
THE MAGAZINE OF USENIX & SAGE
August 2003 • volume 28 • number 4

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
CONFERENCE REPORTS

HotOS-IX

HotOS-IX
MAY 18–21, 2003
LIHUE, HAWAII
[This is a somewhat abbreviated set of
summaries of the events at this conference.
A complete set of summaries is available
at http://www.usenix.org/events/
hotos03/. Ed.]

INVITED TALK

Summarized by David Oppenheimer

OPERATING SYSTEMS: SHOULDN’T THEY BE

BETTER?

Andrew Hume, AT&T Labs–Research

Andrew Hume gave the HotOS keynote
talk, explaining that his perspective
comes from having designed, imple-
mented, and delivered large-data appli-
cations for more than 10 years. The
problems he discussed in the talk were
that operating systems have gone “from
a help to a hindrance,” that even users’
lowered expectations for operating sys-
tems have not been met, and that as a
result, applications have to be designed
around OS quirks. Hume pointed out
that this situation hasn’t always been the
case, citing WORM-based backup sys-
tems in research versions of UNIX and a
cluster-based billing system that AT&T
built using Plan 9 as examples of systems
that were highly reliable, even under
load.

The first problematic system Hume
described was Gecko, a large-scale
(250GB/day) billing system imple-
mented in 1996 on Solaris 2.6. AT&T
required 1GB/sec. of file-system
throughput and predictable use of
memory. Among the problems encoun-
tered were: Solaris crashed every few
days for the first six months that the sys-
tem was in production; Solaris limited
file throughput to about 600MB/sec.;
reading large files sequentially crashed
the VM; and a “VM roller coaster” devel-
oped when a large chunk of memory
was allocated (causing a repetitive page-
out, page-in cycle of all the system’s
physical memory, rather than just pag-

70 Vol. 28, No. 4 ;login:

ing out the amount of new memory
needed).

The second problematic system Hume
described was a replacement for Gecko
that required six times the capacity of
the original Gecko. This system was
implemented on a cluster running
Linux. The architecture was a “Swiss
canton” model of loosely affiliated
independent nodes with a single locus of
control, data replication among nodes,
and a single error path so that software
could only halt by crashing (there was
no explicit shutdown operation). Hume
described eight problems the Gecko
implementers experienced with Linux
(versions 4.18 through 4.20), including
Linux’s forcing all I/O through a file-sys-
tem buffer cache with highly unpre-
dictable performance scaling (30MB/sec.
to write to one file system at a time,
2MB/sec. to write to two at a time), gen-
eral I/O flakiness (1–5% of the time cor-
rupting data read into gzip), TCP/IP
networking that was slow and that
behaved poorly under overload, lack of a
good file system, nodes that didn’t sur-
vive two reboots, and slow operation of
some I/O utilities such as df. In general,
Hume said he has concluded that “Linux
is good if you want to run Apache or
compile the kernel. Every other applica-
tion is suspect.”

Hume proposed the following definition
of OS reliability: “[The OS] does what
you ask, or it fails within a modest
bounded time.” He noted that FreeBSD
has comparable functionality to Linux,
better performance, and higher reliabil-
ity, and he speculated that this might
stem from BSD’s (and other “clean, lean,
effective systems”) having been built
using “a small set of principles exten-
sively used, and a sense of taste of what
is good practice, clearly articulated by a
small team of mature, experienced peo-
ple.” Hume took Linux to task for not
demonstrating these characteristics, in
particular for being too bloated in terms
of features, and for having been devel-
oped by too large a team. Further, he

singled out the Carrier Grade Linux
effort for special condemnation for
“addressing zero of the [types of] prob-
lems” he has had.

SESSION: THE EMPEROR’S CLOTHES

Summarized by Matt Welsh

HIGH AVAILABILITY, SCALABLE STORAGE,

DYNAMIC PEER NETWORKS: PICK TWO

Charles Blake and Rodrigo Rodrigues,
MIT Laboratory for Computer Science

Charles Blake spoke on the overheads of
“maintenance bandwidth” – network
bandwidth consumed to maintain a
given level of replication or redundancy
– in a peer-to-peer storage system. The
basic argument is that maintenance
bandwidth across the WAN, not the
aggregate local disk space, is the funda-
mental limit to scalability in these sys-
tems. Given the dynamics of nodes
joining and leaving the system, Charles
presented a conservative estimate of the
maintenance bandwidth that scales with
the WAN bandwidth and average life-
time of nodes in the system. Under a
typical scenario (100 million cable
modems with a certain bandwidth avail-
able for replication, one week average
lifetime, and 100GB storage per node),
only 500MB of space per node is usable,
only 0.5% of the total.

To try to address these problems,
Charles looked at alternatives such as
admission control (only admitting “reli-
able” nodes) or incentivizing nodes to
have long lifetimes. It turns out that a
small core of reliable nodes (such as a
few hundred universities with a single
reliable machine dedicated to hosting
data) yields as much maintenance band-
width reduction as millions of home
users with flaky connections. The talk
concluded with a number of open issues
in organizing WAN-based storage sys-
tems, such as whether it is appropriate to
assume millions of flaky users and
whether the requirement of aggregate
data availability should be reconsidered.

http://www.usenix.org/events/

ONE HOP LOOKUPS FOR PEER-TO-PEER

OVERLAYS

Anjali Gupta, Barbara Liskov, Rodrigo
Rodrigues, MIT Laboratory for
Computer Science

Anjali Gupta presented a talk on the use
of one-hop lookups in peer-to-peer sys-
tems, avoiding the high latency associ-
ated with the typical log (N) lookup
paths required by most systems. The
challenge is keeping up with member-
ship change information on all hosts.
For example, the UW Gnutella study in
2002 showed an average node session
time of 2.9 hours, implying 20 member-
ship changes per second in a system with
100,000 hosts. Anjali presented a hierar-
chical scheme, in which the address
space (forming a ring) is subdivided into
slices, each with a slice leader that is the
successor to the midpoint in the slice.
Slices are further subdivided into units.

The basic approach is for nodes to
exchange frequent keep-alive messages
with their predecessor and successor
nodes. A change to a node’s successor is
an event that is propagated by piggy-
backing a recent event log onto keep-
alive messages. A node change event is
relayed to the slice leader, which periodi-
cally (every 30 seconds) notifies other
slices of the updates. Internally to a slice,
slice leaders periodically (every 5 sec-
onds) notify unit leaders of node change
information. Given some reasonable
assumptions on the size of the system,
all nodes can be updated within 45 sec-
onds of a node leaving or joining the
system, which permits a 99% “hit rate”
for an address lookup. In this scheme, it
is important to choose good slice leaders
that are well-provisioned. Anjali con-
cluded with a summary of ongoing
implementation and experimentation
work, noting that systems larger than a
million nodes will require two-hop
lookups.

71August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SAN ANALYSIS OF COMPARE-BY-HASH

Val Henson, Sun Microsystems

Val Henson presented one of the most
controversial papers of the conference,
admonishing those systems that rely
upon comparison of data by comparing
cryptographic hashes of the data. Many
systems (such as rsync, Venti, Pastiche,
LBFS, and OpenCM) use this technique,
but it is not yet widely accepted by OS
researchers, due to little characterization
of the technique and many unanswered
questions. The risk of collision using
(say) a 160-bit SHA-1 hash is just 2-160,
which is far lower than a hardware fail-
ure or probability of an undetected TCP
error. So why the controversy?

First, these techniques assume that data
is random, but real data is not random
and has a fair amount of commonalities
(think about ELF headers and English
text). Second, cryptographic hashes were
designed for authentication and care
about “meaningful” collisions, such as
two contracts with the same text but dif-
ferent dollar amounts that happen to
collide in the hash space. Third, hash
algorithms are short-lived, and obsoles-
cence is inevitable – systems need an
upgrade strategy. Finally, collisions are
deterministic – two blocks that collide
always collide – rather than a transient
error such as a hardware fault. Hash col-
lision is therefore a silent error in those
systems that rely on compare-by-hash
techniques. Val claims that we should be
striving for correctness in systems soft-
ware, not introducing “known bugs.” It
is OK to rely on compare-by-hash when
the address space is not shared by
untrusted parties, and when the user
knows and expects the possibility of
incorrect behavior — citing rsync as an
example. Note that “double hashing” is
not an acceptable solution, as this results
in just another hash function, albeit one
with a lower collision probability.

