
musings
R I K F A R R O W

musings
Rik Farrow provides UNIX and Internet security con-
sulting and training. He is the author of UNIX System
Security and System Administrator’s Guide to System V,
and editor of the SAGE Short Topics in System
Administration series.

rik@spirit.com

Corruption. The very thought sends shivers
up and down my spine. And that is the goal
of those who would break into your systems,
so they can “own” them. They want to take
control of your systems, preferably in a
manner that is difficult to detect. Out of
this desire came rootkits: corruption made
simple.

I got my first rootkit from a friend at a university, my
source for lots of examples of stuff left behind on com-
promised systems (nice, delicate term for being
hacked). That rootkit was one of the first written, and
contained trojans for SunOS 4. In the README file,
the author of the rootkit had written (approximately),
“I got tired of doing the same things over and over
again, so I packaged them up.” The rootkit contained
trojans designed to hide the presence of certain files,
processes, network connections, and a network sniffer.
If you remember what networks and network proto-
cols were like in 1993, you’ll understand why this snif-
fer worked very well at collecting usernames and pass-
words.

Over the years, people added features to rootkits, such
as the ability to edit logfiles or, better yet, prevent cer-
tain log entries from being appended to logfiles by tro-
janing the syslog daemon. New commands were added
to the list of trojans. But the worst was yet to come.

The problem with command-level trojans is that it is
relatively easy to detect them. Tools like Tripwire were
written specifically with this in mind, as installation of
trojans and other malware became commonplace.
Most trojans rely on access to source code, and that
leads to trojans for closed source systems being based
upon open source software. If someone used the BSD
source to ls, for example, the flags and behavior would
not be the same as they would be for AIX or HP/UX.
Close, but not exact. And systems like Solaris don’t
have just one version of ls, but several.

Going Deep

The solution, from the perspective of an attacker, was
to move the rootkit deeper. If the rootkit runs at the
kernel level, then nothing can be trusted. All software,
whether on UNIX, Windows, Linux, or *BSD, relies on
the kernel for all access to resources such as files, sock-
ets, memory, and new processes. The system call inter-
face provides this access. In UNIX-like systems, the
system call interface provides a couple of hundred
entry points for doing things like listing directories,
files, programs, sockets, and active processes (189 in

; LO G I N : A P R I L 2 0 0 5 M U S I N G S 11

12 ; L O G I N : V O L . 3 0 , N O . 2

OpenBSD 3.4, 315 in Linux 2.6). In Windows NT and its descendants, the num-
ber of entry points is more than 2000, but the concept is the same. In either
case, if the attacker can insert code into the kernel, that attacker has the deepest
level of control over a system.

The obvious way to insert code is to modify the kernel source directly. But there
is a problem with that approach, in that a system must be rebooted before the
changes take effect, and rebooting a UNIX-like system is rare enough that it
would be noticed (in most cases). But there is also an obvious solution—use a
method that permits patching the operating system without rebooting.

You have certainly heard of loadable kernel module (LKM) rootkits. LKMs per-
mit sysadmins to install software in an operating system without rebooting it, or
to configure a kernel at boot time without having all possible devices already
linked into the kernel. While LKMs are convenient for sysadmins, they are just
as convenient for any attacker who has acquired root access and wants to install
the best in rootkit technology.

And Deeper

Over time, even LKM rootkit technology has improved. Early versions worked
by replacing function addresses in the system call table with their own entry
points. The original system call function still gets called, but the results of the
system call get filtered to hide whatever the rootkit designer wants to hide. Ini-
tially, this was pretty much the same stuff that was done in the original, SunOS,
command-level rootkit. But then it started to change.

One creative use of kernel-level rootkitting was file redirection. If you ran an
integrity-checking tool like Tripwire (or anything that read a file), you would
get the original version of the file. But if that file contains a program, when a
request was made to execute it, a different program got run instead.

LKM rootkits can perform privilege elevation. In many of the rootkits around
today (e.g., adore, adore-ng, all-root, kbdv3, rkit, shtroj2, and synapsys), the
rootkit installer can either get a root shell or run a program as root by using
whatever key the rootkit requires. In adore-ng, echoing the adore key to /proc
elevates the privilege and capabilities of the shell to root without restrictions.
This beats the pants off the old, SunOS rootkit technique of using back doors in
SUID files like chsh and passwd. Adore-ng also prevents log records of hidden
processes from being written.

Even the methods used to hide things have changed. Adore-ng, instead of hook-
ing system calls, actually hooks into the Virtual File System (VFS) interface to
perform its deeds. This works because both files and processes get listed via the
VFS in Linux and some other operating systems (adore-ng works only on
Linux). You can read Phrack (http://www.phrack.org/phrack/58/p58-0x06) if
you want to learn how this is done.

