Proceedings of USITS' 99: Th& 2ISENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11-14, 1999

THE NINJA JUKEBOX

lan Goldberg, Steven D. Gribble,
David Wagner, and Eric A. Brewer

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhttZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



The Ninja Jukebox

Ian Goldberg, Steven D. Gribble, David Wagner, and Eric A. Brewer
The Unwversity of California at Berkeley
{iang,gribble,daw,brewer }@cs.berkeley.edu

Abstract

We present the design and implementation of the “Ninja
Jukebox”, an infrastructural service that allows a com-
munity of users to build a distributed, collaborative
music repository that delivers digital music to Internet
clients, and that performs simple collaborative filtering
based on users’ song preferences inferred by the service.
The Jukebox, implemented in Java, was designed to al-
low rapid service evolution and reconfiguration, simplic-
ity in participation, and extensibility. We demonstrate
that our careful use of a distributed component archi-
tecture enabled rapid prototyping of the service, and
that our use of carefully designed, strongly typed inter-
faces enabled the smooth evolution of the service from
a simple prototype to a more complex, mature system.

1 Motivation

The Internet is evolving towards a service in-
frastructure: a network of rich, robust, and often
professionally maintained services that are conve-
niently accessible to people through the web. How-
ever, the fact that these services rely on the web to
present their content effectively restricts their users
to be human; the lack of structure and well-defined
types in web content makes it all but impossible for
computer programs to interact with most Internet
services, despite the obvious benefits of being able
to do so (such as service composition, richer search
and information access services, etc.). Several re-
cent efforts have attempted to introduce such struc-
ture and typing to the web, such as the WIDL [12]
and WebL projects [16], or the ongoing W3C XML
developments [6].

The UC Berkeley Ninja project! is pursuing a
complementary path to these efforts: we are build-
ing an infrastructure for supporting fault toler-
ant, highly available, scalable services composed of
a number of well-circumscribed components, each
of which exports a strongly-typed, programming-

IProject home page: http://ninja.cs.berkeley.edu

language level interface [10] accessible using RPC-
like mechanisms [4]. Explicitly exposing service in-
terfaces and making use of strong typing has a num-
ber of benefits, including forcing authors to carefully
design the boundary between their services and the
rest of the world, making those services accessible
to programs, and allowing the composition of ser-
vices by infrastructural elements. We believe that
when a large number of such services are deployed,
a network-externality effect will occur, causing the
power of an individual service to be greatly en-
hanced by interaction with the many other available
services.

In this paper, we describe one such service: the
Ninga Jukebox. The Jukebox allows a community
of users to collaboratively build a distributed mu-
sic repository out of both music CDs and MP3 files
stored in local filesystems, and to use simple collabo-
rative filtering to allow individual users to filter their
music preferences according to other community
members’ explicit and implicit recommendations.
In section 2, we discuss the design rationale that
went into the Ninja Jukebox, and reflect on how the
Ninja project’s service philosophy influenced this
design. Section 3 describes our Java-based Juke-
box implementation and how we smoothly evolved
it, and section 4 presents some of the limitations
of our implementation and the lessons we learned
while building it. Finally, in section 5, we present
related work.

2 Design Philosophy

The Ninja Jukebox application was originally
conceived of to “scratch the itch” of several gradu-
ate students: to be able to harness the large number
of unused CD-ROM drives in the 100+ node Berke-
ley network of workstations (NOW) [3] and present
a single, unified view of all music in all drives. Over
time, the Jukebox has vastly evolved in complex-
ity and richness. It now transparently supports
both raw audio CDs in CD-ROM drives and MP3
files in local filesystems, and it performs authentica-



tion and access control in order to adhere to copy-
right laws. It exports both a programmatic interface
and an HTML interface for backwards compatibility
with browsers; its programmatic interface includes
a collaborative filtering service that deduces users’
song preferences, and allows one to construct song
playlists based on simple boolean combinations of
other users’ preferences.

The Ninja Jukebox was designed with several
specific goals in mind. The first goal was that the
Jukebox should be a communal, collaborative ser-
vice. Individuals should be able to add or retract
their personal collection of music from the Jukebox
as they please, without requiring special interven-
tion from a centralized administrator. This implies
that contributors should be given as flexible as pos-
sible of a “service contract”—they must be allowed
to retain control over their own contributions, while
still ensuring that the overall Ninja Jukebox ser-
vice maintains as stable as possible of a view to
the rest of its users. The Jukebox service therefore
must be able to adapt to changing group member-
ship by gracefully masking unpredicted failures or
disappearances.

Another goal was for the Jukebox service to re-
tain flexibility, extensibility, and the facility for
rapid evolution. As the evolution of the Jukebox
has explicitly demonstrated, applications are not
cast in stone, and services should not remain im-
mutable once they have been released and are in use
by applications and users. We therefore wanted our
infrastructure to admit the evolution of its services,
and we wanted to design the Jukebox service in such
a way as to most easily allow it to be extended in
unforeseen ways.