Some alternatives to compare-by-hash
were discussed, such as content-based
addressing that checks for collisions,
using compression, maintaining state to

only send or store identical blocks once
(as in LBFS), sending diffs instead of an
entire block, or using universal IDs for
common blocks.

WHY EVENTS ARE A BAD IDEA (FOR HIGH-

CONCURRENCY SERVERS)

Rob von Behren, Jeremy Condit, Eric
Brewer, University of California,
Berkeley

Rob von Behren raised the argument of
thread-based versus event-driven con-
currency in high-concurrency servers,
claiming that thread-based approaches
are far better, due to their ease of pro-
gramming. To counter the arguments
that threaded systems have inherently
higher overhead than events, Rob pre-
sented early results from a lightweight
user-level thread system that performed
as well as an event-driven system on a
Web server benchmark. Furthermore,
threads have better programming and
debugging tools, leading to increased
productivity. To address the problem of
high overhead for per-thread stacks, Rob
proposed the use of compiler support to
automatically compress stacks, for
example, by moving “dead” elements off
the stack across a blocking operation.
Using cooperative scheduling avoids the
overhead of generic thread synchroniza-
tion, but there are some issues to address
here such as fairness, the use of multi-
processors, and how to handle sponta-
neous blocking events such as page
faults.

Rob pointed out that events have the
advantage of permitting very complex
control flow structures, but very few
programmers use these structures and
threads can capture the vast majority of
scenarios. Another problem with thread
schedulers is that they are “generic” and
have little knowledge of application
structure. To permit greater cache local-
ity, Rob proposed “2D” batch schedul-
ing, in which the compiler annotates the
application code to indicate to the
scheduler system where the various
stages of the thread’s execution are
located.

HOTOS-IX �

Rob presented some measurements of a
simple Web server benchmark based on
his user-level threads package, capable of
supporting over 100,000 threads, imple-
mented in about 5000 lines of C code.
The server outperforms a Java-based
event-driven Web server, probably due
to the large number of context switches
in the event-driven system. Rob con-
cluded that it may be possible to achieve
higher performance using threads than
events, in part because events require
dynamic dispatch through function
pointers that makes it difficult to per-
form inlining and branch prediction.

PANEL DISCUSSION

Charles Blake kicked it off by asking why
Val Henson’s birthday paradox probabil-
ity was so hard to compute. She respon-
ded that essentially it comes down to the
infinitesimal numbers involved.

Eric Brewer pointed out that systems
should use CRC, not MD5; since CRC is
no good for preventing malicious colli-
sions, there is no illusion that it is. One
should also use a random salt with the
checksum, which should help with the
non-randomness of real data. Val
responded that if you have to recompute
the checksum across the actual data,
then you are losing the benefits of this
technique.

George Candea raised the point that
although a P2P client that prevents a
user from disconnecting appears less
desirable at first, it would lead to higher
availability for the service as a whole.
This makes the service more valuable,
and hence provides greater incentive to
use it (i.e., download the client).

Ethan Miller asked whether people are
really comfortable with the concept of
probabilistic storage. Val agreed that the
notion of dynamic, unreliable storage
systems makes her uncomfortable.

Ranjita Bhagwan pointed out that
Charles’s calculations don’t push P2P
out of the picture, asking whether there
may be a cost benefit to a peer-to-peer

72 Vol. 28, No. 4 ;login:

approach versus a centralized approach.
Charles said that fundamentally his
argument was economic, concerning the
bandwidth versus storage requirements
for these systems. Andrew Hume said
that the best nodes are professionally
managed and that high-bandwidth con-
nections and support are expensive, so
the economics of the two approaches are
more similar than they are different.

Mohan Rajagopalan said that compiler
optimizations actually perform very well
for event-based systems, and that imple-
mentation is really what matters. Event-
based systems permit a decoupling
between caller and callee, so it is easier
to write an event-based “adaptive” pro-
gram than a threadbased one. Isn’t this a
fundamental benefit? Rob responded
that events do make it easier to perform
composition and interpositioning, but
that this can also be done in the thread
model. Eric mentioned that Click is very
configurable and runs as a single large
thread.

Peter Druschel was skeptical that we can
do P2P storage based on home-con-
nected desktops, but that the alternative
is not centralized systems. For example,
one can reap the benefits of unused
desktop systems within a large organiza-
tion. Charles did not disagree with that.

This was followed by an exchange
between Peter and Rodrigo Rodrigues
about using so-called “scalable lookup”
vs. some other organization for P2P file
storage. Basically, Rodrigo pointed out
that in a scenario where the individual
nodes are very available/reliable and the
network isn’t giant, there is no need for
scalable lookup and other considera-
tions should take priority. Peter
responded that having a large number of
nodes and security implied the need for
small lookup-state optimizations.

SESSION: POPPING & PUSHING

THE STACK

Summarized by Ranjita Bhagwan

TCP OFFLOAD IS A DUMB IDEA WHOSE

TIME HAS COME

Jeffrey C. Mogul, Hewlett Packard
Laboratories

TCP offload in the traditional sense vio-
lates performance requirements, has
practical deployment issues, and targets
the wrong applications. TCP Offload
Engines (TOEs) impose complex inter-
faces and cause suboptimal buffer
management. Moreover, lots of small
connections overwhelm savings because
of connection management. Event man-
agement is a problem. Lots of virtual
resources need to be managed. Also, one
of the main motivations for TOE has
been that TCP implementation in the
OS is bad.

However, it is no longer a dumb idea,
because now we are offloading higher-
level protocols onto hardware. The justi-
fication for offloading TCP is simply
that you can’t offload the higher-level
protocols without also offloading TCP.
The sweet spot for TCP offload is when
the application uses very high band-
width and has relatively low end-to-end
latency, long connection durations, and
relatively few connections (e.g., storage
server access and graphics). Also, several
economic trends favor TCP offload.
One would like to replace special-pur-
pose hardware with cheap commodity
parts, such as 1- or 10-gig Ethernet. This
helps because with these in place, opera-
tors have only one kind of fabric to pro-
vision, connect, and manage. Still, many
challenges remain. Data copy costs still
dominate, and busses are too slow. Zero
copy and single copy seem too hard to
adopt in commercial OSes. However,
with the advent of RDMA, vendors want
to ship RNICs in volume, allowing one
kind of chip for all applications. It
would mean cheaper hardware. There
are also several upper-level protocols
available, such as NFSv4 and DAFS. Still,
many problems of TCP offload remain:

There are security concerns, and so far
the benefits have been elusive. The new
networking model may require changes
to traditional OS APIs. Systems people
need to give this due consideration.

TCP MEETS MOBILE CODE

Parveen Patel, Jay Lepreau, University
of Utah; David Wetherall, Andrew
Whitaker, University of Washington

The authors address the problem of
deployment of transport protocols by
proposing an extensible transport layer,
called XTCP. The main argument is that
transport protocols, such as TCP, need a
self-upgrade mechanism, and untrusted
mobile code can help build such a
mechanism. Several modifications to
TCP, as well as alternative transport pro-
tocols, have been proposed. However, as
with any new protocol, deployment is an
issue. Currently, it takes many years
before a new protocol or an extension
can be used by applications: A new pro-
tocol or extension has to be approved by
standards committees, implemented by
OS vendors, and finally enabled-by-
default at both ends of communication.

In the proposed solution, untrusted
peers can upgrade each other with new
transport protocols using mobile code.
A typical usage scenario is that of a Web
server. A Web server can download a
high-performance version of TCP, after
which it tells every client to download
the same version from it. Then the client
and the server can speak the upgraded
version of TCP. This solution avoids all
the steps of the deployment process that
need approval and support from third
parties, such as standards committees
and OS vendors.

There are several challenges to building
such an extensible layer, notably host
and network safety. The presenter con-
trasted XTCP with “active networking”
and argued that the domain of transport
protocols is restricted enough that host
and network safety challenges can be
met without degrading performance.

73August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SHost safety is assured by providing

memory protection and resource con-
trol. Memory protection is achieved by
using Cyclone, a typesafe C-like lan-
guage. The stylized memory-usage pat-
tern of TCP extensions – no shared state
between extensions and predictable
ownership of data buffers – makes
resource control possible using tradi-
tional runtime methods. XTCP uses the
well-understood notion of TCP-friendli-
ness as a measure of network safety. All
extensions written using the XTCP
framework are forced to conform to
TCP-friendliness using the ECN nonce
mechanism. In contrast, active network-
ing had no such well-defined notion of
network safety, and host safety in the
face of arbitrary code was costly.

