
THE MAGAZINE OF USENIX & SAGE
June 2003 • volume 28 • number 3

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
CONFERENCE REPORTS

2nd USENIX Conference on File and Storage Technologies

(FAST ‘03)

2nd USENIX Conference
on File and Storage
Technologies (FAST ‘03)
SAN FRANCISCO, CALIFORNIA

MARCH 31–APRIL 2, 2003
KEYNOTE ADDRESS

DATA SERVICES – FROM DATA TO

CONTAINERS

John Wilkes, Hewlett-Packard Labs

Summarized by Scott Banachowski

After a few opening remarks from con-
ference chair Jeff Chase, John Wilkes of
HP Labs kicked off the conference with
the keynote address. As he introduced
the talk, Wilkes clued any bored listeners
to look for themes in the photographs
scattered throughout the presentation
slides. Wilkes’s keynote foreshadowed
many of the themes that would appear
in the following conference sessions:
how to deal with the rising complexity
and ability of storage systems and meet
our expectations for new capabilities.

The solution to storage problems lies in
using Quality of Service (QoS), because
it encompasses everything we’d like to
say about our storage problems. There-
fore the path to a solution includes
defining data QoS needs, using storage
QoS abilities, and automating storage
and data management.

The enterprise IT plan is a complex,
large-scale system; Wilkes demonstrated
this assertion with a convoluted enter-
prise IT architecture schematic. Some of
the requirements of these systems
resemble those of existing large-scale
scientific applications, so we can look to
these applications as predictors of future
trends: they access huge quantities of
data using specialized access patterns. As
examples, Wilkes reviewed the storage
systems required by the human genome
sequencing engine and the CERN elec-
tron collider.

It is important for storage researchers to
distinguish between data and storage,
because we often confuse the data’s

75June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sattributes with those of the containers.

Wilkes outlined many data metrics,
pointing out that it is easy to measure
amounts, rates of growth, or access pat-
terns, but difficult to get a handle on
resilience or security. It is important to
consider that not all data are created
equal (some have little value, some never
change, and some can be regenerated)
and that data have differing lifetime and
security requirements. All of these
attributes can be captured by QoS,
which provides storage systems with
both a set of objectives and a contract
for service. In a brief overview of storage
containers, Wilkes covered new tech-
nologies such as MEMS, MRAM, and
smart disks (bricks). He proposes using
the SNIA shared storage model to get a
handle on how to set up large storage
systems.

Recognizing that storage systems are just
a part of larger computing systems, it is
important to grapple with the manage-
ment challenges. The main challenge is
keeping administration costs low by
automating tasks. We have already gen-
erated many techniques for managing
systems, so Wilkes recommends that we
learn to use existing techniques before
creating new ones.

The key to develop future storage sys-
tems is to embrace complexity. In this
era, we must use a data-centric view-
point for putting everything together,
and this must be driven by QoS. Wilkes
summarized the problem as moving
from “some of the parts to sum of the
parts” as the required step to accessing
data anywhere and anytime. During the
Q&A, someone noted the agricultural
theme running through Wilkes’s slides,
and asked what the equivalent to fertiliz-
ing and weeding is in the storage field.
Wilkes chuckled but supplied no answer.

SESSION: INTERNET SCALE STORAGE

Summarized by Preethy Vaidyanathan

POND: THE OCEANSTORE PROTOTYPE

Sean Rhea, Patrick Eaton, Dennis Geels,
Hakim Weatherspoon, Ben Zhao, and
John Kubiatowicz, University of
California, Berkeley

Peter Honeyman from the University
of Michigan chaired this first session
of the conference. Sean Rhea presented
OceanStore, a global-scale storage sys-
tem, and the prototype Pond, a self-
organizing, self-maintaining, secure
Internet-scale file system among
untrustworthy hosts. (This paper
received the Best Student Paper award.)

The main challenges in a global-scale
storage system are availability and man-
ageability. All the resources in the system
are virtual, and replication is used to
provides fault tolerance and reliability.
Tapestry, a decentralized scalable object
location and routing system, is used in
this prototype to identify the resources.

The prototype uses erasure codes and a
modified Byzantine agreement protocol
to provide fault tolerance and consis-
tency among the replicas. Erasure codes
are more durable than data mirroring
for the same space. The Byzantine pro-
tocol was modified to decrease the num-
ber of messages passed to make replica
copies consistent. Each object is assigned
a primary replica by an inner ring server.
The updates are in-place among the
inner-ring servers.

The Pond prototype was tested using
two experimental testbeds at Berkeley
and PlanetLab (http://www.planet-
lab.org). Andrew benchmark test results
compared to NFS show improvements
in read access and performance degrada-
tion on writes. Rhea explained the write
cost and limitations as due to erasure
code. This cost would be alleviated when
servicing large writes. Pond has good
performance in other benchmark exper-
iments.

FAST ‘03 �

http://www.planet-lab.org

Pond source code is available at
http://oceanstore.cs.berkeley.edu.

DATA STAGING ON UNTRUSTED SURROGATES

Jason Flinn, Intel Research Pittsburgh
and University of Michigan; Shafeeq
Sinnamohideen, Niraj Tolia, and M.
Satyanaryanan, Intel Research Pitts-
burgh and Carnegie Mellon University

Mobile computers are increasing in pop-
ularity, and Jason Flinn presented a
mechanism by which surrogates close to
the mobile device can be used as data
staging stations, reducing transfer
latency. This architecture provides less
latency for the client when accessing
data, as the data is now retrieved from
the surrogate and not the file server.

The data staging architecture consists of
a client proxy that observes file system
traffic and initiates a surrogates help if
need be. A data pump near the file
server acts as an intermediate point
between the client and the server. When
a client accesses data, the pump authen-
ticates the message, reads from the file
system, encrypts it, and sends the cryp-
tographic hash to the client and the data
to the surrogate. All this is done through
a secure channel. The client reads the
data from the surrogate, decrypts it and
checks validity using the hash.

The architecture design is independent
of the underlying file system. For experi-
mentation, this design is implemented
on the Coda file system. The data stag-
ing design assumes client, file server, and
data dump file system to be trustworthy
and entrusts the surrogate and the net-
work.

Flinn presented two experiments to test
the data staging architecture. The first
tested the performance of aggressive
perfecting in this architecture. The
results shows that surrogate data miss
affects the performance more than the
surrogate having data that are never
accessed. The second set of experiments
tested what factors affect the perfor-
mance of the system. The results showed
that latency hurt the performance more

76 Vol. 28, No. 3 ;login:

than bandwidth, which iterates the
assumption for this work.

The source code of this project can be
obtained at http://info.pittsburgh.
intel-research.net.

PLUTUS: SCALABLE SECURE FILE SHARING ON

UNTRUSTED STORAGE

Mahesh Kallahalla, Hewlett-Packard
Labs; Erik Riedel, Seagate Research;
Ram Swaminathan, Hewlett-Packard
Labs; Qian Wang, Pennsylvania State
University; and Kevin Fu, Massachu-
setts Institute of Technology

Mahesh Kallahalla presented a crypto-
graphic storage system for secure file
sharing. Data security is different from
network security, and Kallahalla
described Plutus, a decentralized key
management system where all keys are
handled by the client with minimum
trust on the server. Plutus architecture is
scalable and secure, as there is no single
point of failure, because the client does
the encryption and decryption work and
the server acts as a data store.