2.1 Design Implications

In order to meet the above goals, we made the
following three explicit design decisions: the adop-
tion of a distributed component architecture to de-
compose the Jukebox service into a small number
of carefully chosen, functionally decoupled pieces,
the imposition of a rich, strongly typed interface on
these components (including carefully chosen data
structures that precisely describe the contents of the
Jukebox), and the use of soft state to achieve even-
tual consistency in the Jukebox.

Disciplined use of a distributed component
architecture: as exemplified by Sun’s Jini [21] and
Corba [20], distributed component architectures ad-
vocate the use of an object-oriented language to
decompose applications into smaller, self-contained
objects, and the distribution of those objects across

machine boundaries, relying on mechanisms such as
RPC to perform inter-object communication. Com-
ponent architectures make it simpler to begin with
and maintain a clean design throughout the service’s
lifetime: the separation into objects allows for a sep-
aration of concerns, a tenet of good software engi-
neering.

In the Ninja Jukebox, we decomposed our ser-
vice into three major components, each respectively
responsible for: (1) managing local collections of
music (independent of physical and logical format),
(2) the integration of many such collections of music
and the maintenance of metadata about the music
(such as users’ song preferences), and (3) the client-
side retrieval and playing of music from the service.
This deliberate decomposition is what ultimately
allowed the Jukebox to evolve so painlessly—each
component’s functionality is well encapsulated and
isolated from other components, meaning that these
components can internally evolve without affecting
the rest of the system, and that new components
can be added that compose with existing pieces to
enhance the overall service. For example, the com-
ponent responsible for managing local collections of
music encapsulates information and access mecha-
nisms particular to a music format, and thus the
transition supporting only audio CDs in CD-ROM
drives and also supporting MP3 files stored in a
file system merely involved introducing a subclass
of that component. Similarly, we could envision
adding subsequent subclasses that would contain all
music available from popular music web sites (such
as http://www.mp3. com), or would serve as a gate-
way to receive music broadcasts (such as MBONE
vat sessions).

Strongly-typed interfaces: in our opinion, the
use of a distributed component architecture is only a
partial step towards a properly decomposed service:
the careful design of the interfaces between those
components is a second, crucial step. An inter-
face to a component is a declaration of both syntax
and semantics, and as such is a contract that binds
the component author to maintain those semantics
even when the component is enhanced or extended
through subclassing. Furthermore, the API to the
service ultimately dictates the expressive power that
clients of that service have available to them. We
believe that an infrastructure service is defined by
its interface and a declared set of guarantees about
its performance and availability.

In the Jukebox, our APIs include data struc-
tures that richly describe content. These structures
enable intelligent applications such as clients that
group music on arbitrary terms, or that allow users



to construct playlists based on either explicit dec-
larations or inferred preferences gleaned from the
service’s observation of their listening history. This
focus on strongly-typed interfaces helps remove bar-
riers to rapid service evolution by forcing service au-
thors to carefully design and explicitly declare each
of their components’ interfaces, and therefore their
implied service contracts.

Use of soft state to achieve eventual con-
sistency: as a side-effect of making the Jukebox
collaborative, we could not rely on any particular
person’s contributions to remain available. We thus
designed the infrastructure so that a contributor pe-
riodically announces the presence of his/her music
to a common master repository in order to add mu-
sic to the overall Jukebox. The act of a person
adding music to the Jukebox is therefore treated
as a hint rather than a promise: components can-
not rely on that music being there, and they must
gracefully handle the case in which a particular song
abruptly becomes unavailable. We also treat entries
in the master repository as a lease, and expire them
if the periodic announcements stop. The master
repository correspondingly contains an approximate
view of all available music; this view continually ap-
proaches the correct view over time. This leased
approach is also used in our authentication mecha-
nisms: when a client requests a song from the Juke-
box, it must first authenticate itself, the result of
which is a capability that is good for a single use or
for thirty seconds: the Jukebox components lazily
time out these capabilities as necessary.

Not all state in the Jukebox is soft-state: users’
song preferences, for example, are stored as hard
state by dedicated, highly-available infrastrucure in
what we call a “base”[10]. A base is composed of ev-
erything needed to build an available compute clus-
ter, including system administration, a secure ma-
chine room, redundant networks, UPS, etc., and as
such is an ideal environment in which to protect
hard state.

3 Implementation

This section of the paper describes the imple-
mentation of the Ninja Jukebox service and client,
and their evolution through three stages of func-
tionality. The first version of the service only sup-
ported the playback of raw audio CDs from the CD-
ROM drives of Jukebox servers. In the second ver-
sion of the service, we added the ability to convert
raw CDs into compressed MP3 files, and for those
MP3 files to be played over the network; this sec-

ond version also included authentication and access
control mechanisms to enforce copyright protection.
Finally, we added a simple collaborative filtering
mechanism to the third and current version of the
Jukebox.