XTCP has been implemented in
FreeBSD 4.7. Support for user-level
transports is being developed currently.

EXPLOITING THE SYNERGY BETWEEN PEER-

TO-PEER AND MOBILE AD HOC NETWORKS

Y. Charlie Hu, Saumitra M. Das,
Himabindu Pucha, Purdue University

There appear to be a number of similari-
ties in the problems addressed by
research in peer-to-peer and mobile ad
hoc networking. One such area is that of
routing. The speaker showed the simi-
larity between the problems solved by
Pastry and how it can be used in ad hoc
networking, too. He described a new
protocol, DPSR, which stores routing
state in a manner similar to Pastry. This
reduces routing state per node from
O(N) to O(log N). DPSR uses node ID
assignment, node state, routing, node
join procedures, and node failure or out
of reach in much the same manner as
Pastry; inherits all DSR optimizations
on source routes; and contains a number
of additional optimizations related to
Pastry’s routing structures and opera-
tions.

Simulations of DPSR for a 50-node sys-
tem show that the routing overhead of
DPSR scales better than that of DSR. In
short, DPSR outperforms DSR when the

number of connections per source is
greater than 1; performance is otherwise
equivalent.

PANEL DISCUSSION

Bogdan Popescu asked Parveen Patel if
you could use a signing mechanism to
detect unresponsive connections. Par-
veen said that the nice thing about
XTCP is that it works well without it.
Bogdan said that then you could have
DoS attacks.

Rob von Behren said that it would be
very easy to do DoS on XTCP, such as
mallocing large amounts of memory,
using a lot of CPU time, etc. Parveen
said that each malloc call is accounted
for. Rob responded that there is the
problem of DDoS. With a considerable
number of nodes using a little too much
memory, one could perform a DDoS
attack. Parveen said that this is possible
and the only way to avoid it is strict
admission control.

Jeff Mogul said that you have to make
sure that XTCP itself is not subvertible.
Because if it is, then it is a very rich envi-
ronment for spreading worms.

Peter Steenkiste said that in the early
’90s, after six months of effort, he had
decided that TCP offloading is no good.
In general, enthusiasm for TCP offload
seems lukewarm. He asked Jeff if it
would take off. Jeff responded that he
does believe that it will take off, mainly
for commercial reasons. Having only
one fabric to manage for data centers
seems good. Peter said that there appears
to be a contradiction: Earlier on, we
wanted to move things to the software
level, and now attempts are being made
to move them to the hardware. Jeff said
that switches are clearly a larger invest-
ment than NICs. So commoditizing the
NICs would be good.

Geoff Voelker asked Charlie Hu about
how much the benefits of his approach
depended on the amount of shared
source routes. Did he have a sense of the
minimum degree of shared source

HOTOS-IX �

routes needed for DPSR to work? Char-
lie answered that so far, the sharing was
small, but even in this scenario, DPSR
does no worse than DSR. So it seems like
a total gain over DSR.

SESSION: DISTRIBUTED SYSTEMS

Summarized by Amit Purohit

SCHEDULING AND SIMULATION: HOW TO

UPGRADE DISTRIBUTED SYSTEMS

Sameer Ajmani, Barbara Liskov, MIT
Laboratory for Computer Science;
Liuba Shrira, Brandeis University

Sameer Ajmani presented a solution to
upgrade distributed software automati-
cally with minimal service disruption.
He described a technique that uses a
combination of centralized and distrib-
uted components. The infrastructure
consists of three main components:
scheduling functions tell the node when
to upgrade; simulation objects enable
communication among nodes running
different versions; and transform func-
tions change a node’s persistent state
from one version to a higher one.

DEVELOPMENT TOOLS FOR DISTRIBUTED

APPLICATIONS

Mukesh Agrawal, Srinivasan Seshan,
Carnegie Mellon University

Mukesh Agrawal explained the motiva-
tion for his current research. He claimed
that the lack of distributed applications
is because of implementation difficul-
ties. He identified routing table upgrades
for distributed applications as one of the
harder problems. He mentioned the ns-2
simulator as a tool that helps to compare
design choices. And DHT is developing
building blocks to help implement dis-
tributed systems. Then he pointed out
some inherent flaws in the current
approaches. Research mainly concen-
trates on the initial stages of the life-
cycle of the applications, while his work
mainly addresses the issues with later
life-cycle stages.

74 Vol. 28, No. 4 ;login:

VIRTUAL APPLIANCES IN THE COLLECTIVE: A

ROAD TO HASSLE-FREE COMPUTING

Constantine Sapuntzakis and Monica S.
Lam, Stanford University

Constantine Sapuntzakis envisioned a
computing utility that runs not only
Internet services but highly interactive
applications commonly run on desktop
computers. On desktops, patches arrive
frequently and there is much multiple-
application sharing of such things as
OSes and libraries; hence, application
upgrades can disrupt other applications.
Constantine argued that it is possible to
borrow an idea from “network con-
nected computer appliances” to improve
the manageability and usability of com-
puters. In the architecture of their
framework, groups of virtual appliances
are maintained by makers without user
involvement. Cheaper hardware made
virtualization an attractive option.

POST: A SECURE, RESILIENT, COOPERATIVE

MESSAGING SYSTEM

Alan Mislove, Ansley Post, Charles Reis,
Paul Willmann, Peter Druschel, and
Dan S. Wallach, Rice University; Xavier
Bonnaire, Pierre Sens, Jean-Michel
Busca, and Luciana Arantes-Bezerra,
Université Paris VI

A P2P solution was presented that inter-
operates seamlessly with a wide range of
collaborative services by providing one
serverless platform. It provides three
basic services to applications: secure sin-
gle-copy message storage; event notifica-
tion; and single-writer logs that allow
applications to maintain metadata. The
claim was made that these features are
sufficient to support a variety of collab-
orative applications.

PANEL DISCUSSION

Mike Swift asked Constantine Sapuntza-
kis about the cost of complex virtual
appliances. He also noted that device
drivers talk to hardware, hence couldn’t
be virtualized, and can crash if they are
buggy. Constantine said future device
drivers could be written in user-land
and the problem could be solved. But if

the application crashes, not much can be
done.

Eric Brewer stated the view that the hard
part is sharing information: Having sep-
arate virtual appliances for everything
only works if they don’t share any infor-
mation, which means that the user must
replicate all “shared” information by
hand (as we do now with real appli-
ances, e.g., setting the clock). The path
of safe sharing leads you to shared seg-
ments as in Multics, including layers
(rings) and call gates for protected calls
into shared resources. The author
replied that Multics has some problems
and that they are planning to address
them as well.

OUTRAGEOUS OPINIONS SESSION

Summarized by David Oppenheimer
and Matt Welsh

In classic HotOS tradition, the Outra-
geous Opinions session consisted of a
stream of short presentations, some seri-
ous, some mundane, some hilarious.

Val Henson argued against the use of
checksums at all levels in a storage sys-
tem versus end-to-end checksums at the
application. Andrew Hume countered
that it’s good to have accountability at
each level when something goes wrong
in the system.

Matt Welsh presented “a brief history of
computing systems research,” in which
he urged computer scientists to think
about how their research can help to
address social problems. He pointed out
that computer scientists have always
worked on improving life for computer
scientists, focusing on improving their
own day-to-day tasks. He suggested that
computer scientists should think more
about social problems rather than “How
can I download porn and pirate music
more efficiently?” In particular, he cited
education and health care, particularly
outside of the United States and Europe,
as social problems that computer scien-
tists could help tackle – for example,
by empowering local government and

remote communities. Specific technolo-
gies he cited were peer-to-peer wireless
networks for emergency and disaster
response systems; censorship-proof elec-
tronic publishing of dissenting political
opinions; sensor networks for environ-
mental monitoring, precision agricul-
ture, and inexpensive medical diag-
nostics; highly reliable power environ-
ments; and maintenance-free PCs.