Blocks of the file are encrypted with
symmetric key called file-block key.
There is a file-lockbox key for the file. To
minimize the number of keys generated,
files with similar attributes are grouped
into file groups. All the files in the file
group share the same file-lockbox key.
The architecture differentiates between
readers and writers by using file-verify
and file-sign public-private key pairs.

File updates might result in file group
fragmentation. This is handled in the
Plutus architecture by key rotation. Each
update results in the creation of a key
version, not a new key. The owner of the
data can only generate the next version.
The readers keep track of the newest
version of the key, and previous versions
can be rolled back from the current ver-
sion. A prototype has been designed
using OpenAFS. The Plutus system is
tested using UNIX traces and synthetic
benchmarks. Kallahalla concluded that
in spite of the overhead of encryption
and decryption, Plutus performance is

favorable with key points such as file
grouping, key rotation, and lazy re-
encryption.

SESSION: FILE STORAGE

Summarized by Scott Banachowski

METADATA EFFICIENCY IN VERSIONING FILE

SYSTEMS

Craig A. N. Soules, Garth R. Goodson,
John D. Strunk, and Gregory R. Ganger,
Carnegie Mellon University

The first talk of the Storage Session,
chaired by Margo Seltzer of Harvard,
came from Craig Soules of CMU. Soules
presented the Comprehensive Version-
ing File System (CVFS), a log-based file
system that keeps old versions of data
using structures that reduce the storage
overhead of metadata, essentially trad-
ing back-in-time performance for space.

A versioning file system keeps multiple
versions of data for backing out mis-
takes, failure recovery, and history analy-
sis. Current versioning systems write a
new copy of the metadata for each ver-
sion of a file, leading to high metadata
overhead. The goal of CVFS is reduction
of storage overhead, which is accom-
plished by combining journaling and b-
trees.

The system maintains the most current
metadata version and differences
between previous versions, stored in a
journal. The journal approach saves
space because it only records incremen-
tal changes, but retrieving previous ver-
sions is not efficient because all previous
versions must be unrolled in sequence to
recreate the desired version. To reduce
the roll-back time, CVFS occasionally
store an entire version, i.e., a checkpoint.
Multiversion b-trees provide an efficient
structure for storing multiple versions of
data using keys comprised of a name/
time pair. B-trees are more efficient for
single-lookup operations than journals,
so CVFS uses b-trees to maintain direc-
tories, where lookup is the most com-
mon operation and modifications are
infrequent.

http://oceanstore.cs.berkeley.edu
http://info.pittsburgh

The performance of CVFS was evaluated
by playing back 1 month of NFS traces
that contained 164 GB of data traffic
from 30 users. Compared to conven-
tional versioning system, CVFS saved
53% in file metadata and directory
space. The performance relative to other
systems diminishes when keeping less
comprehensive data, for example storing
only on-close versions or periodic snap-
shots. During the Q&A, someone ques-
tioned Soules about the usefulness of
such comprehensive versioning, consid-
ering that many writes may never be
seen by the file system due to caching, to
which Soules replied that it depends on
the application.

YFS: A JOURNALING FILE SYSTEM DESIGN

FOR HANDLING LARGE DATA SETS WITH

REDUCED SEEKING

Zhihui Zhang and Kanad Ghose, State
University of New York, Binghamton

Recognizing that most file system
designs are based on file-size assump-
tions from years ago, Zhihui Zhang pre-
sented yFS, with the goal of handling
large and small files with equal ease. yFS
was implemented in FreeBSD.

The features of yFS include extent-based
allocations, multiple inode formats, b*-
tree structures for managing inode data,
support for large directories, and light-
weight logging. The file system divides
the disk into allocation groups, each
containing its own metadata. Space is
allocated to files in both fragments and
blocks, although, unlike other segment-
based systems, there is no restriction
concerning which segment a file begins,
and fragments may have variable size.
For large files, there are competing goals
of contiguity and locality; yFS scatters
large files across allocation groups.

yFS was compared with FFS enhanced
with Soft Updates using four bench-
marks: a kernel build, the extraction of
an archive file, the PostMark bench-
mark, and a file system aging test. With-
out Soft Updates, the synchronous
metadata updates of FFS lead to perfor-

77June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Smance that is not comparable to yFS.

However, even with Soft Updates, yFS
outperformed FFS in all measurements
except for one phase of the compilation
benchmark.

SEMANTICALLY-SMART DISK SYSTEMS

Muthian Sivathanu, Vijayan
Prabhakaran, Florentina I. Popovici,
Timothy E. Denehy, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau, University of Wisconsin,
Madison

Remzi Arpaci-Dusseau explained the
concept of “semantically-smart disk sys-
tems.” Storage systems are currently lay-
ered into the file system and the disk or
RAID system; the origin of this separa-
tion is the hardware/software boundary,
but now each layer is becoming increas-
ingly complex. Because layers are sepa-
rated by a bus or protocol, the semantics
of file system operations are lost in the
disk layer, so semantically-smart disks
aim to reacquire this information in the
disk layer using both offline and online
techniques. The approach allows RAID
systems to exploit their processing and
memory capability without changing
their interface.

Semantically-smart disks understand file
system operations, and discover the lay-
out of on-disk structures and operations
by reverse engineering the block stream.
Static knowledge of file system layout is
determined with the aid of a gray-box
tool called Extraction of Filesystems
(EOF). EOF creates a disk traffic pattern
that, when observed by the disk, pro-
vides hints that allow the smart disk to
determine the types of blocks and their
layout. With this information, the smart
disk may then take steps to improve per-
formance, for example by automatically
caching inodes and directory blocks in
NVRAM.

The paper includes several case studies
for using semantically-smart disks
(SDS), but during the talk Arpaci-
Dusseau focused on adding its secure
deletion feature. By detecting when files

are deleted, the disk can automatically
remove its dead-blocks so that they can-
not be reread using magnetic micro-
scopy techniques. The file system cannot
reliably do this, because it may absorb
writes in cache or may leave stray blocks
on the disk. Using SDS it is possible to
detect deletes, which traditional RAID
systems cannot do, and overwrite the
file’s data blocks with patterns multiple
times, so they cannot be reread. In the
Q&A session, someone asked if it is pos-
sible to also learn semantics through the
interfaces of object-based storage. The
approach may be similar in philosophy
but it is still an open issue.

INVITED SESSION: PETABYTES AND

BEYOND

Reagan Moore, San Diego Supercom-
puter Center; Thomas M. Ruwart, Uni-
versity of Minnesota Digital Technology
Center, Intelligent Storage Consortium;
and Clod Barrera, Director of System
Strategy, IBM Systems Group

Summarized by Preethy Vaidyanathan

The “Petabytes and Beyond” panel was
hosted by Jeff Chase of Duke University.

Reagan Moore started out by listing the
challenges that will be important in the
future for applications dealing with large
amounts of data. He pointed out that,
based on the current data growth trend,
handling large amounts of data would
require organizing data into collections.
Some major challenges would be to tag
these large amounts of data to generate
information, organizing information
into collections, querying collections for
relationships (data mining) and organiz-
ing relationships in concept spaces.

Moore presented some of the projects
dealing with petabytes of data: NASA
Earth Observing Satellite, Large Hadron
Collider, and NSF Teragrid. Teragrid is a
project that handles large volumes of
data in a distributed environment. It
aims to provide a collective set of
resources greater than any one site can
provide. The participating groups in this
project are the San Diego SuperCom-

FAST ‘03 �

puter Center (SDSC), the National Cen-
ter for Supercomputing Applications
(NCSA), the Argonne National Labora-
tory (ANL), and CalTech. Some of the
challenges include managing the
resources over WAN, discovery of data,
and naming conventions.