We chose to implement the Ninja Jukebox ser-
vice in Java, both because Java trivially enables dis-
tributed components and because the Ninja project
has developed a significant amount of infrastructure
in Java. This infrastructure includes authenticated
remote method invocation (RMI) and a cluster-
based service platform called “MultiSpace” [10] that
was designed to support scalable and rapidly evolv-
able infrastructure services.

3.1 Ninja Jukebox v1.0: raw audio CD
playback

As shown in Figure 1, the first version of the
Ninja Jukebox implementation was decomposed
into the following elements:

The SoundSmith: SoundSmiths are responsi-
ble for indexing and maintaining a structured collec-
tion of music. The version 1.0 SoundSmith indexes
music on an audio CD in a local CD-ROM drive,
making use of a service that acts as an HTTP to
RMI gateway to provide programmatic access to an
online “CDDB” database[15]. This database pro-
vides a mapping from a CD’s track timing infor-
mation to detailed information about the CD’s au-
thor, song titles, and song durations. SoundSmiths
periodically send beacons to the MusicDirectory;
through these beacons, they both announce their
existence to the MusicDirectory and present the list
of songs that they maintain. Anyone that wishes
to contribute music to the Jukebox must only run
a SoundSmith that can index and serve that mu-
sic. SoundSmiths can be started up and torn down
at any time, as each SoundSmith is completely au-
tonomous, and the beacons emitted by the Sound-
Smith are treated as soft-state by the MusicDirec-
tory. A SoundSmith serves music by streaming it off
of an audio CD from the CD-ROM drive of an infras-
tructure workstation and transmitting it in uncom-
pressed .au format through an (untyped) HTTP in-
terface.

The MusicDirectory: As previously men-
tioned, SoundSmiths periodically beacon their ex-
istence and a list of their music to the MusicDi-
rectory. The role of the MusicDirectory is to keep
track of these beacons, and to build up an integrated
list of all available music and of all running Sound-
Smiths. Clients use the MusicDirectory as a level of
indirection that shields them from needing to inde-



CcDDB
gateway

“ripper"

workstation

song list

-~ - —— == - ==

Jukebox Client

Figure 1: The Ninja Jukebox v1.0 architecture

pendently discover the location of all SoundSmiths
in the Jukebox. Ultimately, this centralized Mu-
sicDirectory limits the scale of a Jukebox, since all
SoundSmiths repeatedly send it listings of music.

Jukebox Clients: Jukebox Clients interact
with a MusicDirectory to gather a listing of available
music, and with many SoundSmiths to receive and
play specific songs. We have currently implemented
two clients. The first presents a graphical user inter-
face to the user (figure 2), and allows users to build
playlists of available songs. Music streamed to this
client is shuttled to external music players that un-
derstand many music formats and have the ability
to play music as it is streamed over the network. In-
ternally, this client is decomposed into a GUI front
end and a song selection back end. The GUI front
end provides the user with controls for constructing
playlists, and with familiar play, stop, pause, fast-
forward, and reverse buttons. The song selection
back end selects specific songs to play given the list
of currently available music from the MusicDirec-
tory, the user’s manually constructed playlist, and
events that are generated when the buttons such
as play or stop are pressed. The second client is
a proxy that converts between the APIs and data
structures exported by the Ninja Jukebox service
and HTML forms. This proxy allows conventional
HTML browsers to access the Jukebox; music is
streamed through the proxy to the browser, or pre-
sumably to the browser’s helper applications that
can actually understand specific audio formats.

This first version of the Jukebox service was well
received even though it suffered from a number of
drawbacks. The fact that all audio was transmit-
ted in an uncompressed format resulted in exces-
sive traffic on our local networks, greatly limiting

5] Ninja Jukebox Song Direclon
[ ninja (72 artists, 112 albums, 1283 tracks, 101:17:11)
@ (94 Non Blondes (1 albums, 10 tracks, 00:37:24)
©- [ Ace Of Base (1 albums, 12 tracks, 00:45:48)
@ [ Ashkenazy, Haitink & Concertgshouw Orchestra (1 albums, 5 tracks, 00:57:08)
© [ Ashkenazy, Vladimir (3 albums, 93 tracks, 09:26:53)
©- [ Piane Sonatas (12 tracks, 01:11:13)

@ Plane Sonatas — disc 2 (10 tracks, 00:59:55)
@ [ Piano Sonatas - disc 3 {13 tracks, 01:08:52)

Playing: [Ashkenazy, Yladimir - Piano Sonatas — disc 2 — 08: Sonata #6 in F Majo..|

N [ loop
%?;‘;ﬂ,ox Wy oo

edit playlist

Figure 2: The Ninja Jukebox client GUI

the number of clients that could simultaneously ac-
cess the Jukebox. Furthermore, the fact that mu-
sic could only be served from audio CDs physically
present in CD-ROM drives limited the amount of
music that could be present in the Jukebox at any
given time, since we had a limited (although large)
number of CD-ROM drives at our disposal. Finally,
the lack of any security infrastructure prevented
us from widely releasing the Jukebox service and
client, even within our department, since it would
become trivial for users to violate copyright protec-
tion legistlation, either accidentally or deliberately.