Mendel Rosenblum talked about the
similarities between micro-kernels and
virtual machine monitors (VMMs) for
running multiple untrusted environ-
ments on top of an operating system.
Both provide isolation, resource man-
agement, and a small operating environ-
ment with simple interfaces, leading to
high assurance. The key difference is
what runs on top of each – for a VMM
you don’t need to port applications to
run on it, whereas for a micro-kernel
you do. He pointed out that despite this
advantage for VMMs, academics and
industry researchers are often interested
in micro-kernels because, by not lever-
aging existing software, micro-kernels
provide academics an opportunity to
write lots of papers and industry an
opportunity to define APIs, leading to
an industry control point.

Mike Chen presented “two easy tech-
niques to improve MTTR”: redirect
users’ attention to what’s still available
when something becomes unavailable
(e.g., “Please read this new privacy pol-
icy”), and blame it on the user (e.g.,
“Did you forget your password? Please
try again.”). He pointed out that by
tricking the user, perceived availability
can easily be increased.

Timothy Roscoe railed against the con-
struction of scalable systems, claiming
that systems should only scale as far as
needed and no further. For example,
email does not need to scale globally;
who needs to send an email to every-
body? After all, whitelisting your email
to reduce spam doesn’t scale, but it
works. Timothy used Google as an

75August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sexample of a system where extra scala-

bility only concentrates power. He cited
libraries as a non-scalable alternative to
Google.

Dan Wallach talked about all of the
recent work on virtualizing resources
and getting multiple virtual machines to
share resources, such as shared libraries
and the OS kernel. He proposed an
alternative to these approaches, a radical
concept called a “process.”

Eric Brewer issued a call for IT research
for developing regions. He made five
claims: (1) there is a need for a direct
attack by developing new devices rather
than giving developing regions hand-
me-down machines, which are a bad fit
on cost, power, user knowledge, admin-
istration, and user literacy; (2) there is a
need for infrastructure to support thou-
sands of projects which are currently not
sharing any infrastructure; (3) building
IT for developing regions is economi-
cally viable, in that there is a market of
4 billion people, but IT must create
income for its users (e.g., by offering
a franchise model akin to that used
to provide cell phone service to rural
Bangladesh) because users do not have
disposable income; (4) the time is right
with the availability of five-dollar 802.11
chipsets, systems on a chip, low-power
designs, and solar panels; and (5) this
work can have a big impact by reducing
poverty and disease and improving the
environment, by providing developing
regions with a source of income that
they can in turn use to improve their
standard of living, stability, and security.
Lots of research directions here, includ-
ing very low-power and low-cost wire-
less communications, new speech-based
user interfaces, network proxies, and
sensors.

George Candea discussed why he
believes that wide-area decentralized
systems such as peer-to-peer networks
are “a good idea whose time has passed.”
He argued that such systems are hard to
build, test, debug, deploy, and manage,

and that they have little economic incen-
tive beyond “lack-of-accountability”
applications. He suggested that the prin-
ciples learned from building wide-area
distributed systems – strong compo
nentization, using open protocols, loose
coupling, reducing correlated faults
through diversity, and writing compo-
nents while keeping emergent behaviors
in mind – should be used to build highly
dependable “distributed” systems within
the data center. He summarized by say-
ing, “Don’t distribute centralizable apps
into the wide-area network, take the
good ideas from distributed systems and
apply them in the system-area network.”

Geoff Voelker presented a novel idea
based on the notion of value prediction
from hardware architecture: “result pre-
diction.” Rather than running the pro-
gram, we can simply guess the results,
leading to excellent speedup potential!

Emmett Witchel asked whether there is a
use for anti-optimization. One use he
suggested was to allow users to specify in
advance the amount of resources a com-
putation takes, possibly eliminating
covert channels. This would be accom-
plished by intentionally adding delay
loops to code to use all available CPU
and by spreading allocated memory all
over the address space.

Ethan Miller proposed SCUBA: Scalable
Computing for Underwater Biota
Assessment, in which 802.11 networks
would be deployed on coral reefs.

Sameer Ajmani suggested that systems
researchers consider work in computa-
tional biology: “We help biologists, then
they help thousands of people through
pharmaceuticals, genetics, etc. – it’s eas-
ier than sending computers to Africa.”
As specific examples of computational
biology problems that can directly apply
well-known computer science algo-
rithms, he cited string alignment
(dynamic programming) and database
searches for genes (hashtable with
2-tuples and 3-tuples). Andrew Hume
added that the National Institutes of

HOTOS-IX �

Health also has more money than the
National Science Foundation.

Armando Fox called for a bet whether a
peer-to-peer application would exist
before the next HotOS, that would make
more sense (economically and techni-
cally) to deploy as a peer-to-peer system
than as a centralized service. Seven peo-
ple in the audience said yes, 17 said no.
Armando offered to bet someone
(Armando taking the “no” side) for a
case of alcohol valued less than the con-
ference registration fee in 2005, but
there were no takers.

SESSION: WHEN THINGS GO WRONG

Summarized by Amit Purohit

CRASH-ONLY SOFTWARE

George Candea and Armando Fox,
Stanford University

George Candea explained how to build
Internet services that can be safely and
cheaply recovered by crash-rebooting
minimal subsets of components. He
stated that most downtime-causing bugs
are transient and intermittent and that it
is not feasible to guarantee that an appli-
cation can never crash. For recovery-safe
applications, recovery can be too long.
Crash-only software achieves crash-
safety and fast-recovery by putting all
the important non-volatile state outside
the application components into crash-
only state stores. For systems of crash-
only components to be crash-only, the
components must be decoupled from
each other, from the resources they use,
and from the requests they process. He
conceded that steady-state performance
of crash-only systems may suffer, but
argued that (1) the overall goal is to
maximize the number of requests suc-
cessfully served, not to serve them fast
and then be unavailable for a long time,
and (2) that techniques will evolve that
will improve performance of crash-only
systems, the way compilers improved the
performance of programs written in
high-level languages.

76 Vol. 28, No. 4 ;login:

THE PHOENIX RECOVERY SYSTEM:

REBUILDING FROM THE ASHES OF AN

INTERNET CATASTROPHE

Flavio Junqueira, Ranjita Bhagwan,
Keith Marzullo, Stefan Savage, and
Geoffrey M. Voelker, University of
California, San Diego

This presentation explained the design
of an operative, distributed remote
backup system called the Phoenix. Oper-
ating systems and user applications have
vulnerabilities. A large number of hosts
may share vulnerabilities and this can
result in major outbreaks. Phoenix uses
a strategy with attributes and cores. By
replicating data on a set of hosts with
different values for each attribute, it is
possible to reduce the probability of
error to near zero. In the Phoenix system
there is no single point of failure; copy-
ing with a large number of requests is
achieved by exponential backoff.

USING RUNTIME PATHS FOR MACROANALYSIS

Mike Chen, Eric Brewer, University of
California, Berkeley; Emre Kiciman,
Armando Fox, Stanford University;
Anthony Accardi, Tellme Networks

Mike Chen emphasized the benefits of
microanalysis, namely latency profiling,
failure handling, and detection diagno-
sis. He introduced the concept of “run-
time path analysis, where paths are
traced through software components
and then aggregated to understand
global system behavior via statistical
inference.” Runtime paths are also used
for failure handling and to “diagnose
problems all in an application-generic
fashion.” The group explained that their
work could be extended to P2P message
paths, event-driven systems, forks, and
joins.

MAGPIE: ONLINE MODELING AND PERFOR-

MANCE-AWARE SYSTEMS

Paul Barham, Rebecca Isaacs, Richard
Mortier, and Dushyanth Narayanan,
Microsoft Research Ltd, Cambridge, UK

Magpie is “a modelling service that col-
lates traces from multiple machines . . .,
extracts request-specific audit trails, and

constructs probabilistic models of
request behaviour.” The presenter men-
tioned that workload description and
hardware modeling could be used to
predict performance. It is possible to
augment the system by getting feedback
from past models.

USING COMPUTERS TO DIAGNOSE COM-

PUTER PROBLEMS

Joshua A. Redstone, Michael M. Swift,
Brian N. Bershad, University of
Washington

Redstone described “building a global
scale automated problem diagnosis sys-
tem that captures the . . . workflow of
system diagnosis and repair.” A com-
puter generates search terms and locates
problem reports. It stores problem
reports in a canonical global database.
When a problem occurs the computer
detects symptoms and searches the
problem database. Joshua argued that
expending more effort in building the
database could be a key for cheaper
diagnosis. He mentioned that the main
challenge lies in creating a database
structure in which it is possible to meet
user expectations.