Other works include Digital Library,
data grids like Grid Bricks that build
cheap storage systems (bricks) using
common disks, and IDE drives and tape
archives. A data grid accesses distributed
resources and should manage name-
space, user authentication, and user
access control across bricks.

Moore concluded by presenting specific
directions for some of the challenges.
Discovery of data in this environment is
essential. This can be provided by an
infrastructure-independent naming
convention. Data discovery is imple-
mented by cataloging a database that
manages the logical name and abstracts
the physical location. Because of WAN
latency management is another chal-
lenge. The SDSC Storage Resource Bro-
ker focuses on this problem. One
solution is to enable the application at
the destinations to pull data from
remote resources by sending an aggre-
gate message that eliminates the large
overhead of a number of individual
messages.

Thomas Ruwart presented “Storage on
the Lunatic Fringe.” He introduced the
DoE Accelerated Strategic Computing
Initiative (ASCI), High Energy Physics
(HEP), NASA Earth Observing System
Data Information Systems (EOSDIS),
DoD NSA and DoD Army High Perfor-
mance Computing Centers, and the
Naval Research Center as the “lunatics”
who are dealing with petabytes of data.
The problem that these projects are
looking at is what the industry will face
in 5–10 years, so a lunatic in this sce-
nario corresponds to a visionary.

Ruwart gave a brief historic outline of
large-scale computing resources, starting
with supercomputer centers in the ’90s

78 Vol. 28, No. 3 ;login:

to the current ASCI Q and the ASCI Red
Storm, Purple, and NASA RDS.

He then went on to present some spe-
cific problems. In HEP, thousands of sci-
entists look at large datasets with
different access pattern considerations.
The Data Grid project is a distributed
architecture and the main issue is man-
aging data for long periods of time. How
to handle a trillion files is the challenge
for the NSA project. He said that consid-
ering 256 bytes of metadata per file, for a
trillion files this itself would result in
256 TB. If this number was not enough
to overwhelm, Ruwart raised the ques-
tion of backups in this scenario. Other
problems raised included searches for
content in these datasets, security, and
availability.

With data on such a scale, legacy block-
based file systems will not work. A vision
for the future is more intelligent storage
devices whose functionality would
migrate from the operating system to
the storage device. The storage device
apart from storing data, should handle
managing and administering data.

Some of the technologies addressed by
the Lunatic Fringe include object based
storage devices, intelligent storage, and
data grids.

Clod Barrera presented “Size and Shape
of Things to Come.” He stated that the
main concern in the future apart from
performance and scalability, would be
data management. He stressed that the
ease and cost of management should be
taken seriously.

He presented life science research as an
audience who will need to deal with
petabytes of storage requirements. At
this requirement level, data access con-
sistency, error recovery, high perfor-
mance, and a scalable file system would
be essential. One such project dealing
with a scalable file system is the Storage
Tank project. A storage network of
petabyte scale might start with a fiber
channel but could be other technology

such as IP over SCSI. Holographic stor-
age is an emerging technology that sim-
plifies content searching. Barrera
concluded by pointing out that an intel-
ligent system with knowledge of the dif-
ferent storage technologies can map the
application to the right storage technol-
ogy for optimal performance.

SESSION: STORAGE SYSTEMS

Summarized by Preethy Vaidyanathan

USING MEMS-BASED STORAGE IN DISK

ARRAYS

Mustafa Uysal and Arif Merchant,
Hewlett-Packard Labs; Guillermo A.
Alvarez, IBM Almaden Research Center

Mustafa Uysal presented the first talk
(given Best Paper award). Two widely
used storage technologies are NVRAMs
and disks. NVRAMs are faster, more
expensive, and less reliable, whereas
disks are slower and cheaper devices.
Current I/O performance is still
bounded by disk access.

MEMS is a new technology being devel-
oped with access characteristics between
NVRAM and disk. They provide persist-
ent and nonvolatile storage like disks but
have different characteristics. They have
no rotational delay, with slow moving
parts making acceleration easy and high
density storage providing a short seek
distance. Uysal expanded upon the vari-
ous architecture alternatives for this new
device, assuming it was cost-effective
and useful.

Uysal presented five array architectures.
MEMS replacing disk (MEMSdisk),
MEMS replacing NVRAM (MEMScache),
and three hybrid architectures: MEMSmir-
ror, Logdisk, and DualStripe. In the
hybrid architectures, MEMS does not
totally replace any device. MEMSmirror
has a MEMS device as mirror for the
disk. No access or layout change is
needed here: reads of data not in cache
are handled by MEMS and writes are
propagated from NVRAM.

Logdisk and DualStripe have data from
MEMS mirrored in disk for redundancy.

79June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SIn the Logdisk architecture, updates to

MEMS are propagated to disk in a log-
structured manner. Reads are handled
by MEMS and sequential reads can be
effectively handled by disk. DualStripe is
a dynamic architecture. Reads if cache
miss are handled by MEMS for a short
queue length and handled by disk for
queues greater than a threshold or if it’s
a large sequential read. Sequential access
detection is implemented in firmware.

The different array architectures were
tested for synthetic and trace workloads.
The overall conclusion: having a MEMS
device in your storage array architecture
will be cost-effective and efficient. The
hybrid architecture provide a good
cost/performance benefit and Logdisk
provides the most cost-effective archi-
tecture.

In the question period, Uysal clarified
that this work studied the placement of
MEMS in disk arrays so the scheduling
policy was the same as disk. Another
question led to the conclusion that a
possible 3-level hierarchy of NVRAM,
MEMS, and disk would be an extension
to this work when the exact characteris-
tics of the MEMS device is known.

OPTIMIZING PROBE-BASED STORAGE

Ivan Dramaliev and Tara Madhyastha,
University of California, Santa Cruz

Probe-based storage or MEMS is a new
technology with characteristics such as
low power consumption, high density,
high parallel tip movement producing
high throughput, and no rotational
movement. These devices can be mod-
eled to different design points each
resulting in different performance meas-
ures. This would answer the question of
which workload would best suit probe-
based architecture. Madhyastha outlined
a parameterized analytical model to
compute average request latency for
MEMS devices.

The Probe-based storage is characterized
by X and Y movements, with no rota-
tional movement such as disks use. The

data layout goal is to minimize move-
ment for consecutive requests, similar to
traditional disks. There is a mobile part
which moves when servicing a read or
write request. The repositioning time
comprises seek time and time taken
while moving with a constant velocity in
Y direction to access data (transfer
time).

Madhyastha illustrated how these two
times can be calculated for this device.
In the model, the seek time depends on
bit per tip, distance moved in the X and
Y directions, bit width, acceleration, and
settle time. The transfer time is propor-
tional to the data per tip. The service
time model gives a formula into which
values can be plugged to compute the
service time of the request.

This model was tested by comparing it
with simulation results for a wide range
of parameters. Block level traces were
used to test the performance of the
model. The error computed was small
(up to 15%) when compared to simula-
tion.

In the Q/A section, Madhyastha agreed
with the observation that the reliability
of these devices should be considered in
future research.

ARC: A SELF-TUNING, LOW OVERHEAD

REPLACEMENT CACHE

Nimrod Megiddo and Dharmendra S.
Modha, IBM Almaden Research Center

Dharmendra S. Modha discussed how to
manage cache or what page to replace to
maximize hit-ratio. The cache replace-
ment strategy presented was with
respect to demand paging.