3.2 Ninja Jukebox v2.0: MP3 playback
and security

The separation of the Jukebox into the previously
described components satisfied our primary design
goal: to construct a collaborative service, in which
anyone can contribute their collection of music to
the Jukebox. A second design goal was to allow for
the evolution of the service; in order to test this goal
(and to satiate the demands of the clients of the v1.0
Jukebox), we extended the Jukebox functionality to



produce the v2.0 version of the service. This version
of the service attempted to overcome the drawbacks
of the v1.0 prototype by including two new major
features: the transparent support of MP3 files, and
support for access control and client authentication.

We also slightly modified the Jukebox by hav-
ing SoundSmiths only report their existence to the
MusicDirectory rather than the complete list of mu-
sic that they manage; in the v2.0 infrastructure,
clients discover SoundSmiths through the MusicDi-
rectory, but then ask each individual SoundSmith
for its list of locally available music. This modifica-
tion drastically reduced the size of the SoundSmith’s
beacons, which eased the scaling bottleneck caused
by the centralized MusicDirectory. This bottleneck
became increasingly evident as the body of music
stored in the Jukebox grew to over 4,400 songs (375
albums, accounting for more than 25 gigabytes of
hard drive space and 320 hours of music).

3.2.1 MP3 Support

MP3 support was surprisingly easy to add to the
Jukebox service. To do it, we simply created a sub-
class of the SoundSmith component that understood
how to index and stream MP3 files on a regular
filesystem instead of audio tracks from an audio CD
in a CD-ROM drive. The data structures embed-
ded in the SoundSmith’s beacons are only meta-
data, and as such are totally independent of the
specific format in which the music is actually kept.
In order to play music, Jukebox clients interact with
the MusicDirectory service to fetch an HTTP URL
for a song; this URL is served by the SoundSmith
that maintains the song. Because the song data
is streamed to external music player software that
happens to understand MP3 formatted music, the
Jukebox clients never need to understand anything
about the music format. When we deployed several
of these MP3-aware SoundSmiths in our infrastruc-
ture, Jukebox clients suddenly became aware of a
much larger set of available music, and transpar-
ently began accessing the newly available MP3 files.

The MP3 files maintained by SoundSmiths are
created by helper daemons that batch convert music
CDs to MP3 formatted files by first “ripping” raw
audio from the CD, and then compressing that raw
audio into an MP3 file and its associated artist and
album metadata (figure 3). These daemons run in
the background on all of our Jukebox workstations,
effectively crawling the Jukebox for new music to
MP3 compress and add to the Jukebox. While this
conversion is happening, an audio CD SoundSmith
can serve the music directly off of the audio CD;

CDh CDDB
e i i
ripper gateway
\
mp3
encoder

,,,,,,,,,,,,,,,, T

ACLs + [.mp?) store ]—-—‘ SoundSmith

workstation

Figure 3: MP3 Support in the Jukebox v2.0

after the conversion is finished, the music can be
served in the preferable MP3 format.

We attribute the ease with which we added sup-
port for MP3 files to the Jukebox infrastructure to
our use of a distributed object infrastructure and
to the strongly-typed interfaces between our Juke-
box components. The ability to subclass in order to
specialize the SoundSmith allowed us to maintain
its RMI interface, and thus upgrade its functional-
ity in a manner that was transparent to the rest
of the Jukebox. Transparency was meaningful be-
cause of the presence of explicit interfaces between
the components; achieving transparency in this case
was a manner of maintaining both the syntax and
declared semantics of the interface.

3.2.2 Security Infrastructure

For the Jukebox, the only relevant security issues
are access control and authentication. Our authenti-
cation mechanism is based on SecureRMI, a variant
of RMI—Java’s standard remote method invocation
protocol [17]—that we have developed to operate
over a cryptographically-secured channel. With this
tool in place, the access control problem becomes
relatively easy: for each song in a SoundSmith, that
SoundSmith maintains an ACL (a list of Secure-
RMI principals allowed to play that song). The ac-
cess control mechanism thus is as simple as having
the SoundSmith look up an entry in a list. The
SoundSmith also hands out capabilities to authen-
ticated principals that allow them to access specific
songs for a limited amount of time: these capabil-
ities are good for a single access, and expire if not
used within 30 seconds. Note that the MusicDirec-
tory does not need to authenticate the identity of
clients, as it is entrusted only with a list of available
songs and SoundSmiths, and not the songs’ con-
tent. For the proxied HTML-based client to work,
however, the proxy itself must be entrusted with
its users’ credentials, since HTML browsers do not



have the ability to interact with our SecureRMI in-
frastructure directly.

