
USENIX Association

Proceedings of
USITS ’03:

4th USENIX Symposium on
Internet Technologies and Systems

Seattle, WA, USA
March 26–28, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Scriptroute: A Public Internet Measurement Facility

Neil Spring, David Wetherall and Tom Anderson
{nspring,djw,tom}@cs.washington.edu

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

Abstract

We present Scriptroute, a system that allows ordinary
Internet users to conduct network measurements from
remote vantage points. We seek to combine the flex-
ibility found in dedicated measurement testbeds such
as NIMI with the general accessibility and popularity
of Web-based public traceroute servers. To use Scrip-
troute, clients use DNS to discover measurement servers
and then submit a measurement script for execution in
a sandboxed, resource-limited environment. The servers
ensure that the script does not expose the network to at-
tack by applying source- and destination-specific filters
and security checks, and by rate-limiting traffic.

Scriptroute code is publicly available and has been de-
ployed on the PlanetLab testbed of 42 sites. As proof-
of-concept, we have used it both to create RPT, a tool
for measuring routing trees toward a destination, and to
repeat the experiment used to evaluate GNP, a recently
proposed Internet distance estimation technique. We
find that our system is flexible enough to implement a
variety of measurement tools despite its security restric-
tions, that access to many remote vantage points makes
the system valuable, and that scripting is an apt choice
for expressing and combining measurement tasks.

1 Introduction

The ability to measure the Internet is of widespread
value for diagnosing connectivity problems and under-
standing Internet topology [20, 53], routing [35, 54] and
performance [3, 51]. This paper considers a simple ques-
tion: what is the right architecture for a generally avail-
able network measurement facility?

Existing systems such as NIMI [45] provide much of
the needed functionality, but not all. These research sys-
tems provide the advantages of dedicated hardware that

can be used for a wide range of network measurements.
In return, users must possess credentials or an account,
which creates a barrier that limits access to a community
of users trusted by the administrator. Thus these systems
do not help unaffiliated users like a network operator try-
ing to debug poor network performance.

The popularity of Web-accessible traceroute servers of-
fers a different solution. Several hundred public tracer-
oute servers are available, constituting the largest de
facto Internet measurement facility. These servers are
typically used to debug two-way connectivity problems,
providing indirect benefit to the traceroute server host.
They are also easy to secure, because they provide only
limited functionality and local administrators retain con-
trol to deny access to abusive users. As a result, many
network operators now contribute traceroute servers.

However, traceroute servers provide limited functional-
ity – only a hop-by-hop TTL test – and have signifi-
cant drawbacks when used as a measurement system.
They are difficult to coordinate because they were not
designed with programmed access in mind. They can
be highly inefficient for some applications, such as our
RPT tool described in Section 5.1. More importantly,
there are many non-intrusive tests of path properties
that are not supported by traceroute servers: tests for
path MTU [17], available bandwidth [27, 55], capac-
ity [33, 49], queuing and congestion [5], and reorder-
ing [4]. In short, it is clear that a much richer diagnostic
and measurement capability would be possible with a
general-purpose tool.

Our goal is to combine the best of both worlds: the flex-
ibility to run a wide variety of different measurement
tools with the general availability of traceroute servers.
We begin with the safety properties of traceroute servers:
we design the system to prevent misuse, even at the cost
of disallowing some kinds of useful measurements. Our
thesis is that even within the context of a carefully con-
trolled interface, we can provide more functionality than
is currently provided by traceroute servers. We hope to

succeed to the point where administrators will find it to
their advantage to host a Scriptroute server in place of
their current traceroute server.

We call our system Scriptroute. We use scripting to fa-
cilitate the implementation of measurement tools and
the coordination of measurements across servers. For
example, traceroute can be expressed in Scriptroute in
tens of lines of code (Section 3), instead of hundreds;
and tasks can be combined across servers in hundreds of
lines (Section 5) instead of the thousands required in a
previous project [53]. For security, we use sandboxing
and local control over resources to protect the measure-
ment host, and rate-limiting and filters that block known
attacks to protect the network. Further, because network
measurements often send probe traffic to random Inter-
net hosts and administrators sometimes mistake mea-
surement traffic for an attack, we provide a mechanism
for sites to block unwanted measurement traffic.

While none of the pieces of the design are particularly
new (e.g., others have sandboxed foreign code [18, 23]),
we believe that the result is novel and can substantially
improve our ability to make safe, flexible remote mea-
surements. Further, part of our goal is to spark a de-
bate as to how a network measurement facility should
be architected. Because we could have made different
design choices, we see our system as only one design
point in the space of network measurement service ar-
chitectures. More broadly, given the rising popularity of
various forms of widely accessible remote execution fa-
cilities, e.g., Akamai, .NET, and seti@home, our work
provides an example of how to balance the tradeoff be-
tween security and flexibility in this new class of sys-
tems.