PANEL DISCUSSION

Jeff Mogul was concerned about
whether the system effected time to
recovery. The author said there aren’t
critical time recovery requirements, as it
is more important to get the data back.
He pointed out that it is also possible to
make it faster by adding redundancy.
But it is a trade-off between storage and
time. Somebody from MIT also had a
question regarding the deployment of
the Phoenix system. The author said it
seems reasonable if there are enough
hosts running diversified OSes. Ranjitha
from UCSD asked Joshua Redstone what
would be the motivation for people to
fill the database. Joshua said an organi-
zation uses external support and, hence,
people would find it easier to resolve
problems at the cost of the effort. Mike
Jones proposed an alternative scheme
that asks users for requests and then

posts any solutions. Joshua was not sure
how to maintain the database. Mike
said, you can save the entire request and
response and then infer offline. Jay Le-
preau asked George Candea about
the impact of crash-only software on
throughput. George said it’s likely to be
lower, because of the inherently distrib-
uted approach (loose coupling, explicit
communication, etc.) to building the
system, but with time performance
will improve, as in the transition from
assembly languages to high-level lan-
guages. High-level languages enabled a
qualitative jump in the types of software
able to be written, even if the process
was slower than writing in assembly. He
also argued that “goodput” (throughput
of successfully handled requests) is more
important than absolute throughput.

SESSION: PERFORMANCE

OPTIMIZATION

Summarized by Ranjita Bhagwan

USING PERFORMANCE REFLECTION IN SYS-

TEMS SOFTWARE

Robert Fowler and Alan Cox, Rice
University; Sameh Elnikety and Willy
Zwaenepoel, EPFL

The main idea of this work is to use
application-independent measures such
as hardware instrumentation mecha-
nisms and general system statistics to
adapt system behavior. Performance
indicators such as TLB misses and cache
misses can be used to measure overhead,
while bytes sent to a network card and
flop rate can be used to measure pro-
ductivity. Productivity and overhead are
used to determine if the system needs to
be tuned. Sameh Elnikety showed results
on how server throttling of mySQL
using the TPC-W workload succeeded
in keeping the throughput at the maxi-
mum level while load increased,
whereas, without using reflection, the
throughput dropped at higher loads.

77August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SCASSYOPIA: COMPILER ASSISTED SYSTEM

OPTIMIZATION

Mohan Rajagopalan and Saumya K.
Debray, University of Arizona; Matti A.
Hiltunen and Richard D. Schlichting,
AT&T Labs–Research

The main idea of Cassyopia is to com-
bine program analysis and OS design to
do performance optimizations. While
the compiler has a local perspective of
optimizations, the OS has a more gen-
eral view. Cassyopia merges the two and
tries to bring about a symbiosis between
the OS and the compiler. An example of
this is system call optimization, which
profiles system call sequences and clus-
ters them together using compiler tech-
niques. The clustered system calls are
called multi-calls. With OS support for
multi-calls, performance can be
improved and, according to preliminary
results, significant savings obtained.

COSY: DEVELOP IN USER-LAND, RUN IN

KERNEL-MODE

Amit Purohit, Charles P. Wright, Joseph
Spadavecchia, and Erez Zadok, Stony
Brook University

User applications are only allowed
restricted access, which causes a lot of
crossings of the user-kernel boundary.
To prevent this, Amit Purohit proposed
a compound system call (Cosy) in which
one can execute a user-level code seg-
ment in the kernel. The authors have a
modified version of gcc that uses Cosy.
Kernel safety is ensured by limiting ker-
nel execution time; x86 segmentation
and sandboxing techniques can also be
used. The performance benefits of Cosy
have been evaluated, and 20–80% per-
formance improvements are reported.

PANEL DISCUSSION

Mike Swift said that using all the com-
piler techniques from Cassyopia for ker-
nel execution might be one way to
proceed. Mohan Rajagopalan clarified
that they do not plan to move any user-
level code into the kernel, since he
believed that interpretation in the kernel
had high overhead. They primarily

wanted to reduce the boundary-crossing
cost, and, hence, the ideologies are not
the same. Amit Purohit said that inter-
pretation in the kernel is a bottleneck,
and so they use a small interpreter.
Checking pointers would cost a lot, and
so they are using TLBs. This has some
overhead, but it’s a one-time check.
Mohan brought up the point that the
aim of Cassyopia is to apply optimiza-
tions that are quite obvious but have not
yet been done.

Ethan Miller said that the TLB overhead
in Cosy could be unavoidably high. Amit
said that is true, but the savings they are
getting are a lot more than the TLB
overhead.

Margo Seltzer hit the nail on the head,
by saying that what matters finally is the
kernel-user API. All this work on exten-
sible OSes and moving code across the
boundary is probably done because the
kernel-user API needs to be revisited. So
let’s fix the API. Applause.

Andrew Hume said that for the applica-
tions he has looked at, apart from zero-
copy and I/O, there is not much to be
gained by putting code into the kernel.
Apart from the stated scenarios, the
chances of using a multi-call are small.
Sometimes, reassurance outweighs per-
formance benefits. Mohan said that they
are also looking at smaller devices, such
as cell phones. All devices are resource
constrained. In these cases, there is also
the issue of energy savings apart from
performance. Eric Brewer asked why, for
small devices, such as in sensor net-
works, you would even want a kernel
boundary. Mohan answered that cell
phones and iPAQs can now have JVMs
running on them. They are not targeting
reprogrammable devices.

Matt Welsh asked why one would care so
much about performance on an iPAQ.

Timothy Roscoe said that since there are
different kinds of devices, there should
be different OSes for them, and then the
question would be where to put the ker-

HOTOS-IX �

nel boundary, if any, on them. Whether
there is a generic answer to that question
is still unclear.

SESSION: STORAGE 1

Summarized by David Oppenheimer

WHY CAN’T I FIND MY FILES? NEW

METHODS FOR AUTOMATING ATTRIBUTE

ASSIGNMENT

Craig A.N. Soules and Gregory R.
Ganger, Carnegie Mellon University

Craig Soules described new approaches
to automating attribute assignment to
files, thereby enabling search and organ-
ization tools that leverage attribute-
based names. He advocates context
analysis to augment existing schemes
based on user input or content analysis.
Context analysis uses information about
system state when the user creates and
accesses files, using that state to assign
attributes to the files. This is useful
because context may be related to the
content of the file and may be what a
user remembers when searching for a
file. Google has proven the usefulness
of context analysis; it chooses attributes
for a linked site by using the text associ-
ated with the link, and it analyzes user
actions after a search to determine the
user’s original intent in the search. How-
ever, the kind of information Google’s
context analysis relies on cannot be
applied directly to file systems. In partic-
ular, information such as links between
pages does not exist in traditional file
systems, and individual file systems do
not have enough users or enough “hot
documents” to make Google-like con-
text statistics useful.

Soules described access-based context
analysis, which exploits information
about system state when a user accesses
a file, and interfile context analysis,
which propagates attributes among
related files. The former relies on appli-
cation assistance or existing user input
(e.g., file names), while the latter relies
on observing temporal user access pat-
terns and content similarities and differ-
ences between potentially related files

78 Vol. 28, No. 4 ;login:

and versions of the same file. Based on a
trace analysis of usage of a single gradu-
ate student’s home directory tree over a
one-month period, Soules concluded
that a combination of the techniques he
proposes could be useful for automati-
cally assigning attributes. For example, a
Web browser can relate search terms to
the document the user ultimately down-
loads as a result of the search; files cre-
ated and accessed in a single text editor
session can be considered related; and
attributes about documents used as
input to a distiller such as LaTeX or an
image manipulator program can be dis-
tilled for attachment as attributes of the
output file. Soules also found that exam-
ining temporal relationships between
file accesses in the trace successfully
grouped many related files.

Soules stated that as future work he is
investigating larger user studies, mecha-
nisms for storing attribute mappings,
appropriate user interfaces, and how to
identify and take advantage of user con-
text switches, e.g., users moving from
one program to another.