Currently, our policy for access control is rel-
atively simplistic: a principal can only listen to
a copyright-protected song if she has previously
demonstrated knowledge of the song contents (e.g.
by uploading it to the Jukebox); unrestricted access
is given to music marked as non-copyrighted. This
approach is inspired by legal considerations: if peo-
ple can’t abuse the Jukebox to gain access to mu-
sic they don’t already have, it seems unlikely that
the Jukebox will be accused of violating copyright
laws. However, the Jukebox could also accommo-
date more sophisticated policies for access control,
such as support for group ownership where only one
group member can listen to a song at a time, or
a pay-per-use scenario under which royalties could
be collected and submitted to the copyright holders.
The flexibility of our design makes such variations
on authentication quite straightforward.

Returning to the authentication mechanism, Se-
cureRMI was the piece of the security architecture
that demanded the vast majority of our security en-
gineering effort. SecureRMI (optionally) authenti-
cates the endpoints and then encrypts the remain-
der of the communication with a Triple-DES session
key derived from a Diffie-Hellman key exchange. We
also provide a certification infrastructure for end-
point public keys and tools for managing them; cer-
tificates bind the service’s fully-qualified class name
(or the client’s identity) to the server’s (or client’s)
public key.

Of course, there is nothing new about the con-
cept of establishing a secure channel with the use of
encryption [18, 22]. However, we feel that our im-
plementation may be of interest primarily because
it exists: we are not aware of any other free, Java
implementation with similar functionality.?

One novel feature of our SecureRMI is that it pro-
vides transparent support for a very broad range of
“authentication” technologies. We have abstracted
away many of the irrelevant details of the algo-
rithms to build a very general model of authentica-
tion. For instance, public-key authentication is im-
plemented in DSAAuthenticator and DSAVerifier,
which are subclasses of the generic Authenticator
and Verifier classes; SecureRMI only references
the generic Authenticator/Verifier superclasses,
so it is ignorant of the details of their implementa-
tion. This architecture is very flexible: after the
core infrastructure was in place, we later added

2JDK 1.2 includes hooks so you can encrypt RMI commu-
nications with SSL, if you have a SSL library; but we do not
know of any free SSL implementations for Java [8].

a symmetric-key challenge-response protocol with
about two days of coding.

As a result, extending the Jukebox to support
pay-per-use access will require only minimal effort.
We would just add a PayPerUseAuthenticator
that, instead of sending a public-key signature for
authentication, sends a digital coin. This is a di-
rect result of our design goal that services be easy
to evolve and extend.

Our general model of authentication also allows
each collaborator to specify her own access-control
policies for the music she serves; one SoundSmith
could be serving music on an ACL basis, another
could be serving only free music, but only to hosts in
a certain domain, and others could be charging vari-
ous amounts to listen to the audio stream. The flex-
ibility provided by this mechanism further enhances
the communal, collaborative nature of the Jukebox,
by removing access-control policy from any central
authority.

3.3 Ninja Jukebox v3.0: the collabora-
tive DJ service

Most recently, we have extended the Jukebox ser-
vice to provide song selection based on inferred user
preferences as well as some simple collaborative fil-
tering functionality. In the v1.0 and v2.0 Jukebox
services, song playlists are manually constructed by
users and successive songs to be played are cho-
sen from these playlists by simple random selection.
Our collaborative filtering extension refines this se-
lection with an infrastructural “DJ” service that ex-
ploits individual and collaborative song preferences.

A key observation is that an infrastructure ser-
vice may, over time, learn user song preferences by
observing Ul events. Songs that the user always
“fast-forwards” past are probably songs the user
doesn’t like; in contrast, listening to a song until
its completion may be an indication that the user
enjoyed the song. This observation forms the basis
for our preference inference mechanism. As we de-
scribed in section 3.1, our graphical Jukebox client
is decomposed into a GUI front end and a song se-
lection back end. In our v3.0 Jukebox infrastruc-
ture, we have decoupled this song selection from the
client executable, moving it instead into the net-
work as a infrastructure service so that our song
selection algorithms may be upgraded and evolved
transparently without modifying code on the client
side. This enabled us to extend the original unin-
telligent song selection algorithm by interposing on
the selection interface.

In our DJ implementation, a rating storage ser-



Do
Your

¥
DI @ Pm public &
Ratings i

i like it

edit filters

i don’t mind it i hate it

Figure 4: The DJ collaborative filtering client GUI element

vice in the infrastructure subscribes to client Ul
events; every time a user presses a button such as
“fast-forward”, a SecureRMI call is made into this
DJ service to report the event. The DJ interprets
these events as implicit hints about the user’s song
preferences, and updates a persistent database® on
disk to reflect the new information about the user.
Our prototype also allows users to explicitly spec-
ify their preferences about individual songs, if they
like. Still, the advantage of transparent preference
inference is that it requires no extra action on the
part of the user.