Two popular techniques, Least Recently
Used (LRU), and Least Frequently
Used(LFU), are algorithms that have
long been used for cache replacements.
LRU captures locality of reference; LFU,
the frequency of reference. Modha pre-
sented a new scheme, ARC, that captures
both these characteristics by maintain-
ing two self-consistent lists. The first lists

the pages seen only once and the second
lists pages seen at least twice.

In ARC a sliding window of the size of
the cache is used to determine what page
to replace. The sliding window overlaps
the two lists and the percentage of over-
lap dynamically varies depending on the
workload. This implementation has low
computational overhead and is tested
with a wide range of trace data. ARC
consistently outperforms LRU and has
similar performance to an offline
replacement algorithm that is optimally
tuned for the workload.

In the Q&A Modha clarified that the
sliding window starts initially with the
midpoints in the two lists and the sliding
movement is sensitive to the request.

The source code is available at
http://almaden.ibm.com/cs/people/dmodha.

SESSION: SHARING BLOCK STORAGE

Summarized by Nate Edel

FAÇADE: VIRTUAL STORAGE DEVICES WITH

PERFORMANCE GUARANTEES

Christopher R. Lumb, Carnegie Mellon
University; Arif Merchant, Hewlett-
Packard Labs; and Guillermo A.
Alvarez, IBM Almaden Research Center

Christopher Lumb described work at
HP Labs on the Façade system, a storage
system that provides service level guar-
antees. Unlike existing solutions, which
don’t differentiate between workloads,
the Façade system is able to adapt to
changing workloads to attempt to meet
each separate workload’s service level
objective (SLO).

Façade works by intercepting storage
requests and prioritizing them based on
their SLOs. SLOs are latency bounds at a
given rate of I/O operations; a workload
may have separate SLOs for read and
write operations, and multiple work-
loads/SLOs may share one RAID.

The system has three components: the
I/O scheduler, the controller and moni-
tor, and a target queue. The I/O sched-
uler receives all requests and then

FAST ‘03 �

http://almaden.ibm.com/cs/people/dmodha

timestamps and queues them. The
scheduler then watches the wait times
and dispatches the IO requests based on
earliest deadline to the target queues.
The adaptive controller and monitor
monitors the response times and work-
loads; if requests aren’t meeting dead-
lines, it will makes changes to the target
queue behavior.

The target queue maintains latency
requirements by shrinking in depth
when latency targets are not met to
decrease throughput, and growing in
depth when latency targets are met to
increase throughput. The target queue
growth rate is conservative, because
shrinking queue depth is harder, as I/O
operations have to first drain the queue
to the desired depths, and further I/Os
have to finish to allow new operations to
enter the queue.

Lumb presented benchmark numbers
for a sample set of workloads with three
different SLOs, and showed that without
Façade, the different workloads would
have roughly equal latency and would
not meet their targets. With Façade, by
reducing the I/O rate for a continuous
process, the other two burst workloads
met their latency targets almost all the
time. There were spikes during transi-
tion from high throughput to SLO com-
pliance; he noted that these were opti-
mizable but that the best way to do so
was not clear.

Finally, Lumb compared two workloads
on separate arrays against Façade on a
higher resource single array; with
Façade, the combined array had essen-
tially the same latency for both processes
and the same throughput for the burst
workload. However, with Façade, the
continuous workload could take advan-
tage of bandwidth unused by the bursty
workload when it was not active, allow-
ing some degree of overprovisioning to
be avoided.

In the question-and-answer period,
someone asked if Façade works well
when all workloads compete equally, or

80 Vol. 28, No. 3 ;login:

what happens when workloads compete
for different resources? This was noted
as not clear, but it would be an interest-
ing experiment, which may be able to
account for some aspects, and they
could increase the complexity of the
model by taking into account other
aspects, but Lumb was not sure if it
would make a difference. Someone else
asked if the project had tested other
metrics, such as bandwidth? The project
did not, but it would be simple to use
bandwidth rather than request rate if
that was preferred. Another question
was how Façade prevented starvation? It
doesn’t handle admission control; they
assume the system could eventually ser-
vice all requests.

DESIGN AND IMPLEMENTATION OF

SEMI-PREEMPTIBLE IO

Zoran Dimitrijevic, Raju Rangaswami,
and Edward Chang, University of Cali-
fornia, Santa Barbara

Zoran Dmitrijevic described work done
on developing a system for preemptible
disk-access. The key benefit of pre-
emptibility is decreasing the initial
latency of high priority IO requests. The
size of other, lower priority I/O requests
will not have as great an impact on these
requests; and premptibility may be able
to improve other scheduling.

Overall, the time to execute a read
request depends on several factors – wait
for seek, rotational delay, and the maxi-
mum IO size and maximum disk IO
size. These are typically selected to bal-
ance throughput and latency with all
tasks being equal; without normal, non-
preemptible IO, the total response time
is the waiting time plus the service time.
For an average command, the expected
wait time is one-half of the service time
for an average IO. Preemption allows
elimination of waiting time, and its key
metric is the reduction of expected wait-
ing time.

Without preemption implemented on
the disk itself, the proposed implemen-
tion of semi-premptible IO splits lower

priority IO into several commands. This
allows the controller or OS to interpose
higher priority IO requests into the
stream of smaller requests, a technique
called chunking; because of disk read
prefetching and buffering, the overhead
of IO bus traffic and kernel CPU activity
remains close to constant.

Along with chunking, Dmitrijevic dis-
cussed two other techniques. The first,
just-in-time-seek, attempts to calculate
pre-seek slack using the rotational delay
to make that time preemptible – pre-
seek slack can be used for “free” perfect-
ing and seek-splitting. The second, seek-
splitting, takes long seeks and splits
them into multiple shorter seeks. This
allows preemption of seeks and takes
advantage of rotational slack. The down
side is that multiple short seeks take
slightly longer than a single direct seek.

There were several implementation
issues addressed: disk block mappings
needed to be implemented, the optimi-
nal chunk size had to be determined,
and rotational factors and seek curves
were analyzed. For the optimal chunk
size, Dmitrijevic noted there were both
lower and upper bounds: a minimum
size, below which throughput suffered,
and a maximum size above which it
seemed that prefetching might not con-
tinue to be a factor. SCSI and IDE drives
showed similar curves, although SCSI
was more efficient for a range of smaller
transactions.

The experimental implementation was a
user-mode driver running on the SCSI
generic driver on Linux, and tested using
traces from a specially instrumented
Linux kernel. It was tested with a simu-
lated workload of random IO using
FIFO and elevator scheduling, as well as
with TPC and multimedia streaming
traces. Expected waiting time is much
lower with some workloads, and only
very slightly worse throughput with ran-
dom accesses.

The talk closed by noting that the con-
tributions were measuring the pre-

emptibility of disk accesses and showing
that preemptibility can cut down wait-
ing time. Noted future directions were
the use of semi-preemptible IO in
scheduling algorithms, and a QOS disk
scheduler for Linux.

John Wilkes asked if it would be possible
to implement this on the on-disk con-
troller. The response was that while it
may be possible, existing drives would
need more onboard computing power
on the drive; while Dmitrijevic'was
unsure how much more would be
needed, he indicated that it should be
possible.

BLOCK-LEVEL SECURITY FOR NETWORK-
ATTACHED DISKS

Marcos K. Aguilera, Minwen Ji, Mark
Lillibridge, John MacCormick, and
Erwin Oertli, Hewlett-Packard Labs;
Dave Andersen, Massachusetts Institute
of Technology; Mike Burrows,
Microsoft Research; Timothy Mann,
VMware; and Chandramohan A.
Thekkath, Microsoft Research

Marcos Aguilera described the Snap-
dragon file system prototype, which was
created to test a security model for net-
work attached disks (NAD) storage. This
was contrasted with standard distributed
file systems, with disks on a server and
all accesses via that server; in that case,
the server is the main performance and
reliability bottleneck.