SECURE DATA REPLICATION OVER UNTRUSTED

HOSTS

B.C. Popescu, B. Crispo, and A.S.
Tanenbaum, Vrije Universiteit,
Amsterdam, The Netherlands

B.C. Popescu described a system archi-
tecture that allows arbitrary queries on
data content that is securely replicated
on untrusted hosts. This system repre-
sents an improvement over systems
based on state signing, which can sup-
port only semi-static data and pre-
defined queries, and systems based on
state machine replication, which require
operations to be replicated across multi-
ple machines. In the authors’ system,
every data item is associated with a pub-
lic-private key pair; the private key is
known only to the content owner, and
the public key is known by every client
that uses the data. There are four types
of servers: master servers that hold
copies of content and are run by the
content owner; slave servers that hold

copies of data content but are not con-
trolled by a content owner and thus are
not completely trusted; clients, which
perform read/write operations on con-
tent; and an auditor server, described
later. The master servers handle client
write requests and lazily propagate
updates to slave servers. Master servers
also elect one of themselves to serve as
an auditor, which performs background
checking of computations performed by
slaves, taking corrective action when a
slave is found to be acting maliciously.
Slave servers handle client read requests;
they may use stale data to handle
requests, but clients are guaranteed that
once a time parameter maxLatency has
passed since a write was committed at a
master, no other client will accept a read
that is not dependent on the write. All
content in the system is versioned; the
content version of a piece of data is ini-
tialized to zero when it is created and is
incremented each time the data item is
updated.

The key challenge in building this sys-
tem is to enable clients to feel safe hav-
ing their queries handled by untrusted
slave hosts. This is accomplished proba-
bilistically, by allowing clients to send
the same request to a (trusted) master
and (untrusted) slave when they wish,
and to compare the results. When a slave
returns the result of a read, it attaches a
signed “pledge” packet containing a copy
of the request, the content version time-
stamped by the master, and the secure
hash of the result computed by the slave.
If the slave returns an incorrect answer,
the “pledge” packet can be used as proof
of the slave’s malfeasance. This proba-
bilistic checking mechanism is aug-
mented by an auditing mechanism in
which after a client accepts a result from
a slave, it forwards the slave’s “pledge”
packet to a special auditor server. The
auditor server is a trusted server that
does not have a slave set and serves just
to check the validity of “pledge” packets
by re-executing the requests and verify-
ing that the secure hash of the result

matches the secure hash in the packet.
The auditor is expected to lag behind
when executing write requests, executing
writes only after having audited all the
read requests for the content version
preceding the write.

PALIMPSEST: SOFT-CAPACITY STORAGE FOR

PLANETARY-SCALE SERVICES

Timothy Roscoe, Intel Research at
Berkeley; Steven Hand, University of
Cambridge Computer Laboratory

Timothy Roscoe described Palimpsest, a
“soft-capacity storage service for plane-
tary-scale applications.” Palimpsest is
designed to serve as a storage service for
ephemeral data from planetary-scale
applications running on a shared host-
ing platform like PlanetLab, XenoSer-
vers, or Denali. Examples of the type of
data to be stored are static code and data
for services, application logs of various
sorts, and ephemeral system state such
as checkpoints. Despite the temporary
nature of the data, it must be highly
available during its desired lifetime, thus
making single-node local disk storage
unsuitable. Traditional file systems such
as NFS and CIFS provide facilities
unnecessary for planetary-scale applica-
tions, and don’t meet service provider
requirements such as space manage-
ment, billing, and security mechanisms
that allow users to store their data on a
shared infrastructure without having to
trust the infrastructure provider.
Palimpsest aims to provide high data
availability for limited periods of time,
data protection and resistance to denial-
of-service attacks, flexible cost/reliabil-
ity/performance trade-offs, charging
mechanisms that make sense for service
providers, capacity planning, and sim-
plicity of operation and billing. To
achieve these goals it uses soft capacity,
congestion-based pricing, and automatic
space reclamation.

To write a file, a Palimpsest client era-
sure codes the file, encrypts each result-
ing fragment, and sends each encrypted
fragment to a fixed-length FIFO queue
at the distributed hashtable node corre-

79August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Ssponding to the hash of the concatena-

tion of the file name and the fragment
identifier. To retrieve a file, a client
generates a sufficient number of frag-
ment IDs, requests them from the block
stores, waits until a sufficient number of
the requested fragments are returned,
decrypts and verifies them, and recreates
the original file. Because the queues are
fixed-length, all files stored in Palimpsest
are guaranteed to eventually disappear.
To keep a file alive, the client periodi-
cally refreshes it, and to “delete” the file,
the client simply abandons it. The key to
predictable file lifetimes is the “time
constant” (T) associated with each block
store; T measures how long it takes a
fragment to reach the end of the queue
and disappear. Clients piggyback
requests for information about T on
read and write requests, and block stores
provide a recent estimate of T by piggy-
backing on responses. Palimpsest
providers charge per (fixed-length) write
transaction. Clients can use information
about each block store’s T value and fee
per write transaction to flexibly trade off
data longevity, availability, retrieval
latency, and robustness. Clients pay
providers using anonymous cash trans-
actions. Denial-of-service attacks are
discouraged by charging for writes.
Providers can perform traffic engineer-
ing by advertising values of T that devi-
ate from the true value. Congestion
pricing is used to encourage users to
attain an efficient write rate.

PANEL DISCUSSION

Andrew Hume asked Timothy Roscoe
whether a simpler scheme than
Palimpsest could be used to store
ephemeral files just like regular files and
cycle them using a generational scheme,
eventually deleting the files that gradu-
ate from the oldest generation. Roscoe
responded that Palimpsest provides an
easy charging and pricing mechanism,
while standard network file systems like
NFS do not. Val Henson asked Popescu
what he thought of the “High Availabil-
ity, Scalable Storage, Dynamic Peer Net-

works: Pick Two” talk, in light of the fact
that his system is targeted toward storing
data on untrusted hosts. Popescu
responded that they’re more interested
in environments in which hosts are less
transient than in standard peer-to-peer
networks. Jeff Chase observed that
Palimpsest clients have no control over
the placement of their data, and he
asked Roscoe whether he thought that
was significant. Roscoe responded that
selecting specific nodes on which to
store data could be provided by an
orthogonal mechanism. Benjamin Ling
asked whether widespread adoption of
Palimpsest would be hindered by the
lack of hard guarantees about data
longevity. Roscoe responded that legal
contracts akin to service level agree-
ments could be layered on top of Pal-
impsest to ease users’ concerns about the
inherent risk of data loss. Furthermore,
this is really a futures market: Third par-
ties can charge premiums for providing
guarantees and taking on the risk of data
loss themselves.

SESSION: TRUSTING HARDWARE

Summarized by Matt Welsh

This session turned out to be the most
controversial of the conference, as two of
the three talks discussed the use of
secure hardware and systems such as
Microsoft’s Palladium architecture.

CERTIFYING PROGRAM EXECUTION WITH

SECURE PROCESSORS

Benjie Chen and Robert Morris, MIT
Laboratory for Computer Science

Benjie Chen is interested in the potential
uses for trusted computing hardware
other than digital rights management
(DRM). Since all PCs may include this
hardware in the future, he is interested
in exploring the hardware and software
design for such systems. His running
example was secure remote login, such
as from a public terminal at an Internet
cafe, where the client machine can attest
to the server that it is running unadul-
terated software (OS, SSH client, etc.).
Of course, this does not preclude low-

HOTOS-IX �

tech attacks such as a keyboard dongle
that captures keystrokes, but that is out-
side of the immediate problem domain.

Benjie presented an overview of the
Microsoft Palladium (or Next Genera-
tion Secure Computing Base) architec-
ture, which uses a secure “Nexus” kernel
and a secure chip that maintains the fin-
gerprints of the BIOS, bootloader, and
Nexus kernel. A remote login applica-
tion would send an attestation certifi-
cate, generated by Nexus and the secure
chip, to the server. The issues here are
how to keep the Nexus kernel small and
how to verify the OS services (such as
memory paging or the network stack).
Some ways to improve Palladium’s secu-
rity and verifiability were discussed,
such as using a small micro-kernel that
allows attestation of all OS modules
above it, as well as a flexible security
boundary (where some, not all, of the
OS modules are verified). There is a con-
nection with the XOM secure processor
work, which prevents physical attacks on
DRAM by storing data in encrypted
form in memory and only decrypting it
into a physically secure cache. Borrow-
ing some of these ideas, one could run
the micro-kernel within the secure
processor that authenticates all data
transfers to DRAM; the application,
hardware drivers, network stack, etc.,
could all be encrypted in DRAM.