A second key observation is that, when prefer-
ences for many users are all stored together in the
infrastructure, there is a great opportunity to mine
this data for cross-user information and to provide
collaborative services [19]. We have implemented a
simple collaborative filtering application for the DJ.
By default, a user’s preferences are regarded as pri-
vate and are stored securely in the infrastructure,
with no access allowed to third parties; however,
we allow users to publicly export read-only access
to their preferences to other users. Marking one’s
preferences as public allows one to share preferences
between multiple users. For example, our imple-
mentation allows a user to temporarily use some-
one else’s preferences for song selection (assuming,
of course, that those preferences have been explic-
itly marked as public). More interestingly, a user
may combine the preferences of multiple other pub-
lic users and use the result to drive the Jukebox
client’s song selection algorithm. This is a useful
way to accomodate multiple listeners with different
preferences; for example, in an shared environment
in which several students occupy the same office, a
useful combination would be to play songs that are
in the intersection of the students’ sets of likable
songs.

The DJ extensions to the core Jukebox service

3We actually used a distributed, persistent hash table to
keep track of user preferences. This hash table (described in
[9]) is partitioned and replicated across nodes in a dedicated
workstation cluster, and provides the DJ fault-tolerant access
to the persistent user preferences data.

resulted in minimal changes to the existing code-
base; rather, the extensions were mostly encapsu-
lated within the new DJ component that was added
to the Jukebox infrastructure. The required changes
to the existing codebase were limited to modifica-
tions to the Jukebox client’s song selection algo-
rithm to request a playlist from the DJ service, and
to the enhancement of the Jukebox client front end
to send a copy of all relevant events to the appropri-
ate rating storage service. We also augmented the
Jukebox client GUI to include controls that allow
the user to explicitly indicate preferences for spe-
cific songs (figure 4).

4 Discussion

In this section of the paper, we first present sev-
eral lessons that we learned about using Java as
a service construction language, and then we dis-
cuss several limitations of the current Jukebox im-
plementation.

4.1 Java as a Service Construction Lan-
guage

We were surprised to find that the decision to use
Java as a rapid prototyping tool met with mixed
results. Certainly, Java’s high-level programming
model made for extremely rapid prototyping: the
first version of the Jukebox service was built in 2
days by a team of 3 students. Java’s strong typing
also encouraged modularity, which made it easier to
extend and evolve the service several times: once
to migrate from playing CDs in real-time towards
serving as a shared MP3 repository, later to extend
the service to add a security model, and a third time
to transparently learn song preferences and to add
support for collaborative filtering. In all three cases,
strong typing helped assure the separation between
client code (which should change rarely) and net-
worked services (which may evolve frequently) that
was a key ingredient to success. Also, the tight cou-
pling of RMI with Java, and the existence of the



Ninja SecureRMI infrastructure made distributed
programming less painful.

What we didn’t anticipate is that there were some
negative aspects to using Java and RMI. When you
change the implementation of some relevant class
on one RMI endpoint, to avoid class checksum er-
rors you must grab the new source code and re-
compile on all other endpoints too. Thus, updates
to the service code require synchronized updates at
all RMI endpoints, which is an administrative an-
noyance. Moreover, though we didn’t realize it at
first, if we had used RMI for all of our external ser-
vice interfaces, the situation would have been far
worse: each upgrade to the Jukebox service would
potentially have required the clients to be updated
too, a terrible scenario for service evolution! Fortu-
nately, we got lucky: most of our external interfaces
that changed used HTTP, not RMI. Our interpre-
tation (in retrospect) is that we should have done
a better job of picking strongly-typed interfaces to
the outside world (rather than having any untyped
HTTP connections) and frozen these interfaces from
the outset, but we didn’t. We gained considerable
leverage from the use of narrow, strongly-typed in-
terfaces between internal Jukebox components, and
if we were to re-implement the Ninja Jukebox, we
would strive to do the same for all of our external
interfaces as well.

4.2 Limitations

Our current prototype of the Jukebox service
has a number of limitations. First, the Jukebox is
not intended—in its current incarnation—as a wide-
area distributed service. Instead, we have focused
on providing service within a single organization. As
an example, the MusicDirectory service is currently
centralized, which means that it would quickly be-
come a bottleneck if we moved to a wide-area usage
scenario. We have also made the simplifying as-
sumption that all nodes in the system are relatively
close to each other (in terms of network latency and
bandwidth), so that from the client’s point of view
all SoundSmiths are created equal.

Although a wide-area Jukebox service would be
limited by the capacity of the underlying network,
with some more work we could extend Jukebox to
address wide-area concerns. Two changes would be
required: (1) the MusicDirectory service would have
to become wide-area aware, using standard tech-
niques such as replication, caching, and aggregation
to distribute song listings around the world, and (2)
we might want to replicate MP3’s across the wide-
area, using pre-fetching and caching to reduce the

load on the network. Neither of these changes are
conceptually difficult; we built the Jukebox because
it was a service we wanted, and so we ignored these
aspects.