We have implemented the Scriptroute design and de-
ployed it on servers across 42 PlanetLab sites. The
Scriptroute code is publicly available [52] and can be
used for local measurement script development or for
participation in the global system. To test the system,
we have used this initial deployment to run RPT, a tool
we created to measure routing trees around a destination,
and to repeat the experiment used to evaluate GNP [40],
a recently proposed Internet distance estimation tech-
nique. We find that our system will be flexible enough
to implement a variety of new measurement tools despite
its security restrictions, that access to many remote van-
tage points makes the system valuable, and that scripting
is an apt choice for expressing and combining measure-
ment tasks.

The rest of the paper is organized as follows. We de-
scribe our goals and approach in the next section and

Measurement Tool Measures Support
pathchar [25] Hop-by-hop b/w ✓1

pchar [34] Hop-by-hop b/w ✓1

clink [15] Hop-by-hop b/w ✓1

pathrate [13] Bottleneck b/w ✓
pathload [27] Available b/w ✓
sprobe [49] Bottleneck b/w ✓
nettimer [33] Bottleneck b/w ✓
bprobe [6] Bottleneck b/w ✓
cprobe [5] Congestion ✓
traceroute [26] Path and RTT ✓
tcptraceroute [56] Path and RTT ✓
ping Round trip time ✓
zing [45] Poisson RTT ✓
ally [53] Alias resolution ✓2

tbit [41] End-host TCP impl. ✓2

king [21] Estimated RTT ✓2

nmap [16] End-host services ✓2

treno [37] TCP b/w ✗3

wping [36] TCP b/w ✗3

iperf [55] TCP b/w, loss ✗3

netperf [29] TCP b/w ✗3

ttcp TCP b/w ✗3

sting [50] One-way loss ✗4

fsd [19] Router processing ✗5

1 May require an excessively high rate of traffic to execute
quickly, which would be limited by policy.

2 Measures end host properties: supported, so may sim-
plify development, but unnecessary.

3 Must keep a window of packets in flight, so are not sup-
ported by our synchronous interface.

4 Supported by design, but unimplemented: requires safe
raw sockets [47] or kernel firewall support.

5 Requires address spoofing.

Table 1: Some active measurement tools supported by
the design.

the design of our system in Section 3. We present im-
plementation details such as the default configuration in
Section 4. We evaluate our approach using two applica-
tions as case studies in Section 5, then conclude.

2 Goals and Approach

In this section, we describe our design philosophy and
the approach that follows from it.

2.1 Philosophy

Our high-level goal is to foster the deployment of a com-
munity platform for distributed Internet measurement.

To be provided by the community, this platform must
allow different organizations to manage their own por-
tions of the infrastructure. To be of broad use, this plat-
form must see widespread deployment to provide many
measurement vantage points. To be of lasting value, this
platform must be capable of hosting new measurement
techniques.

While these goals are straightforward, achieving them is
not: many promising systems fail to achieve widespread
adoption. We observe two salient characteristics in suc-
cessful collaborative systems, such as Gnutella and the
Web. First, they are open: all users may contribute and
participate. Second, they are valuable to the participants:
there is benefit to both service users and providers.

Our philosophy is derived from interpreting these quali-
ties in our domain of network measurement. To be open,
we take the position that all users must be able to obtain
useful levels of service by default and with negligible
prior investments. If all users are authorized to obtain the
same service then, just as a public Web server, there is no
need to authenticate users further than their IP address.
To provide value, we observe that the most compelling
use of measurement staples such as traceroute and ping
is not for network research, but for operational purposes.
Indeed, the array of public traceroute servers is heavily
populated by ISPs providing vantage points from which
they may check routing and connectivity. We thus seek
to seed our system with operationally useful measure-
ment tools.

This philosophy leads to the essential conflict in the de-
sign of our system: flexibility versus security. Flexibil-
ity is required if we are to support unforeseen measure-
ment tools. At the same time, supporting unauthenti-
cated users poses serious security concerns. To be de-
ployed, Scriptroute cannot serve as a vehicle that facili-
tates denial-of-service attacks on third parties, nor can it
expose its host to attack. We next describe our approach
to flexibility, then security.

2.2 Flexible Measurement Tools

Our goal is to provide Scriptroute servers with sufficient
extensibility mechanisms that they can implement unan-
ticipated measurement tools. While we cannot prove we
can handle all possible new tools, we can design a sys-
tem that supports their likely space. To define the space,
we first considered existing active measurement tools, a
sample of which (most from [11]) is shown in Table 1.