HARDWARE WORKS, SOFTWARE DOESN’T:

ENFORCING MODULARITY WITH MONDRIAAN

MEMORY PROTECTION

Emmett Witchel and Krste Asanović,
MIT Laboratory for Computer Science

Emmett Witchel proposed the use of
efficient, word-level memory protection
to replace the use of page- or segment-
based protection mechanisms. This is
motivated by the use of fine-grained
modules in software, with narrow inter-
faces in terms both of APIs and of mem-
ory sharing. He argued that safe lan-
guages are not the answer, in part be-
cause it is difficult to verify the compiler
and runtime system. Rather, allowing
hardware protection to operate at the

80 Vol. 28, No. 4 ;login:

word level is much simpler and permits
a wide range of sharing scenarios. For
example, when loading a new device
driver into the kernel, the MMP hard-
ware would be configured to permit the
module to access its own code and data,
as well as to make calls to other modules
and share very fine-grained memory
(e.g., part of a larger data structure in
the kernel). Some of the challenges
involve cross-domain calls through call
gates; dealing with the stack (as no sin-
gle protection domain “owns” the stack);
and automatically determining module
boundaries through information already
present in code, such as symbol
import/export information in kernel
modules. Other potential uses include
elimination of memory copies on system
calls, specialized kernel entry points, and
optimistic compiler optimizations (e.g.,
write-protect an object and run cleanup
code if a write fault occurs).

FLEXIBLE OS SUPPORT AND APPLICATIONS

FOR TRUSTED COMPUTING

Tal Garfinkel, Mendel Rosenblum, Dan
Boneh, Stanford University

Tal Garfinkel’s talk returned to the ques-
tion of using secure hardware for appli-
cations other than DRM, and shared
much of the motivation and back-
ground of Benjie’s talk. The core prob-
lem with open platforms (as opposed to
closed platforms such as ATMs and cell
phones) is that applications can be
deployed across a wide range of existing
hardware but it is difficult to manage
trust. Tal proposed the use of virtual
machine monitors as a potential solu-
tion to providing a trusted OS environ-
ment. For example, the VMM can run
either an “open box” VM (such as a stan-
dard OS) or a “closed box” VM (a
trusted system).

One closed box VM might be a virtual
Playstation game console, which pre-
vents cheating in a multiplayer game
through attestation. Another potential
application could be a distributed fire-
wall, where one could push a cus-

tomized firewall into the VMM to pro-
tect the network from the host, by pre-
venting port scanning or IP spoofing,
for example, or enforcing connection
rate limits. Tal also discussed applica-
tions to reputation systems and third-
party computing (à la SETI@Home). He
concluded the talk with a review of cur-
rent efforts in this area, including TCPA,
Palladium, and LaGrande.

PANEL DISCUSSION

The political issues surrounding trusted
computing platforms raised a number of
interesting – and heated – questions
from the audience. Dan Wallach started
off by describing the recent XBOX hack,
where that system was supposedly
trusted hardware. Tal and Andrew Hume
countered that there are no guarantees
of correctness, just trade-offs in terms of
risk assessment. Mendel suggested that
cheating at Quake was not a big concern
for industry, so this was not of para-
mount concern in the XBOX hack.

Timothy Roscoe was disturbed that the
three speakers seemed to be too much in
agreement, and raised the question of
big protection domains (i.e., VMs) ver-
sus tiny protection domains (i.e., Mon-
drian memory protection). They didn’t
take the bait, though, and Tal said that
these approaches were not mutually
exclusive.

Jay Lepreau raised the concern that
nobody has yet demonstrated an entire
(real) operating system based on the
micro-kernel model. He again argued
that MPP does not solve the whole
domain protection issue, since control
flow protection is just as important as
memory protection. Emmett admitted
that there is some complexity involved,
but by making memory protection
domains both finer grained and more
explicit, programmers have to think
about them more carefully and will doc-
ument them in the code. Jay argued that
chopping up a monolithic system in a
“half-assed way” makes it more com-
plex, but Emmett argued that most sys-

tems software is already making use of
well-defined modules, simply without
strong protection between them.

Val Henson returned to the trusted com-
puting discussion and argued that these
platforms were more useful for restrict-
ing rights (as with DRM) than for giving
us more rights. Benjie argued that the
bleak view is that this hardware is going
to get pushed out regardless, so we
should be considering how to use it for
something other than DRM. Tal con-
curred and said that this work was also
about intellectual honesty.

Jay argued that Tal and Benjie were
really just giving cover to the real com-
mercial driver for this technology, which
is DRM. Mike Swift wanted to know
where the line between research and
the corporate world should be drawn,
and whether our community should
support this work at all. Tal mentioned
again that their work is just bringing
more information to the table, but Mike
drew an analogy with nuclear weapons
research, claiming that expanding
knowledge is not the only side effect of
this work.

Dirk Grunwald wondered whether call-
ing this “trusted computing” was like the
rebranding of “out-of-order execution”
to “dynamic execution” – trusted com-
puting cannot deal with hardware
attacks, so consumers may be misled
into believing it’s more safe. Tal pointed
out that this is no different from calling
a protocol “secure.”

Jeff Mogul made the points that technol-
ogy tends to reinforce existing power
structures, and that the issue with
trusted computing is not about security
but rather, whether the technology rein-
forces existing power relationships or
diffuses them. He summarized, “Are
you advocating a system that helps the
powerful or that helps the weak?” Eric
Brewer claimed that he didn’t want
“trusted” software on his PC, since that
only enforces a particular kind of trust
relationship between two parties. He

81August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Swould rather have control over his trust

relationships, but trusted computing
platforms remove that control. Tal
admitted that there is a real concern
about using Palladium as an industry
control point. Timothy wrapped up the
session by pointing out that this discus-
sion had been rather “sterile” and had
not touched on any of the issues of poli-
tics, lawmaking, or market forces sur-
rounding the DRM and trusted-
technology debate.

SESSION: PERVASIVE COMPUTING

Summarized by Ranjita Bhagwan

SENSING USER INTENTION AND CONTEXT FOR

ENERGY MANAGEMENT

Angela B. Dalton and Carla S. Ellis,
Duke University

Angela Dalton spoke about the use of
low-power sensors to monitor user
behavior and to reduce system energy
consumption. She described a case study
called FaceOff, which uses a camera to
perform image capture. Following face
detection, the information is fed into a
control loop that does the system-level
energy management, by turning off the
display. The authors have built a proto-
type of this, which uses image capture
and skin detection. The authors have
determined that FaceOff can provide
significant energy savings. The authors
also describe various ways of increasing
the system’s responsiveness and describe
several optimizations with that objec-
tive.

ACCESS CONTROL TO INFORMATION IN PER-

VASIVE COMPUTING ENVIRONMENTS

Urs Hengartner and Peter Steenkiste,
Carnegie Mellon University

Locating people in a pervasive comput-
ing environment can be done at many
levels and granularities. But there should
be an access control mechanism for such
information. Access control mechanisms
for conventional information, however,
cannot be used as is for such environ-
ments. Urs Hengartner described a peo-
ple locator service that uses digital

certificates for defined location policies.
The authors use three design policies:
identify information early, design poli-
cies at the information level, and exploit
information relationships. Their approach
is to use a step-by-step model, where
validation of a client node is done at
every server node. They also use a policy
description language and an informa-
tion description language in their people
locator service.

PRIVACY-AWARE LOCATION SENSOR

NETWORKS

Marco Gruteser, Graham Schelle, Ashish
Jain, Rick Han, and Dirk Grunwald,
University of Colorado at Boulder

Marco Gruteser gave a brief description
of a system that uses sensor networks to
gather information while maintaining
some degree of anonymity. Describing
the problem, Marco said that sensor net-
works could be used to identify precise
location of certain entities, and this
could be undesirable. With an anony-
mous data collection scheme, you do
not need to negotiate a privacy policy,
and the risk of accidental data disclo-
sures is reduced, since databases do not
store this information anymore. The
author described the notion of k-
anonymity in database systems, and said
that it could be applied to location
information.

PANEL DISCUSSION

Urs Hengartner asked Angela Dalton
whether she had thought about turning
off only parts of the screen if there were
multiple windows open but only one
active? Angela said that there is related
work that deals with energy adaptive
displays. Presently this cannot be done.
But you could use some form of gaze
tracking to do this. Andrew Hume asked
whether the partial screen turn-off
works at the hardware level. Angela
responded that currently there is no
hardware that does that. New kinds of
displays are assumed. But you would still
need to control it through the system.