NAD is like a storage area network
(SAN), but is simpler because there is no
separate network for storage; in either
case, a server is used only for metadata,
and file access is direct to disks over the
(shared or separate) network. Because
the server is out of the data access path,
this offers better scalability and better
reliability on server failover. The prob-
lem is that the server no longer guaran-
tees security; a bad client can overwrite
data for other clients, or hackers or mali-
cious/viral code can access whole disks.

Eliminating the security problem is non-
trivial: Ddisks are dumb, low-level
devices with no idea of permissions or

81June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Seven files. The solution is to make disks

smarter. One proposed way of doing so
is to use higher-level objects rather than
block I/O, but block I/O has important
advantages. It is simple and well under-
stood, so people would like to keep it.

Achieving security with block I/O is pos-
sible. The naïve way is to store with each
block the owner, group, and mode.
However, that list can grow quite large
and is tied to particular OSes. Capabil-
ity-based security is the better alterna-
tive: the server provides a capability, and
then the client passes the capability to
the disk with a write request. The Snap-
dragon system uses capabilities that con-
tain a block range, permissions (r or
r/w), and a cryptographic signature.
These are checkable by relatively simple
disk hardware.

The cryptographic system used is Mes-
sage authentication codes (MAC); these
are like digital signatures but are short
and easy to compute, and use a shared
key rather than a public key. The
detailed protocol was originally pro-
posed for the NASD system in 1997. In
order to allow capability revocation, a
revocation list is kept on the disk, sent
directly from the server. This will
increase in size over time, and is
bounded by garbage collection; in part,
this is achieved by the expiration time of
capabilities, but large numbers of revo-
cations within a short time can fill it. It
is further limited by capability groups –
the server can invalidate whole groups –
while new capabilities can be issued by
the server if a valid client gets rejected.

The system is able to avoid replay
attacks; because timestamps/counters
have drawbacks, the combination of
bloom filters and epoch numbers are
used. Bloom filters check for duplicate
messages; the epoch number is a per-
drive counter. The down side is a single
rejected request per client per epoch
change; to avoid this, the drive keeps a
window of one old epoch’s filter. As long

as clients stay in regular contact, no
messages should be rejected.

The resulting system provides a low-
level block device, secure NAD devices,
and a very high degree of flexibility and
portability. The Snapdragon prototype is
a client and server kernel-space imple-
mentation on Linux. Each disk is imple-
mented using a simple program. The
system was benchmarked using low-end
hardware (400Mhz Intel Celeron-based
machines for the client, server, and
disks) over gigabit Ethernet; the result-
ing system is approximately 16% slower
in throughput and 5% slower in latency
than the system without security.

The actual protocol overhead is small;
capabilities are a 116-byte block, and
only 128Kb are required on the disk.
Similarly, the software complexity on the
disk is small – it only has to be able to
compute the MAC, verify the capability,
and check the bloom filters for a dupli-
cate; as a result, it is suspected, but not
verified, that it will be implementable in
firmware for existing disk hardware.

In the Q&A section, the system drew
praise from Garth Gibson, who went on
to ask what the effect of a difference
between block model and object model
would be. The response was that mini-
mizing change on disk was the motiva-
tion, as it was for the bloom filter.

Someone noted that the bloom filters
offered only a probabilistic guarantee,
and would have some false positives, and
asked how this was handled. The system
adds a nonce to each request and has a
false positive rate of about 0.1%; while
this may allow a denial of service attack,
this could also be accomplished by
bombarding the drive with any sort of
invalid request.

WORK-IN-PROGRESS REPORTS

Summarized by Nate Edel

PARALLEL EXTENSIONS TO THE DAFS
PROTOCOL

Peter Corbett, Netapp

FAST ‘03 �

Peter Corbett discussed extending the
DAFS (Direct Access File System) proto-
col to be used by a parallel file server.
This provides excellent support for high
performance computing with clustered
and parallel clients, with support for
fencing, shared key reservations, and
locking, and for parallel IO semantics
such as asynchronous I/O and comple-
tion groups. This extension to DAFS was
implemented as a single tier file server
with a clever client; the fastest imple-
mentation was in user space and opens
doors for a DAFS client that understands
parallel files.

WORLD-WIDE REPOSITORY FOR I/O TRACE

COLLECTION AND ANALYSIS TOOLS

Arnold Jones, Storage Networking
Industry Association

Arnold Jones discussed the creation by
SNIA of a repository of IO traces, work-
loads, collection, analysis tools and
snapshots, for use by industry and aca-
demia, as well as a forum for the discus-
sion of tool and trace problem solving,
data collection, and similar issues. Par-
ticipants will also be able to request
traces on physical media. The design of
the repository is in place, and they hope
to be online by 7/1/2003.

http://www.snia.org/apps/IOTTA_
Survey/register.php

82 Vol. 28, No. 3 ;login:

THE ZETTABYTE FILE SYSTEM

Jeff Bonwick, Sun Microsystems

The Zettabyte file system (ZFS), devel-
oped at Sun, is to be released later this
year. Bonwick noted that existing file
systems have problems: no defense
against data corruption, and lot of lim-
its, such as on the number of files, maxi-
mum file sizes, and so forth. As a result,
existing file systems are “excruciating to
manage,” between tools like fsck, many
configuration files, and managing parti-
tions, volumes, and the like. ZFS hopes
to “end the suffering” by offering end to
end data integrity, immense (128-bit)
capacity, and very simple administra-
tion. All operations are copy-on-write
transactions, with the on-disk state
always valid. All data is checksummed to
prevent silent data corruption, with sup-
port for self-healing in mirrored or
RAID configurations. It also supports
pooled storage models to eliminate par-
tition management.

RUNNING NFS OVER RDMA

Brent Callaghan, Sun Microsystems

Callaghan described NFS as imple-
mented over Remote Direct Memory
Access (RDMA). This is useful at
1gb/sec, and will probably be a critical
requirement at 10gb/sec. It allows direct
data placement (DDP), and has been
implemented as a new transport on
NFS, in parallel to UDP and TCP. He
showed a method of doing DDP with
RPC/NFS packets and benchmark num-
bers: 60Mb-sec peak with NFS/TCP, and
102MB-sec peak with NFS/RDMA. Fur-
ther, CPU utilization is much lower with
RDMA. There is a prototype running on
Solaris, over gigabit Ethernet support for
Infiniband is in progress.

USING SATF SCHEDULING IN REAL-TIME

SYSTEMS

Lars Reuther, Dresden University

Reuter began by pointing out that disk
request scheduling is best handled at
disk; on the other hand, the OS loses
some control, which is undesirable for
real-time systems, and onboard queue

sizes on disk are small. His work exam-
ines request scheduling at driver level,
especially using SATF, and asks whether
it can be used for QoS guarantees. In
doing so, this work measured the time
between two requests – including the
command overhead, seek and rotational
delays, and the time to actually read a
sector – with instrumentation on a SCSI
device driver to determine the match
between the model and measured val-
ues.

Benchmarks indicate that the external
scheduler can match the performance of
the disk internal scheduler on a slower
disk – catch up with the internal sched-
uler; on a faster disk, total effective
bandwidth is 12% lower but the faster
queue benefits real-time guarantees.
This shows that a system can do sched-
uling in software with QoS guarantees –
allowing the tradeoff between queue size
for throughput and QoS guarantees.