We observe that existing tools send a wide variety of
types and sequences of packets, with different timing

patterns, and using different methods of data analysis.
Most of the tools, including some that measure band-
width, require only a modest level of bandwidth and pro-
cessing to be useful, and they do not impose tight tim-
ing coupling between the reception of one packet and
the transmission of the next. The variability in func-
tional details and modest resource requirements of these
tools lead us to an architecture where measurements are
supported by shipping measurement code to Scriptroute
servers. This code is then interpreted in a resource-
limited sandbox that includes an API for sending and
receiving measurement packets and for reporting results
back to the client.

We can also observe from Table 1 that there is a class of
tools that need not be supported from distributed van-
tage points. Tools such as tbit and nmap, for exam-
ple, probe properties of the endpoint being measured.
They can readily be run from any vantage point to ob-
tain the desired measurement. Similarly, tools such as
King [21] work by finding unwitting proxy nodes as
vantage points. These kind of tools are not targeted as
part of the design of Scriptroute; we focus on tools that
measure the properties of network paths that can only
be observed by using Scriptroute servers themselves as
vantage points.

2.3 Protecting Scriptroute Servers

We require that Scriptroute servers not expose their host
to unwanted attack, despite an architecture where mea-
surements are scripted and servers execute them on be-
half of unauthenticated (and hence untrusted) clients.
There are two aspects to protecting servers: restricting
access and controlling resource consumption.

To isolate measurements from the host system, servers
execute measurement scripts in the strongest sandbox
we can construct that provides only a very narrow in-
terface for sending and receiving packets and communi-
cating results to the client. The design of this resource-
limited sandbox is described in Section 3.

To ensure that measurement scripts do not consume
enough resources to cause denial-of-service to the host,
the Scriptroute server limits all aspects of measurement
execution. Servers limit the duration, traffic rate, mem-
ory footprint, processor time, and number of concur-
rent measurements, reclaiming their resources as scripts
terminate. Limits on the duration of measurements en-
sure that resources are replenished for subsequent mea-
surements. Such limits prohibit long-lived experiments,
but do away with allocation and reservation machinery.
Similarly, measurements are not allowed access to local

Prevention Mechanism Attack Classes Prevented
Verify packet is well-formed Ping of Death [31]
Verify source address UDP packet storm using echo/chargen [8]
Deny fragments Overlapping IP fragments with conflicting data[9]
Deny ICMP error messages Spurious host unreachable [12]
Deny broadcast Smurfing [10]
SYNs rate-limited SYN flooding [7]
Rate-limit traffic Packet flooding (e.g. flood ping)

Table 2: Attacks prevented by Scriptroute policy. The top half consists of well-known “magic” packet attacks that are
prevented with filters. Flooding attacks are prevented by rate-limiting.

storage, which simplifies the system but requires that the
client store all intermediate state. Taken together, these
limits embody a “best-effort” service model, where the
Scriptroute server executes measurements only when re-
sources are available.

2.4 Preventing Network Attacks

We require that Scriptroute servers not facilitate denial-
of-service attacks on other parties, either by acting indi-
vidually or as a whole. Unfortunately, this is a tall or-
der: most Internet hosts can be unwitting participants
in a denial-of-service attack, and just one unexpected
packet can be interpreted as an attack by an intrusion
detection system or watchful administrator. Since new
attacks are discovered in existing protocol implementa-
tions with disappointing regularity, we also cannot reli-
ably filter out attack packets at servers (e.g., by using an
IDS setup) without engaging in an arms race. Instead,
we set a lower bar for Scriptroute, which is that it not in-
crease the danger to third parties, either by amplifying or
laundering attacks. Attack traffic is amplified when at-
tackers can cause many packets (or much work) to reach
the target by sending few packets (or doing little work)
themselves, e.g., smurfing [10]. Attack traffic is laun-
dered when attackers cause a third party to send a packet
that is not traceable to the true attacker [44].

To understand how to prevent attacks, we first consid-
ered the different kinds of attack traffic. A sample of
known network attacks is listed in Table 2. We observe
that these attacks fall into two classes: those that require
only a few “magic” packets, and those that overwhelm
targets with a flood of traffic or otherwise tie up sys-
tem resources. We tackle each class differently. We also
streamline the process by which recipients of unwanted
measurement traffic can have it blocked.