Adore-ng also offers a new technique for hiding its own presence. The adore-
ng.o file can be linked with an existing kernel module, so that when that module
gets loaded at boot time, so will adore-ng. This makes adore-ng much more diffi-
cult to detect, and quite neatly solves the problem for the attacker of how to
reload it after the next reboot. For details, you can check out Phrack again
(http://www.phrack.org/phrack/61/p61-0x0a_Infecting_Loadable_Kernel_
Modules.txt). It turns out neither to be difficult nor difficult to understand, and
relies on a documented feature of ld plus a little symbol name manipulation.

By moving the hooks into a deeper level of the file system, tools that monitor the
system call table for changes will miss the installation of rootkits like adore-ng. I
did uncover a paper by Kruegel, Robertson, and Vigna (http://www.cs.ucsb.edu/

; LO G I N : A P R I L 2 0 0 5 M U S I N G S 13

~vigna/pub/2004_kruegel_robertson_vigna_ACSAC04.pdf) that performs
binary analysis of LKMs and detects rootkits by checking for the memory they
seek to modify. Most LKMs stick to the regions of memory that a device driver
would need to modify in order for initialization to succeed, but not rootkits,
which stray to regions only miscreants would go. Certainly an interesting
approach.

Another “interesting approach” comes in the form of SUCKIT, a kernel-level
rootkit that does not rely on using LKM hooks. This charmingly named rootkit
does its work by reading and writing directly to /dev/kmem. Unlike the LKM
approach, which relies on being able to locate the kernel symbol tables, this
rootkit searches through kernel memory looking for the pattern of bytes typi-
cally found within the soft interrupt handler, the entry point to the kernel and
the system call table. The soft interrupt handler address can be gleaned from a
single Intel assembler instruction, sidt %0, and then the code searches for the
offset to the actual call to the system call table. You can read about this in Phrack
too: http://www.phrack.org/show.php?p=58&a=7.

So, even if you compile a kernel without LKM support, someone can still patch
your kernel. As I read the Phrack article about this technique, I shuddered
again. While getting your system rootkitted is bad, SUCKIT (like LKM rootkits)
might just abort your kernel if it doesn’t work perfectly.

The authors of SUCKIT suggest modifying your kernel so that writes to
/dev/kmem are prohibited, even to root. This will stop this rootkit, without
stopping you from tuning your kernel using the /proc interface. They even
suggest a one-line patch to mem.c that will do this. Some solution.

But what about stopping LKM rootkits? I mentioned earlier that there were
three ways of rootkitting kernels. The third way I was alluding to works with
Windows and involves installing a device driver (for information, see
http://www.rootkit.com). Microsoft certainly deserves a lot of the bad marks it
gets for security, but you may have noticed that Microsoft not only supports but
encourages the use of signed device drivers. If a device driver has been signed,
you know it has not been modified to include a rootkit and (relying on the
signer of the device driver) is not a rootkit. I will confess to being less than cur-
rent as a Windows sysadmin, but there was a time when someone who could
administer printers could also install device drivers. And I do know that the
default on XP is to make the first (and often the only) user a member of the
Administrator group.

I wondered if LKM signing had been accomplished in the Linux world and
found a “discussion” (a polite term for it) on an archive of the Linux-kernel
mailing list. It seems that most of those involved are not interested in adding
more bloat to the Linux kernel (I certainly understand that concern) by adding
support for checking the signatures of LKMs before loading them. David Howell
even posted patches that support checking GPG signatures of kernel modules
(http://people.redhat.com/~dhowells/modsign/), but his solution appeared over-
whelmed by opposition. Perhaps RedHat will decide to do this on their own for
their commercial Linux version.

Proper use of LKM signing implies that any time you build kernel modules, you
copy them to another system, sign them, and copy them back to the system
where they will be used. As long as the signing system cannot be compromised,
the signature checking mechanism will guarantee that only signed, unmodified
modules get loaded into your kernel. RedHat could certainly offer signed LKMs
with their distros, and those that build their own kernels could include the
mechanism and the public key, in the kernels they build. Combined with dis-
abling writing to /dev/kmem, LKM signing would appear to block an entire class
of popular attacks. And it might even provide a use for the TCPA chip, in that it
could hold the public key and be involved in signature checking.

14 ; L O G I N : V O L . 3 0 , N O . 2

I do want to add a note that FreeBSD kernels after 4.0 have the securelevel flag,
which, when set to one or two, prevents kernel modules from being loaded. A
positive securelevel also blocks writing to kernel memory (goodbye SUCKIT).
Evil kernel modules could still be placed in a directory where they would be
automatically loaded during the next reboot.

The history of computer (in)security has been one of attacks, defenses, and new
attacks designed to counter those defenses. Signing LKMs could be just another
failed defense. But some form of kernel defense does appear to be justified.

Anything beats corruption.

SAVE THE DATE!
NSDI ’05: 2nd Symposium on Networked

Systems Design and Implementation
May 2–4, 2005, Boston, MA
http://www.usenix.org/nsdi05

The NSDI symposium focuses on the design principles of large-scale networks and dis-
tributed systems. Join researchers from across the networking and systems community—
including computer networking, distributed systems, and operating systems—in fostering
cross-disciplinary approaches and addressing shared research challenges.