USING A VECTOR-BASED APPROACH TO

PREDICT PERFORMANCE OF DISTRIBUTED

STORAGE SYSTEMS

Alexandra Federova, Harvard

Federova discussed using a vector-based
approach to analyzing the performance
of n-tier distributed systems. The prob-
lem domain is as follows: in an n-tier
system – for example, Web servers to
application servers to db servers – the
impact of adding servers at a tier to
improve a perceived bottleneck at that
tier is difficult to test. At the same time,
determining the impact in advance
through simulation is tough to get right,
and either approach takes time. Model-
ling this is difficult because of the com-
plexity of the problem. Vector based
modeling has been used for stand-alone
systems, and Federova and her col-
leagues are looking into whether it can
be used on distributed systems. The pre-
sentation briefly touched on how vector
modeling is used for simpler systems,
and some proposed rules for the compo-
sition of models for distributed systems.

http://www.snia.org/apps/IOTTA_

DUMB STORAGE DEVICES SEEK SMART

CLUSTER STORAGE SYSTEM SOFTWARE

Christian Saether, Clustor.com

Saether discussed a mechanism for
improving access to shared metadata in
a cluster, based on earlier work on VAX
clusters. The motivation for this work
was the availability of cheap and dense
multi-system hardware. It uses WAN
protocols for data “right next door,” with
a new access layer for transactional
updating of shared storage. Data objects
are mapped for fault tolerance and per-
formance, and write-ahead logging is
used when there is no contention for
data. The system is implemented at the
kernel level, above the disk driver, “like
an LVM,” below the buffer cache. Modi-
fications are made via transactions with
nested redo and undo operations, and
using a distributed lock manager to
maintain data coherency.

THE STORAGE TRANSPORT PROTOCOL

Pat Shuff, Texas A&M University

Shuff discussed a proposed solution to
the problem of how to use excess disk on
campus, without central administration,
on a variety of OS platforms. Their
group estimated that the campus had
approximately 200 terabytes of excess
storage “lying around” – as compared to
2 terabytes of online storage for students
and faculty. Existing mechanisms do
not offer the ability to take advantage of
excess space on unrelated systems or to
find existing redundancy to use as back-
ups.

Existing partial solutions include net-
work backup and rsync, file-system level
sharing, and block level sharing, but
these all have some combination of cost,
management, portability, or scalability
issues. As an alternative, Shuff ’s group is
working on a new storage protocol, to be
implemented under the vnode layer or
under the Windows virtual disk inter-
face, which will act as an intelligent
manager to handle variable locations for
data. They are working on a protocol for
network access accounting for security

83June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sand automation which should work

with existing file systems automatically.
http://people.tamu.edu/~pshuff/

TESTING FOR DISTRIBUTED FILESYSTEMS

Richard Hedges, Lawrence Livermore
National Labs

Hedges started by discussing briefly the
need for and scope of very high perfor-
mance computer clusters at LLNL; one
large cluster supports up to approxi-
mately 100 TFLOPS, with 100 gigabytes
per second IO throughput to a single
parallel app. The team at LLNL works
with other projects, including the Lustre
filesystem – a collaboration between the
three big DOE labs and industry (see
http://www.lustre.org/).

There were several testing methods,
including both traditional serial testing
with readily available tools such as fsx,
iozone, bonnie++, and the posix verifi-
cation suite, and cluster validation test-
ing.

One set of this testing is done using the
IOR code, which was recently rewritten,
designed as peak-performance through-
put test for supercomputing data pat-
terns. It is used as heavy IO load testing
for parallel file systems, and is good for
modeling data patterns, acceptance test-
ing, and development activities.

Another tool used is Simul, which is an
MPI-coordinated suite of system calls
and library function calls, accessing a
single file up to thousands of times or
thousands of different files. It tests only
minimal data transfer but high instanta-
neous load, and is used as a race-condi-
tion finder and for testing massive
serialization.

For for information, see
http://www.llnl.gov/icc/lc/siop/

CLUSTERFILE: A PARALLEL FILE SYSTEM

Florin Isaila, University of Karlsruhe,
Germany

Isaila discussed technical issues with dif-
ferent types of parallelism: logical paral-
lelism consists of multiple compute
nodes accessing a file system, and physi-

cal parallelism consists of striping of
data across multiple disks. The main
problem this leads to is a poor match
between the two types of parallelism.
The proposed solution is a shared data
representation.

A model was found in the PARADIGM
compiler, which has been extended to
their system for data representation.
This is implemented using the physical
partition of files into subfiles, and logi-
cal partitioning into views. Directions
include implementing collective IO, disk
directed IO inside the file system. The
system can detect matching physical and
logical distributions.

A second area is cooperative caching,
with the cooperation of IO nodes and
compute nodes’ buffer caches as a
remote disk driver for Linux. Using this,
a node can fetch remote blocks into the
local buffer cache. The policy to do so is
downloadable and highly flexible. Two
possible policies have been implemented
so far.

DECENTRALIZED RECOVERY FOR SURVIVABLE

STORAGE SYSTEMS

Ted Wong, CMU

Ted Wong discussed research into the
problem of putting data objects on a
storage server, intending them to be
retrievable 5, 10, or 20 years hence with
confidence and privacy. The goals of this
work are longterm availability and con-
fidentiality; the method is to distribute
data with (m,n) threshold sequence
sharing techniques. These work by split-
ting the data into n devices, and the
threshold sequence techniques mean
that only m pieces must be available to
recover the data: up to n–m failures are
OK, and to compromise the overall data
object, at least m parts must be compro-
mised. Over time servers will fail, and
there is a need to be able to recover from
failures or compromised servers. The
proposed technique is verifiable secret
redistribution for threshold shared data;
the system would use a witness value to
prove possible reconstruction. To do
this, the original shares split into sub-

FAST ‘03 �

http://people.tamu.edu/~pshuff/
http://www.lustre.org/
http://www.llnl.gov/icc/lc/siop/

shares, and there is a broadcast protocol
for share and subshare witnesses. For
more information see
http://www.cs.cmu.edu/~tmwong/research/

FEDERATION OF LOCAL FILE SYSTEM DATA

INTO A SHARED-DISK CLUSTER FILE SYSTEM

Anjali Prakash, Johns Hopkins
University

Prakash discussed a system for “hassle-
free data management” in a cluster file
system (IBM Storage Tank). The goal is
that it be easy to set up seamlessly inte-
grate existing data, and allow for incre-
mental migration of existing data into
the cluster. The specific requirement was
to add online access to local file system
data to the cluster file system. Whether
to migrate that data or not is a manage-
ment decision.

FEDERATED DAFS: SCALABLE CLUSTER-BASED

DIRECT ACCESS FILE SERVERS

Murali Rangarajan, Rutgers

Rangarajan described the design and
implementation of a portable user-level
DAFS implementation, for use in a fed-
eration of DAFS servers using memory-
to-memory communication. The DAFS
client and server in user space share a
virtual interface architecture for com-
munications; DAFS calls are translated
to RPC on the server, using Berkeley
SEDA. The system is implemented on
Linux, FreeBSD, and Solaris. Compared
to Harvard kernel-based DAFS, overall
performance is close, with slightly more
slowdown at with higher file sizes.

SYNTHETIC IO WORKLOAD GENERATION

BASED ON RS PLOTS

Junkil Ryu, POSTECH Korea

Ryu discussed Synthetic IO workload
generation based on RS plots, a mecha-
nism intended to generate a synthetic
workload statistically equal to real
traces.