To mitigate the first class of attacks, we block pack-
ets frequently used for attacks and infrequently needed
for measurements, e.g., IP packets with broadcast des-
tination addresses. The complete list is given in Sec-
tion 4.2. We also provide accountability by ensuring

that the source address of measurement traffic is that
of the server and by logging client activity. The latter
is possible because the TCP connection between client
and server ensures that the client IP address is genuine.
Together, these measures provide an identity chain that
allows measurement traffic to be traced to its origin (at
least, as far as Scriptroute is concerned) for more sub-
tle attack packets that are not blocked. We note that
“magic” packet attacks could be launched from any-
where in the network, probably with less effort and the
same effect as via Scriptroute. That is, a Scriptroute
server does not contribute to the vulnerability of the net-
work.

The second class of attacks requires a sustained flood
of traffic to arrive at the target. Our approach here is
straightforward: we rate-limit measurement traffic to an
acceptable, background level. This approach works well
for the majority of measurement tools, many of which
send small volumes of data at low rates to avoid altering
the properties that they seek to measure. However, some
measurement tools, primarily bandwidth estimators such
as treno and pathchar, do send a large volume of high-
rate traffic. We cannot safely support them in their cur-
rent form and instead are hopeful that recent work on
bandwidth estimation such as pathload, nettimer, and
sprobe [27, 33, 49] will lead to lower rate, less intrusive
tools.

We considered and discarded other approaches, such as
“packet conservation,” where high rates can be used,
provided that send and receive traffic is roughly bal-
anced. Unfortunately, while unbalanced traffic indicates
a problem (such as high loss or deliberate discard), bal-
anced traffic only indicates the absence of severe net-
work congestion. Because of the best-effort nature of
Internet services, request flooding (e.g., TCP connec-
tions, DNS requests) may consume nearly all available
resources. Further, determining when traffic is too far
out of balance is a task that depends on protocol seman-
tics, such as delayed acknowledgements, and so it can-
not be applied in a general way.

Client Front−End Script

Interpreter
Network
Guardian

Scriptroute Server Components

raw sockets

libpcapHTTP
POST

System Management

Server List Destination Filters

Send−train
Internet

CGI

DNS or HTTP DNS

Figure 1: Scriptroute components. Clients discover servers through DNS or HTTP. Clients then submit measurements
scripts to a server front-end using HTTP, which executes a new interpreter as a CGI program. Scripts running within
the Interpreter use the Send-train API to send probes and receive responses. Only the network guardian can access
the network, after first checking that a destination filter does not block requested probes.

Rate limits prevent a single measurement from over-
whelming a destination, but we must also prevent the
collection of Scriptroute servers being used for dis-
tributed denial-of-service (DDOS). Again, our approach
in the short term is to rely on a sufficiently low rate limit
on individual measurement that does not provide clients
with leverage in terms of attack bandwidth. That is, if
Scriptroute servers do not significantly amplify attack
traffic levels then they do not make DDOS attacks any
easier to launch.

Again, we considered more sophisticated centralized or
epidemic controls that would detect groups of servers
sending large volumes of traffic to the same target, e.g.,
by requiring that permission tokens be obtained from a
pre-determined controller before starting a bandwidth-
intense measurement. However, we realized that, even
if the complexity issues associated with these controls
can be managed, protection by destination IP address
(or destination IP prefix) is not sufficient. This is be-
cause hosts other than the apparent destination can be
saturated by attackers with a modest understanding of
current network routes. That is, the target is not always
apparent from the measurement traffic, and without a so-
phisticated understanding of network topology and rout-
ing, no centralized controller is in a position to prevent
attackers from concentrating traffic. We expect this to be
an area of further research as we gain experience.

3 System Design

In this section, we describe the components of the Scrip-
troute system, how these components communicate, and
how a user submits a script for execution.

The set of cooperating components is shown in Figure 1.
We separate these components for robustness and secu-
rity: each performs a simple task, and compromising one

does not help compromise others. The task of the front
end Web server is to pass measurement scripts uploaded
from clients to the interpreter for execution. The inter-
preter runs in a restricted environment and may fail by
exceeding resource limits or by measurement script er-
ror. The interpreter’s use of the Scriptroute API is car-
ried by a local TCP socket to the network guardian. By
separating the interpreter into its own process, it can fail
without affecting the network guardian or front end. The
network guardian is the only component that needs to be
run with special permissions to read and write raw pack-
ets.

Each component also has a role in providing security,
summarized in Figure 2. The front-end verifies that
scripts are submitted from unforged IP addresses (via
TCP handshaking) and prevents scripts from running too
long or sending too much output. The interpreter pro-
vides flexibility in choosing what sort of probe packets
to send and when, but restricts execution to a resource-
limited sandbox. The practice of combining a sandbox
based on a safe language with a narrow interface is well
established [2, 18, 23]. Finally, the network guardian
enforces rate limits and packet filtering policy, and only
permits responses to probes to be returned to the mea-
surement script. The local administrator controls the re-
source limits and filtering policy.

We now describe the design of each of these components
in the order visited by an executing measurement.