HOTOS-IX �

Andrew Hume commented that this
could be used for covert operations: for
example, a laptop screen shutting down
would indicate that there is no one close
to it. Wouldn’t the security aspect be
that you could detect location to some
extent? Angela said that larger networks
could do this, and yes, there are lots of
security implications.

Val Henson asked what the trend of
built-in sensors is. Angela replied that
most devices can now have built-in cam-
eras. In general, these sensors are low-
power, cheap and increasingly pervasive,
especially the cameras.

Andrew Hume asked what kind of cam-
era resolution is needed to make this
work well. Angela said that the detection
method currently is skin color based,
and you could do this even with a low-
resolution black-and-white camera.

Geoff Voelker asked Urs if he had
thought of foreign users coming into an
administrative domain. Urs responded
that since they use SPKI/SDSI digital
certificates, they do not require a PKI
and have the benefit that they could give
access to anyone.

Val Henson asked Marco how you decide
what the shape of the location is. Marco
said that the current assumption is that
the sensors are pre-configured in a room
which has a certain room ID, the same
applying to a building, and so on.

Jay Lepreau asked Angela whether she
had data on how people use laptops so
she could evaluate how well her scheme
would work with these user behavior
patterns. Angela said that more and
more people are using laptops as their
primary system. Moreover, energy
awareness is important generically.
However, this question is valid for cell
phones, PDAs, etc., which could have
widely varying usage patterns. Jay said
that the power management on his lap-
top is frustrating, because it is stupid. It
would be good to have a diagnostic tool,
with the user being able to guide the sys-

82 Vol. 28, No. 4 ;login:

tem to some extent. Has Angela consid-
ered providing the user with a diagnos-
tic tool? Angela said that you can
imagine a user interface, that could be
used to measure the annoyance factor of
the power management. Yes, there can
be problems when things kick in at the
wrong time.

SESSION: STORAGE 2

Summarized by David Oppenheimer

FAB: ENTERPRISE STORAGE SYSTEMS ON A

SHOESTRING

Svend Frølund, Arif Merchant, Yasushi
Saito, Susan Spence, and Alistair Veitch,
Hewlett Packard Laboratories

Alistair Veitch of HP Labs presented
“FAB: Federated Array of Bricks.” He
described a project that is aimed at mak-
ing a set of low-cost storage bricks
behave, in terms of reliability and per-
formance, like an enterprise disk array,
but at lower cost and with greater scala-
bility. The FAB array is built from bricks,
each of which consists of a CPU, mem-
ory, NVRAM, a RAID-5 array of 12
disks, and network cards. Clients con-
nect to the array using a standard proto-
col such as iSCSI, Fibre Channel, or
SCSI, and the storage bricks communi-
cate amongst themselves using a special
FAB protocol running on Gigabit Ether-
net. The goals of the array are zero data
loss, continuous availability, competitive
performance, scalable performance and
capacity, management as a single entity,
online upgrade and replacement of all
components, and higher-level features
such as efficient snapshots and cloning.
The principal research challenges are
failure tolerance without losing data or
delaying clients, asynchronous coordina-
tion that does not rely on timely
responses from disks or the operating
system, and the ability to maximize per-
formance and availability in the face of
heterogeneous hardware. The techniques
FAB incorporates to achieve these goals
are a quorum-based replication scheme,
dynamic load balancing, and online
reconfiguration.

After outlining FAB’s goals and the high-
level techniques used to achieve those
goals, Veitch described the quorum-
based replication scheme used to achieve
reliability. It uses at least three replicas
for each piece of data, and reads and
writes a majority of replicas. It survives
arbitrary sequences of failures, achieves
fast recovery, and can be lazy about fail-
ure detection and recovery as opposed
to needing to do explicit fail-over. The
array configuration that the designers
envision achieves a mean time to data
loss of about a million years, which
Veitch described as “at the bottom end
of what’s acceptable.”

THE CASE FOR A SESSION STATE STORAGE

LAYER

Benjamin C. Ling and Armando Fox,
Stanford University

Benjamin Ling presented “SSM, a recov-
ery-friendly, self-managing session state
store.” SSM is a storage system special-
ized for storing session state typically
associated with user interactions with
e-commerce systems. The system assumes a
single user making serial access to semi-
persistent data. Ling explained that
existing solutions such as file systems,
databases, and in-memory replication
exhibit poor failure behavior, recovery
performance, or both, and that they are
difficult to administer and tune. SSM is
designed to be recovery friendly, mean-
ing it can recover instantly without data
loss, and self-managing in terms of han-
dling overload and performance hetero-
geneity of components.

SSM is based on a redundant, in-mem-
ory hashtable distributed across nodes
called bricks and on stateless client
stubs, linked in with application servers,
that communicate with the bricks.
Bricks consist of RAM, CPU, and a net-
work interface (no disk). SSM uses a
redundancy scheme similar to quorums.
A stub writes to some N random nodes
(four in Ling’s example) and waits for
the first M of the writes to complete
(two in Ling’s example); this scheme is

used to avoid performance coupling.
The remaining writes are ignored. Reads
are issued to a single brick. SSM is
“recovery friendly” in that no data is lost
as long as no more than M-1 disks in a
write quorum fail. Moreover, state is
available for reading and writing during
a brick failure. SSM is “crash-only,” using
no special-case recovery code; when a
brick is added to the system or returns
to service after a failure, it is simply
started up without any need to run a
recovery procedure. SSM is “self-manag-
ing” in that it dynamically discovers the
performance capabilities of each brick,
as follows. Each stub maintains a count
of the maximum allowable inflight
requests to each brick, using additive
increase to grow this window upon each
successful request and multiplicative
decrease to shrink the window when a
brick operation times out. If an insuffi-
cient number of bricks are available for
writing, either due to failures or due to a
full window, the stub refuses the request
issued by the client of the stub, thereby
propagating back-pressure from bricks
to clients.

TOWARDS A SEMANTIC-AWARE FILE STORE

Zhichen Xu, Magnus Karlsson, and
Christos Karamanolis, Hewlett Packard
Laboratories; Chunqiang Tang, Univer-
sity of Rochester

Zhichen Xu explained that storage sys-
tems are in some ways an extension of
human memory, but that computer-
based storage systems have been “dumb”
because, unlike humans, they do not
associate meanings (semantics) with the
data that is stored. For example, when
humans search, they consider abstract
properties and relationships among
objects, and when they “store” data, they
may group objects into categories or
record only the differences between
objects. Moreover, humans discover the
meanings of objects incrementally.
These observations motivate the incor-
poration of versions, deltas, and
dependencies among objects stored in
the semantic-aware file store.

83August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SThe semantic-aware file store seeks to

create a framework that captures and
uses semantic information for fast
searching and retrieval of data; stores
data efficiently by using data compres-
sion based on semantic relationships of
data; provides high performance
through semantic data hoarding, data
placement, replication, and caching; and
enables highly available data sharing by
balancing consistency and availability
according to the data semantics. The
semantic-aware file store uses a generic
data model based on RDF to capture
semistructured semantic metadata. The
challenges Xu described are identifying
the common semantic relations of inter-
est, finding ways to capture semantic
information, finding ways to handle
dynamic evolution of semantics, and
defining the tools and APIs that users
and applications require.

PANEL DISCUSSION

Margo Seltzer asked Alistair Veitch
whether in 10 years HotOS will have a
paper explaining why FABs are just as
expensive as today’s storage arrays.
Veitch answered, “I hope not, but who
knows.”

Andrew Hume asked Veitch whether the
FAB design makes it difficult to predict
performance as compared to a disk con-
nected to a single machine, especially in
the face of failures, due to the large number
of potential interactions among bricks
in the FAB. Veitch responded that the
performance can in fact be modeled as a
function of factors such as the overhead
of doing a disk I/O, the number of
nodes, the desired mean time to data
loss, and so on. He added that even
today no storage system gives you hard-
and-fast performance guarantees, and
that the more difficult question is how
to model overall system reliability and
the optimal trade-offs among design
parameters.

Rob von Behren asked Veitch whether he
had considered using non-RAID disks
instead of RAID arrays inside each brick.

Veitch responded that by using RAID,
the mean time to data loss is controlled
by the failure rate of each brick rather
than the failure rate of individual disks,
thereby increasing reliability. He added
that it’s very difficult to come by good
numbers on actual failure rates of sys-
tem components, so estimating overall
reliability is difficult.