A second important limitation is that our cur-
rent implementation is very naive about multime-
dia operations. The MP3 data is transmitted over
a HTTP connection, and thus inherits all of the
problems of TCP for multimedia data: no quality-
of-service guarantees, potentially high latency, un-
wanted buffering, and so on. There is also no rate
limiting; we merely blast as fast as we can, which
runs the risk of overloading the network. Nor are
our clients particularly sophisticated about multi-
media issues: our MP3 player doesn’t do real-time
scheduling, so during heavy paging we occasionally
experience playback glitches. Nonetheless, these
issues are largely orthogonal to our research; in-
stead, we focused on testing the hypothesis that we
can rapidly build a highly evolvable service if we
carefully use component architectures and strongly
typed interfaces, and thanks to this extensibility we
believe a future version of the Ninja Jukebox could
easily include better multimedia delivery technol-
ogy.

Thirdly, our current prototype has poor perfor-
mance for the Java security operations. Right now,
we are using a pure-Java cryptographic library, with
no JIT, and as a result the public-key operations are
very CPU-intensive: the initial SecureRMI hand-
shake currently takes about 4 seconds to complete.
Of course, these numbers could be dramatically re-
duced by any of many techniques (native code, pre-
computation, caching, session-reuse, etc.), but so far
the performance impact has been relatively innocu-
ous.

5 Related Work

Keeping collections of audio files in a net-
accessible way is obviously not a new idea. The
simplest way to publish one’s music collection to
the net is just to make it accessible as a WWW or
FTP archive. Many people do this today, but the
utility of unconnected collections of audio is low. In
order to make these collections more useful, dedi-
cated MP3 search engines such as mp3.1lycos.com
have appeared. These search engines try to be your
“one-stop shopping” for MP3’s, by telling you where
on the Internet you can find your favorite pirated
songs.? More recently, commercial jukebox prod-

4Lycos itself, of course, does not illegally publish copy-
righted material.



ucts have become available that allow you to orga-
nize and play locally-stored MP3’s, but these prod-
ucts typically do not permit sharing between users,
nor do they offer collaborative or interactive fea-
tures.

This simplest kind of jukebox system is missing
a number of benefits that the Ninja Jukebox pro-
vides. Simple directories of MP3 files offer no co-
hesive framework for security-related features such
as authenticated or pay-per-use access. In addition,
our component architecture allows the SoundSmiths
to be active and easily updatable participants in
the transmission of the audio, as opposed to merely
serving a static file. This allows features such as
transparent format conversion (.wav files on file sys-
tems, raw audio on CD-ROM drives, or MP3 files
on file systems) and support for multiple transport
mechanisms (streamed audio over HTTP, or VAT
audio over a multicast IP channel).

Another approach has recently come from
SHOUTcast [11]. SHOUTcast is an “Internet ra-
dio” system that allows a site to serve an audio
stream that can be picked up by multiple clients.
The clients have to listen to what the SHOUTcast
servers decide to play; they have no way to interact
with the servers. Although each SHOUTcast server
offers the same real-time audio stream to each of
its clients, and though its name would imply some-
thing more clever, its underlying technology is just
multiple simultaneous unicasts of the same data.
SHOUTcast servers communicate with one or more
central databases in order to register the names
of the programs they are currently “broadcasting”.
These databases can be queried by client programs
(like MP3Spy [13]) to allow users to choose what
channels they would like to hear.

The largest difference between SHOUTcast and
our work is that our goal was to provide a commu-
nal, collaborative, interactive jukebox, as opposed
to a passive Internet radio station. That having
been said, however, it would be possible for a Sound-
Smith to transmit any particular song over a true
multicast channel [7]. SHOUTcast servers also do
no user authentication; one might indeed imagine
that an Internet radio service would have no need for
such a thing. However, given the broad view of “au-
thentication” taken by the Ninja Jukebox, one could
see that implementing, for example, subscription-
based access or pay-per-use access, could add value
(better quality of service, for example) even to a
non-interactive service like Internet radio.

A related approach is the Interactive Multimedia
Jukebox [1, 2], a system that allows one to add a
measure of interactive preference feedback to tradi-

tional broadcast paradigms.

More recently, the SDMI project is starting to
tackle the issues associated with copyright control
and rights management, using a combination of
tamperproof hardware (or software!) on the client
end as well as watermarking and other technologies
[14]. We view SDMI as largely orthogonal to our
work: we have focused on building a music delivery
service, rather than on what is done after the music
has been delivered.

There have been a number of projects involved
in the delivery of audio and/or video over digital
networks (for example, [5]); these projects mainly
concern themselves with the technology of media
delivery. In contrast, we have left that issue largely
unaddressed, as it is orthogonal to our own goals;
we were more interested in the mechanisms of the
service, rather than the mechanisms of serving.