3.1 System Management

Scriptroute servers publish their existence in a dynam-
ically updated DNS database. This allows clients to
find Scriptroute servers using descriptive host names,
and servers to publish their feature set (e.g., software

Component: Front-End Interpreter Network Guardian
Program: thttpd [48] srrubycgi scriptrouted
Service: Remote access via HTTP Flexible scripted execution Raw network access
Main security role: Sanitize script input Protect host from scripts Protect network from traffic

P
ro

te
ct

io
n

F
ea

tu
re

s

H
os

t Integrity
Provides empty chroot Interpreter safe mode b

Runs as user “nobody”
Limit: Processes, Files c

Resources
Limit script: a Limit: Memory, CPU time Rate limit overall traffic
Length, Runtime, Output Limit running scripts

N
et

w
or

k Integrity
TCP handshake verifies Log all packets by client
client IP address Filter dangerous packets

Resources
Rate limit SYN packets
Rate limit by destination

a thttpd provides these features by default, otherwise these limits would have to be enforced by the interpreter.
b Sandboxing scripts is not necessary when running an interpreter as a local user.
c Provides redundant protection to reinforce the safe mode against fork() and open().

Figure 2: Scriptroute server components, annotated with their security roles and features that provide host and net-
work security.

.scriptroute.org

servers policy

2.3.4.5

any

as continent country 1.2.3.4

1239 73 na eu us it

Figure 3: Scriptroute DNS name space.

version.)1 Different Scriptroute servers may belong to
different groups and use different DNS servers; ours is
rooted atscriptroute.org . As shown in Figure 3,
the name-space is separated into two subtrees:policy
andservers .

The servers subtree returns pseudo-random lists of
Scriptroute servers, optionally chosen by AS, country, or
continent. This breakdown was chosen for convenience,
but the complete database can be accessed from a dy-
namically generated Web page.

The policy subtree includes entries for measurement tar-
gets that wish to block unwanted measurement traffic.
The goal of this repository is to restrict traffic from com-
pliant Scriptroute servers in a single step. There are two
ways to update this database. Individual targets can con-
nect to a Web server and block measurement traffic back
to their own IP address. Alternately email from a do-
main administrator is used for blocking traffic to entire

1In contrast, traceroute servers are found using directories main-
tained by hand [32] and research testbeds have a static host list.

IP prefixes. The Web interface provides a timely update
when it is clear, by the TCP handshake, that a user of the
target machine has requested a filter; changes are im-
mediately propagated into the DNS policy subtree. The
email-based interface deals with many hosts in the same
administrative domain, but requires human verification
before coarser filters are installed or removed.

3.2 Server Front-End

Each Scriptroute server runs an ordinary Web server
on port 3355, which provides a gateway for script sub-
mission and administrative tasks. There are three main
“pages” on the server: job submission, traceback, and
informational.

The job submission page provides an HTTP POST in-
terface for measurement script submission, then replies
with the output of the measurement. Again, the TCP
handshake demonstrates that the source IP address is
valid to provide a measure of accountability. A conve-
nient feature of thttpd [48] is that it limits the execu-
tion time, size, and output of the script. We also limit
the number of concurrent requests per client (1) and the
number of concurrent requests overall (10). If the in-
terpreter fails due to resource limits, the connection is
closed signaling an error to the client. Unhandled ex-
ceptions in the measurement script itself are handled by
the interpreter and returned to the client as text.

The traceback page provides limited access to the logs to
reduce anonymity and prevent Scriptroute from “laun-

scriptroute.org

#! /usr/local/bin/srinterpreter

probe = Scriptroute::Udp.new(12)
probe.ip_dst = ARGV[0]
unreach = false
puts "Traceroute to #{ARGV[0]} (#{probe.ip_dst})"

catch (:unreachable) do
(1..64).each { |ttl|

(1..3).each { |rep|
probe.ip_ttl = ttl
packets = Scriptroute::send_train([Struct::DelayedPacket.new(0,probe)])
response = (packets[0].response) ? packets[0].response.packet : nil
if(response) then

puts ’%d %s %5.3f ms’ % [ttl, response.ip_src, (packets[0].rtt * 1000.0)]
if(response.is_a?(Scriptroute::Icmp)) then

unreach = true if(response.icmp_type == Scriptroute::ICMP_UNREACH)
end

else
puts ttl.to_s + ’ *’

end
$stdout.flush

}
throw :unreachable if(unreach)

}
end

Figure 4: Traceroute, as implemented in Ruby for Scriptroute. For comparison, a stripped down version of tracer-
oute [14] is implemented in 200 lines of C.

dering” traffic. Specifically, it provides the tcpdump-
formatted packets sent to particular IP addresses along
with the address of the corresponding client.

