak Ganesan,
Huan Li, Ming Li, and Prashant Shenoy,
University of Massachusetts

Deepak Ganesan presented the
ideas and motivation for PRESTO,
a query architecture for sensor net-
works. Desirable features include
low latency, low power utilization,
the ability to query archival data,
and the ability to formulate new
queries after events have already
occurred. PRESTO tries to provide
all these features by taking advan-
tage of the decreasing cost of stor-
age as well as suppressing commu-
nications that report no new
information.

Many events that sensor networks
are currently being used to monitor
have domain-specific models. For
instance, temperature variation is
easily predicted from time of day
and season. Based on previous data,
the PRESTO proxy can send mod-

els to the sensor nodes. The sensor
nodes can then only report events
that violate the model. The proxy
can then either send a new model
or note the violation as an aberra-
tion. This technique is more energy
efficient than a push model. It also
allows the proxy to answer queries
immediately, since the proxy is no-
tified whenever an abnormal event
occurs. If the query requires more
accuracy than the model provides,
the proxy will first examine its
cache to see if it has already re-
trieved the needed information. If
not, it will poll the relevant nodes.
This information may be available
at a lower tier in a multi-tiered net-
work, possibly sparing the energy-
scarce motes at the bottom from
answering the query directly; if 
not, the data is cached at each tier
on the way up, preventing further
direct queries of the low-level node
if the data is needed again. These
techniques provide a middle
ground between streaming out all
the data, which is energy expen-
sive, and querying nodes directly,
which is slow.

Towards a Sensor Network Architec-
ture: Lowering the Waistline

David Culler, Prabal Dutta, Cheng Tien
Ee, Rodrigo Fonseca, Jonathan Hui,
Philip Levis, Joseph Polastre, Scott
Shenker, Ion Stoica, Gilman Tolle, and
Jerry Zhao, University of California,
Berkeley

Philip Levis began by saying that
sensor network research today is a
mess. There are a lot of different
options for solving a given prob-
lem, but each solution is vertically
integrated into a complete stack 
of solutions and each component
in a stack is incompatible with any
other stack. Therefore, if you want
to use modules from more than one
stack you have to build a totally
new stack that integrates the com-
ponents you need. This lack of ca-
pability is a limiting factor to the
advancement of sensor networks.

This wasn’t a problem for the Inter-
net because there was a well-defined

protocol, IP, midway through the
network stack that allowed work 
to proceed in parallel above and
below that point. Can we just use
IP in sensor networks? No, it isn’t
appropriate, but we should develop
something for sensor networks that
serves the same purpose that IP
does for the Internet.

Philip went on to argue that SP, the
Sensor Protocol, should be a single-
hop protocol that provides a richer
interface than just send and re-
ceive. It should not specify the 
wire protocol, because the underly-
ing link layer varies too much. It
should work both for address-free
protocols, such as flooding and tree
collection, and for name-based pro-
tocols. There should be an interface
for the layers above to specify a for-
warding predicate. Furthermore, it
is important that it provide inter-
faces for things that have to cross
layers, such as power management,
timing, and security.

Petros Maniatis asked if SP will
help in the wild or if it’s an academ-
ic exercise. Philip responded that it
will take place in both domains. In
an academic sense SP will help us
understand things at a deep level,
but at the same time it will facilitate
real code. Additionally, because
sensor networks still exist in an
isolated administrative domain, we
may be able to iterate the design,
unlike IP.

Breakout Sessions
Summarized by Rik Farrow

During the last portion of the
HotOS workshop, the attendees
split into groups that had been
arranged by Margo Seltzer. The
assignment for each group was to
design and present a paper on a
particular topic in one hour. As it
turned out, all papers that included
a PowerPoint presentation were ac-
cepted, and the one group that
failed to reach that point had its
topic rejected. 

Completed papers will become part
of the HotOS 2005 proceedings.

; LOGIN: O C TO B E R  2 0 0 5  CO N F E R E N C E S UM MA R I E S 85