6 Conclusions

In this paper, we demonstrated that Java is a con-
venient language for the construction of infrastruc-
tural services, although there are several pitfalls and
hurdles (such as performance, vagaries about the in-
ternals of its RMI facilities, etc.) that need to be
addressed or avoided in order to successfully build
such services. We also partially validated our hy-
pothesis that infrastructural services which explic-
itly expose a strongly typed, programmatic API (as
opposed to an unstructured interface designed only
for humans) are conducive to the construction of
complicated applications. Finally, we demonstrated
that a distributed component architecture enabled
the rapid development of an infrastructural Jukebox
service, and that through the careful decomposition
of the service into components and deliberate atten-
tion given to the design of the service’s internal and
external interfaces, we were able to smoothly evolve
the first generation Jukebox into a more rich and
mature service.

References

[1] K. Almeroth and M. Ammar. The Interactive
Multimedia Jukebox (IMJ): A New Paradigm for
the On-Demand Delivery of Audio/Video. In Sev-
enth International World Wide Web Conference
(WWW-7). World Wide Web Consortium, April
1998.

[2] K. Almeroth and M. Ammar. An Alternative
Paradigm for Scalable On-Demand Applications:



[10]

Evaluating and Deploying the Interactive Multime-
dia Jukebox. IEEE Transactions on Knowledge and
Data Engineering Special Issue on Web Technolo-
gies, July/August 1999.

Thomas E. Anderson, David E. Culler, and David
Patterson. A Case for NOW (Networks of Worksta-
tions). IEEE Micro, 12(1):54-64, February 1995.

Andrew D. Birrell and Bruce Jay Nelson. Imple-
menting Remote Procedure Call. ACM Transac-
tions on Computing Systems, 2(1):39-59, February
1984.

William J. Bolosky, Joseph S. Barrera III,
Richard P. Draves, Robert P. Fitzgerald, Garth A.
Gibson, Michael B. Jones, Steven P. Levi,
Nathan P. Myhrvold, and Richard F. Rashid. The
Tiger Video Fileserver. Technical Report MSR-TR-
96-09, Microsoft Research, Advanced Technology
Division, April 1996.

The World Wide Web Consortium. Extensible
Markup Language (XML) version 1.0. http://www.
w3.org/XML, Feb 1998.

Stephen E. Deering, Deborah Estrin, Dino Fari-
nacci, Van Jacobson, Ching-Gung Liu, and Lim-
ing Wei. An Architecture for Wide-Area Multicast
Routing. In Proceedings of SIGCOMM ’94, Uni-
versity College London, London, U.K., September
1994.

Li Gong. New Security Architectural Directions for
Java. In Proceedings of IEEE COMPCON. IEEE,
February 1997.

Steven D. Gribble.  Simplifying Cluster-Based
Internet Service Construction with Scalable
Distributed Data Structures. Ph.D. Qualifying
exam, available at http://www.cs.berkeley.edu/
“gribble/papers/quals/sdds-cluster.ps.gz,
April 1999.

Steven D. Gribble, Matt Welsh, Eric A. Brewer,
and David Culler. The MultiSpace: an Evolution-
ary Platform for Infrastructural Services. In Pro-
ceedings of the 1999 Useniz Annual Technical Con-
ference, Monterey, California, USA, Jun 1999.

Nullsoft Inc. SHOUTcast Service home page. http:
//www.shoutcast.com/.

WebMethods Inc. WIDL—Web Interface Descrip-
tion Language. World Wide Web Journal, 1997.
Special issue—XMUL: Principles, Tools, and Tech-
niques.

Game Spy Industries. The MP3Spy Client home
page. http://www.mp3spy.com/.

Secure Digital Music Initiative. SDMI Portable De-
vice Specification, part 1, version 1.0, July 1999.
http://www.sdmi.org/.

Ti Kan and Steve Scherf. CDDB Specifica-

ton. http://www.cddb.com/ftp/cddb-docs/cddb_
howto.gz.

[16]

[21]

[22]

Thomas Kistlera and Hannes Marais. WebL—A
Programming Language for the Web. In Computer
Networks and ISDN Systems (Proceedings of the
WWW?7 Conference), volume 30, pages 259-270,
Brisbane, Australia, April 1998.

Method
Java.

Sun Microsystems. Java Remote
Invocation—Distributed Computing for
http://java.sun.com/.

R.M. Needham and M.D. Schroeder. Using Encryp-
tion for Authentication in Large Networks of Com-
puters. CACM, 21(12):993-999, December 1978.

Firefly Network. Firefly Passport. http://www.

firefly.net, 1995.

The Object Management Group (OMG). The Com-
mon Object Request Broker: Architecture and
Specification, February 1998. http://wuw.omg.
org/library/c2indx.html.

Jim Waldo. Jini Architecture Overview. Avail-
able at http://java.sun.com/products/jini/
whitepapers.

Edward Wobber, Martin Abadi, Michael Burrows,
and Butler Lampson. Authentication in the Taos

Operating System. ACM Transactions on Com-
puter Systems, 12(1):3-32, Feb 1994.