Finally, the informational page provides information
about the measurement traffic supported, how to contact
the administrator of the server, how to learn more about
Scriptroute, and how to add destination filters to block
unwanted measurement traffic. So that administrators
know where to look to when their systems receive un-
expected measurement traffic, we encourage Scriptroute
servers that also have a port 80 Web server to link this
page, to direct concerns to the central management site.

3.3 Script Interpreter

The front end pipes submitted jobs to a scripting lan-
guage interpreter in a new process. In our implemen-
tation, we chose Ruby, but any language that supports
a strong sandbox can be used. The interpreter runs as
a separate process so that it can fail independently: ag-
gressive kernel resource limits are used to prevent signif-
icant resource consumption; when exceeded, the process
terminates abruptly.

The interpreter provides access to the Scriptroute API
and a simplified interface to packet contents, taking care
of such details as network byte ordering. The measure-
ment script can instantiate new packets, fill them in, then

send them via the Send-train API call, which the inter-
preter translates into a socket connection to the network
guardian. An example script implementing traceroute is
shown in Figure 4.

The interpreter communicates to the network guardian
using only the Send-train API. Send-train supports most
network measurements by sending a train of probe pack-
ets and collecting their responses. The Send-train oper-
ation takes an array of (delay, probe packet) pairs as an
argument, then returns an array of (time-stamp, probe
packet, time-stamp, response packet) tuples. The obser-
vation is that most measurements send a train of probes
(possibly just one) then wait for the responses and re-
peat.

3.4 Network Guardian

The network guardian is responsible for limiting the rate
of measurement traffic and regulating the type of pack-
ets sent. It combines destination-specific filters to block
traffic as stored in DNS with the rate limits and addi-
tional filters configured by the local administrator.

To support the Send-train API, the network guardian is
responsible for matching probes with their responses,
which protects the host from measurement tools that
might otherwise see unrelated traffic. Matching re-
sponses to probes is simple in the case of traceroute-like

UDP probes and ICMP error responses (which match
the encapsulated header), ICMP echo request/response
(which match the sequence number), and unsolicited
TCP probes with TCP RST responses (which match the
address, port, and sequence number). It is more complex
for TCP connections, where we match responses to the
earliest plausible probe.2

The network guardian mediates access to the raw sockets
and packet capture facilities of the kernel, so must be run
“as root” or with special configuration. Finally, the net-
work guardian logs sent and received packets with the
client that requested the corresponding measurement.
These logs can be used after the fact to infer what sort of
traffic might have offended a remote site. We describe
the policies enforced by the network guardian in detail
in the next section.

4 Implementation

In this section, we describe the implementation of the in-
terpreter and network guardian. We describe the default
policy configuration that protects the network and des-
tination hosts. The network guardian consists of 3,000
lines of C, and the interpreter adds another 600, calling
on Ruby and tcpdump as libraries.

The system management interface is a combination of a
Web server (thttpd), a DNS server (tinydns), and a small
daemon that updates the zone file based on registration
messages sent by servers and destination filters submit-
ted by Web and email. Implementation details of this
component are straightforward and not described fur-
ther.

4.1 Script Interpreter

The interpreter provides an environment to support mea-
surement scripts and hand packet trains to the network
guardian. It creates a sandbox with a name space that in-
cludes the Scriptroute API and class definitions for stan-
dard packet types.

The class-based packet interface simplifies development
by attending to details such as network byte ordering and
host name lookup. The packet class’sto s (to string)
method uses code from tcpdump to present a familiar
representation of the packet for debugging.

2To establish a TCP connection in a measurement requires that the
host kernel not see the SYN/ACK and respond immediately with a
RST. This can be prevented using safe raw sockets [47] or the kernel’s
firewall [50].

The interpreter uses the kernel to limit the script’s re-
source consumption in processor time (4 second default)
and memory footprint (50K stack, 50K data, 8MB ad-
dress space, though these limits depend on the operating
system). Each of these limits is configurable by the lo-
cal administrator. Additional resource limits on concur-
rently opened file handles (7) and processes (1) are used
to reinforce the interpreter’s safe mode against inadver-
tent calls toopen() or fork() . Scripts that exceed
these limits are abruptly terminated, which is why each
script executes in its own interpreter process.

Resource limits on individual processes must be com-
bined with a limit on the number of concurrent measure-
ment scripts. A new interpreter requests permission to
execute from the network guardian, and may be told to
try again later if there are too many scripts in the system
or too many scripts being executed on behalf of the same
user (the default limits are one per user to a maximum
of ten per system). A user is defined by the client IP
address if accessed through the front end, or by the user
name of the process if executed locally.