84 Vol. 28, No. 3 ;login:

TRANSPARENT PAGE CACHE COHERENCE

SUPPORT FOR LINUX-BASED STACKABLE FILE

SYSTEMS

Manish Prasad, Stony Brook University

Prasad discussed issues with VFS stack-
ing, giving the example of a user process
accessing an encryption file system built
over ext2. Because, in Linux, file read
and write is purely through page cache,
there is a high risk of inconsistency in a
stacked VFS environment: for example,
reads may occur from an upper level,
writes to a lower one. The existing stack-
able layer was modified to be central-
ized-cache-manager aware, trying to
support native filesystems non-intru-
sively. This was set up to figure out stack
order, detect and intercept calls such as
write() and sync(), and then resolve
them by invalidating (rather than updat-
ing) stale caches. Some future directions
include performance evaluation, exten-
sion to work with the dentry and inode
caches, and integration with network file
systems.

SSM: A SELF-TUNING, SELF-PROTECTING,
SELF-HEALING SESSION STATE MANAGEMENT

LAYER

Benjamin Ling

Ling defined a session as a period of
interaction between user and applica-
tion, and state is the temporary data
which has to persist during the course of
the session. He gave the example of a
customer signup for a brokerage
account. In a typical installation, this
would be a database application stored
on a standard file system, such as Netapp
filer or similar. To improve performance,
in-memory replication could be used,
but that adds state to the middle tier,
and performance is then coupled with
uneven distribution of load after a fail-
ure. The SSM exploits properties of ses-
sion state to separate it from the
application servers (stubs) and state
servers (bricks, which store state in par-
allel in memory) using a “write to many,
wait for few” technique. There is a win-
dowing mechanism (similar to TCP) for
stubs to track bricks, and self-healing to

recover from errors. There is a proto-
type, written in Java, running on the UC
Berkeley Millennium cluster.

DECOUPLED STORAGE: FREE THE REPLICAS!

Andy Huang, Stanford

Huang discussed ongoing work at Stan-
ford intended to reduce the cost of per-
sistent state in Internet services with the
goal of making managing state very sim-
ple, much like stateless front ends and
app servers. This is done using a separate
state store for non-transactional data. It
uses a hash table API, and uses quorums
to simplify recovery and keep data avail-
able throughout. Updates are handled by
broadcasting a message to the replicas
and then waiting for majority reply. On
a read, the system accepts the reply with
the most recent timestamp, and then
writes back the new data to all out-of-
date replicates. An initial prototype has
been implemented.

STORM: STORAGE RESOURCE MANAGEMENT

Sandeep Gopisetty, IBM Almaden

Gopisetty noted that the cost of storage
management often exceeds the cost of
physical hardware, and that a typical
heterogenous environment will have
various administrative tools that may or
may not be interoperable. His group at
IBM is developing an enterprise systems
management product, distinct from the
existing Tivoli products (SAN viewer
and data viewer).

The product is intended to manage the
complete storage life cycle in several
phases: identifying data storage assets,
evaluating data in terms of priorities
and storage problems, controlling policy
and automation, and predicting usage
and growth trends. This uses what they
call an “autonomic architecture” which
supports self-configuration, optimiza-
tion, correction, and healing. They are
engaged in research on automated pro-
visioning for optimal use of resources,
modeling for dependability, reliability,
and performance, and have stated a goal

http://www.cs.cmu.edu/~tmwong/research/

of developing a policy-based architec-
ture

SCALABILITY OF NFSV4 NEXT STEPS

Dean Hildebrandt, CITI at the Univer-
sity of Michigan

Hildebrandt discussed the scalability of
the upcoming NFSv4 protocol, in work
funded by ASCI. He noted that NFSv4 is
stateful on the file server for open, lock,
and delegation operations. Questions
related to scalability include how to
share an object among multiple NFSv4
servers, or, more generally, how to share
state. Their proposal was to implement a
division between a state server and
a data server, and then to extend the
NFSv4 redirection mechanism to handle
relocating individual files. The process
flow would be for a client to mount onto
the state server; open requests would go
there, and then read or write is relocated
to the data server via load balancing,
with state copied to data servers as
needed.

IS PARITY-PROTECTED RAID OBSOLETE?

Eran Gabber, AT&T

Gabber noted that disk capacity
increases at 80% per year, while access
time improves much more slowly, at
about 12% per year. With the bottleneck
of IO rate, not capacity, parity protected
RAID has undesirable performance
characteristics – 4 I/Os for every write, 2
if everything is in cache, while mirroring
always only uses 2 I/Os. With disks that
are so large, why bother with RAID?

This doesn’t apply in all cases: for read-
mostly data, where there are few writes,
there is little write penalty. And for cases
where the absolute lowest latency is nec-
essary, the need for high-end disk
devices may mean that customers can-
not afford to replicate; similarly, where
the absolute lowest cost is an issue, cus-
tomers may also not be able to afford to
replicate. Another interesting question
is, how does MEMS fit? “But for the
common case, watch the trend.”

85June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SINVITED SESSION: ENTERPRISE

STORAGE: THE NEXT DECADE

David Black, EMC; Garth Gibson,
Panasas; and Steve Kleiman, Network
Appliance

Summarized by Scott Banachowski

David Black started the panel discussion
by noting that in the future, people will
be the scarce resource in storage systems,
because any headway in management
scaling is instantly consumed by
increased capacity. We must address the
problem by changing what must be
managed. Black mentioned approaches
such as content-addressed storage and
fixed-content data. These approaches
not only solve some of the performance
problems, but also change management
problems, by requiring no directories or
hierarchical namespaces.

Black outlined the “mystery meat” anal-
ogy: identifying data that was stored “in
the freezer” for a long time. Grid
researchers have started working on the
problem of tracking and locating data
sets, focusing their attention onto the
content of the data rather than where it’s
stored.

Black reviewed some emerging tech-
nologies such as iSCSI and storage
bricks, noting that how they will be used
is unpredictable, as the innovation of
early adopter markets dictates their
future use. He concluded his segment by
noting that the interesting problem in
enterprise storage is no longer perfor-
mance, but robustness.

Garth Gibson noted that most of the
great ideas generated in the ’90s still
show no value to customers. Now that
we live in leaner times, cost-effectiveness
is high priority. For the rest of his talk,
Gibson described the ideas that he pre-
dicts will survive in the following
decade.

A trend toward simpler administration
will survive, as it leads to cost-effective-
ness. The most cost-effective mainframe
computer is a cluster, and Gibson

believes this is true of storage systems as
well, as storage clusters leverage com-
modity storage and connectivity prod-
ucts. Other notable survivors are NAS
and SAN, which are converging as new
systems mix and match these storage
network infrastructures to improve per-
formance and manageability. Separating
the control paths from data and asym-
metrically accessing data by exposing
parallelism will lead to better perfor-
mance due to increased data bandwidth,
offloaded metadata services, and fewer
bottlenecks. Gibson explained that he
liked object devices because the device
encapsulates metadata, and clients don’t
need to be trusted when servers do
authentication.

Gibson described a direction for enter-
prise storage that includes changing pol-
icy and namespace management. Rule-
based policy is the rage, but making it
work requires a body of well-understood
expertise on using policies correctly,
otherwise administrators will be clean-
ing up the mess left by misbehaving AI
algorithms. The direction for namespace
is toward search-engine-like interfaces
for data access. Gibson concluded that in
this decade, enterprise storage must
deliver the research of the previous
decade in order to cope with increasing
scale and bandwidth demands.