The chroot environment created by the front-end is in-
herited by the interpreter. A chroot-ed process executes
with all file accesses confined to sub-tree of the file sys-
tem. While not designed for sandboxing processes, it
can be used to isolate processes from from the rest of
the machine, in this case preventing the interpreter from
accessing any files in the system. We make the chroot ro-
bust to common attacks by both running the interpreter
as “nobody,” which lacks permission to write the filesys-
tem, and keeping the chroot empty; it contains only the
statically-linked interpreter and the sent packet logfile.

We chose Ruby because it is a lightweight, type-safe,
general-purpose interpreted language with a safe mode
that guards access to system calls. While most of these
features are just convenient, a flexible safe mode is es-
sential. For example, Ruby’s safe mode prevents files
and sockets from being opened, but permits the script to
write its results back to the client over an already exist-
ing socket. We believed that a scripting language would
make development simple, which was an important con-
sideration given that many existing tools would need to
be ported. We believed that choosing a general-purpose
language was important for encouraging adoption: those
who already know Ruby should find it trivial to write
measurement scripts, and those who are new to the lan-
guage can apply their new experience to ordinary tasks.
Finally, we found that the Ruby interpreter integrated
well with C, which was important because the isolation
enforced by the safe mode prevents the script from ac-
cessing the network guardian directly.

Local Socket (Send-train API)
⇓ ⇑

Well-formedness Filter
Source Policy Filter

Destination Policy Filter
Sanitizer Sent & Recv’d Packet Log

Rate Limiter Expectations
Raw socket libpcap

⇓ ⇑
Operating system network stack

Figure 5: Architecture of the network guardian. At left is
the downward path probes take out to the network; right
is the upward path packets take back. On Planetlab, the
raw socket and libpcap interfaces are replaced by safe
raw sockets [47].

4.2 Network Guardian

The network guardian is responsible for protecting the
network and destination hosts by applying policy checks
before traffic is sent. It is the only component that re-
quires special privilege to read and write a raw socket. It
provides this packet generation service using the Send-
train API to interpreters (or any other process) on the
local machine. The architecture of the network guardian
is shown in Figure 5. We describe the components in the
order they are visited by a measurement.

The network guardian accepts TCP socket connections
on the localhost address from the interpreter. Listening
only to localhost allows the network guardian to operate
on behalf of local processes without providing remote
service, adding a small measure of security. The inter-
face across this socket is text-based for extensibility and
ease of debugging. However, binary packets must be en-
coded to be transferred across a text-based interface; we
chose base64 encoding, a method commonly used for
encoding MIME attachments.

Packets face a series of verification steps. First, they are
checked for integrity and that the reflector can recognize
likely responses to the probe. For example, this verifies
the packet has sufficient length for its headers and is of
a known protocol.

Second, the source’s filter is applied. The administrator
of the Scriptroute server has discretion over what traffic
should be generated, and can decide what packets can
be sent. The default source filters remove broadcast and
multicast packets, IP fragments, ICMP error messages,
TCP resets, UDP and TCP traffic to “priviledged” ports
(those below 1024) other than 80 (HTTP) and 53 (DNS),
and traffic to the local host and subnet.

Bucket Recharge rate Burst size
Measurement SYN 1 packet/s 4 packets
Destination I 1 Kbytes/s 8 Kbytes
Destination II 3 packet/s 10 packets
Source 3 Kbytes/s 100 Kbytes

Table 3: Default rate limit parameters: each can be ad-
justed by the local administrator. The source and desti-
nation rate limits are shared by all measurements, while
the SYN limit applies to each measurement.

Third, the destination policy is applied. The network
guardian executes a lookup on the destination address in
the policy subtree of the DNS described in Section 3.1.
A filter may be stored (as a TXT record and in BPF [38]
format) under the destination’s address. If no entry ex-
ists for that destination, no additional filters are applied.
The filter is cached for five minutes, but if the DNS
server is unreachable, the previously cached entry is
used.

Fourth, packets are “sanitized” by setting the source ad-
dress to that of the local machine and setting the source
port, if UDP or TCP, to one owned by the network
guardian. This prevents harmful interactions with other
traffic on the same machine and provides accountability
by avoiding source spoofing. The packet is then check-
summed.

As a final step, the probes are scheduled to be sent
by passing them through a series of rate-limiting to-
ken buckets. The default burst size (bucket depth) and
recharge rate parameters of these buckets are shown in
Table 3. If the packet is a TCP SYN, it is passed through
a per-experiment rate-limiter that is intended to prevent
SYN flooding attacks. Next, the packet passes through
per-destination limiting to prevent flooding attacks. The
first per-destination limit is on the rate of traffic in bytes
to prevent bandwidth-consuming flooding attacks. The
second limit is on the rate of packets sent, because a
packet represents some overhead at the destination, pos-
sibly involving application-layer processing. The final
rate limiter prevents excessive bandwidth consumption
at the source.