Steve Kleiman focused on the problems
of the next few years: supporting access
to petabytes of data in geographically
dispersed locations with thousands of
users and nodes, and running diverse
applications. Further complicating the
systems, data will have different avail-
ability and recovery requirements, as
well as different access patterns.

Kleiman provided a review of the evolu-
tion of enterprise architectures from
their beginning as proprietary networks
to wide-area large-scale enterprise data
infrastructures. Driving this evolution is
reduced cost of fast storage links and
high volume, reliable disk systems. The
problem isn’t the technology but the

FAST ‘03 �

management, especially considering the
amount of geographic dispersion
between data centers.

In order to increase manageability,
Kleiman suggests virtualization of
devices, elimination or drastic simplifi-
cation of existing paradigms, and unifi-
cation of existing enterprise storage
solutions. Only by changing the para-
digms and allowing the new technolo-
gies to enable new strategies will we
solve our main problem of data manage-
ment.

Jeff Chase offered a quick viewpoint
before opening the floor for discussion.
He noted that because interfaces for
storage systems exist at different levels,
people have different views of the mean-
ing of convergence. Chase warned that
this is leading us down a road that
repeats problems facing cluster comput-
ing research in the ’90s. During the dis-
cussion period, the speakers mostly
reiterated points made in their talks. The
liveliest part came when someone
asserted that policy-based management
is “evil” and “foolish.” The systems are
much too complex, with many contra-
dicting rules for different scenarios, so
that automated management will lead to
fiasco. The panel agreed that policies are
difficult to define and will never replace
administrators.

SESSION: MEASURING THE

TECHNOLOGY

Summary by Nate Edel

MODELING HARD-DISK POWER

CONSUMPTION

John Zedlewski, Sumeet Sobti, Nitin
Garg, and Fengzhou Zheng, Princeton
University; Arvind Krishnamurthy, Yale
University; and Randolph Wang,
Princeton University

Sumeet Sobti discussed a disk simulator
developed at Princeton which gives an
estimate of how much energy the disk is
likely to consume, given a disk IO trace
and a description of the disk. The moti-
vating application is to determine the

86 Vol. 28, No. 3 ;login:

impact of file system attributes on
energy consumption. Locality, bursti-
ness, and the type and number of
requests are all key factors; as such,
power consumption will be based on
user workload and the file system
parameters.

Data layout policies, asynchrony, data
layout, and background reorganization
are all possible parameters, and in total
are a huge design space to explore. The
original goal was comprehensiveness,
which proved very time consuming –
simulator speed was key.

A flaw in many existing models is that
disks don’t consume power at a constant
rate. For example, the IBM microdrive
varies by 20–25% during active periods,
and by a factor of 10 from idle to active.
As such, a coarse-grained simulator is
not adequate.

The team developed a fast and fine-
grained disk power simulator, which
worked well for the two disks it was
tested with – and evaluated it against
coarse-grained power models. The
architecture of the simulator was in two
parts. The simulator itself is based on
DiskSim with an added Energy Simula-
tor model. The second part is an auto-
matic parameter extractor, which builds
on the existing performance parameters
extraction.

The energy simulator calculated total
energy, which is in turn composed of of
active energy states – seek/rotating/read-
ing/writing – and idle states – low power
modes and transitions. These are esti-
mated via DiskSim to gather statistics
about disk stages, with seek energy for
example, determined by seek distance;
rotate/read/write determined by con-
stant use differing per activity. A table is
used to approximate the behavior of
available low-power modes and the
transitions between them. Power values
are extracted by the combination of
hardware and software, tested on a 30ms
basis. This is too coarse-grained to get
individual operations, so they are

instead spread across longer traces and
then statistically determined.

STORAGE OVER IP: WHEN DOES HARDWARE

SUPPORT HELP?

Prasenjit Sarkar, Sandeep Uttamchan-
dani, and Kaladhar Voruganti, IBM
Almaden Research Center

Prasenjit Sarkar began by distinguishing
Storage over IP from conventional SAN
systems: although in both cases, storage
is a service over the IP network, in con-
ventional SANs servers are attached to
storage over a specialized SAN network,
while with IP SAN, a combined gigabit
IP network is used by both servers and
storage systems.

IP SAN implementations are flexible,
with three common approaches: a soft-
ware-only implementation with a
generic network adapter (HBA), an
adapter which implements a TCP
Offload Engine (TOE) which supports
the TCP/IP network stack on the net-
work adapter, and an intelligent-HBA
approach where both the IP storage pro-
tocol and TCP are implemented on the
adapter.

The down sides to a software-only
approach are the TCP copy overhead,
multiple interrupts per data transfer,
and high communications overhead;
variants such as jumbo-frames and zero-
copy TCP can ameliorate these some-
what.

A TOE adapter uses DMA to stream
data to the network adapter, which
implements TCP/IP; this reduces the
overhead on the host and results in one
interrupt per data transfer, reducing
communications overhead, although the
TCP copy overhead remains.

An intelligent HBA approach uses a sin-
gle DMA to the HBA and removes both
the storage protocol (iSCSI) and TCP
overheads from the host, with one irq
per data transfer, and has the lowest
communications overhead.

MORE THAN AN INTERFACE – SCSI VS. ATA

Dave Anderson, Jim Dykes, and Erik
Riedel, Seagate Research

Eric Riedel aimed to dispel myths and
confusion about hard drives. He noted
that while many consumers and busi-
nesses divided up the market by inter-
face between SCSI and ATA, the market
segmentation as it was seen by the disk
drive industry was quite different. The
two main segments he went on to dis-
cuss are drives for personal storage (PS),
used in desktop systems and low-end
servers, and drives for enterprise storage
(ES), used in servers, high-end worksta-
tions, and drive arrays. He also noted
that there are separate market segments
for mobile drives, such as those used in
notebook computers, and for drives for
consumer devices/appliances, but that
these would be a topic for future discus-
sion. He also noted the persistent myth
that drives are built along one assembly
line, tested at the end, and the “bad
ones” get ATA controller boards and the
better ones get SCSI.

He compared two Seagate drives, a 10k
RPM Cheetah vs. a 7200 RPM Bar-
racuda, to show the differences between
an enterprise drive and a lower-end
model. The Cheetah had a smaller plat-
ter (84mm vs. 95mm), a much larger
actuator assembly to reduce seek times,
and a more rigid case structure for dura-
bility and vibration-proofing, which he
noted were only three major factors, out
of many. He also briefly noted differ-
ences from a 15k RPM Cheetah, which
has a 65mm platter for still lower mass
and shorter seeks, but at the expense of
lower capacity.

Seek times are much more aggressive on
enterprise drives, with the level of sepa-
ration increasing; the rate of improve-
ment is low on personal drives, and
somewhat quicker on enterprise. Seek
time is very sensitive to both the
mechanics and signal processing, and
thus costly. Sensitivity to external vibra-
tion is also a factor; the rotation of one
drive can affect neighbors, and while

87June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Senterprise drives are designed to block

those vibrations, personal drives are not.
This can have a negative effect on per-
formance.

The talk closed with a comparison of the
direct performance impact of certain
design choices, comparing two IBM
drives; area density and platter size were
large on the personal drive. RPM was
higher on the enterprise drive, overall
resulting in a slight bandwidth advan-
tage to the personal drive. However, an
enterprise drive of comparable genera-
tion has a higher bandwidth (53MB/s vs
37MB/s), while the changes (more plat-
ters, higher RPM) result in a higher cost.