When probes are sent, “expectation” state is created,
representing the set of possible responses to associate
with the probe. For example, sending an ICMP echo
request creates the expectation of either an ICMP echo
response or an ICMP error message. These expectations
filter the packets read from libpcap – preventing unre-
lated traffic from escaping to measurement scripts – and
match responses with probes, simplifying tool develop-
ment.

Matched probes and responses with their timestamps, or
sent probes that received no response after a timeout pe-
riod, constitute the response to the Send-train API. The
reflector logs each probe/response pair before return-
ing it to the interpreter, ending with the status message
“done.”

5 Evaluation

Applications are the key to evaluating Scriptroute. That
is, the most important evaluation questions are: what
new measurements does Scriptroute enable, how readily
can they be expressed, and how efficiently are they run?
To begin to answer these questions, we used Scriptroute
for two case studies. First, we use Scriptroute to imple-
ment a new debugging tool, “reverse path tree” (RPT),
that gathers and summarizes network routes towards a
target. Second, we use Scriptroute to gather a dataset
suitable for assessing the merits of Global Network Po-
sitioning (GNP), a newly proposed Internet distance pre-
diction technique. Both of these case studies were under-
taken primarily for the purpose of evaluating the capabil-
ities of Scriptroute. At the same time, both represent real
tasks that could not be accomplished without access to
many measurement vantage points.

5.1 Reverse Path Tree (RPT)

By “reverse path tree” we mean the tree of routes that
are used to reach a specific host from other locations on
the Internet, as opposed to paths from that host outwards
to other locations that are provided by regular traceroute.
The reverse path tree summarizes how a host is reached
from the rest of the Internet, and it can only be generated
with the help of remote hosts. It generalizes the prac-
tice of ISPs manually using a remote traceroute server
to check connectivity and routing to themselves.

The Scriptroute-based RPT discovery tool proceeds in
two logical steps: tracing the routes from as many
servers as possible to the destination; and merging them
with IP alias resolution to recognize interface IP ad-
dresses that belong to the same router [20, 53]. Scrip-
troute provides the opportunity to reduce the amount of
traffic needed to construct the tree by recognizing seg-
ments that have already been traversed on-line. In con-
trast, assembling a tree from standard traceroutes would
probe routers close to the destination repeatedly. We
do this by embedding a list of previously observed IP
addresses in the measurement script, having the script
terminate when it reaches a part of the tree that has al-
ready been mapped, and mapping from different servers

Component Code length
Traceroute (shipped) 33 lines
Alias res. (interpreted) 137 lines
Alias res. (client) 50 lines
Tree analysis (client) 148 lines
Overall 318 lines

Phase Execution
Traceroute 195 packets / 1min 20sec
Alias resolution 102 packets / 3min 36sec

Table 4: Reverse path tree (RPT) code and runtime
statistics. Components are “shipped” to remote Scrip-
troute servers, “interpreted” by the local Scriptroute
server, or executed as part of the “client’s” analysis

sequentially. This reduction allows the system to scale
without loading the network. We also note that alias res-
olution is run on the local Scriptroute daemon. It does
not need to be distributed because it measures endpoint
rather than path properties.

A sample tree mapped by RPT to one of our hosts is
shown in Figures 6 and 7. Already we can see that Scrip-
troute deployment on PlanetLab provides a rich enough
set of servers to construct a useful tree. Code size and
runtime statistics for the RPT tool are given in Table 4.
Code size shows the number of lines of code at the client
and shipped to Scriptroute servers. The number of pack-
ets includes only measurement traffic, and the execution
time for each phase is given. These phases could be
overlapped, but performance is already adequate for the
task. We can see that both client and server code is small;
the choice of a scripting language for constructing tools
appears worthwhile. Further, Scriptroute supports a use-
ful measurement task despite the rate limits imposed for
security.

We expect RPT to serve as a foundation for future tools
to infer the location of performance problems by observ-
ing which parts of the tree are shared between Scrip-
troute servers. For example, Scriptroute could be used
to measure loss between each server and a destination,
as well as trace the tree. Techniques such as [35, 42]
could then be used to pinpoint lossy segments.

5.2 Validating GNP

To demonstrate the value of Scriptroute for network
measurement research, we undertook to validate claims
for Global Network Positioning (GNP) [40], a recently
proposed technique for estimating Internet latency be-
tween points. GNP estimates latency using multi-
dimensional mappings derived from measurements be-
tween each point and special landmarks. The details

cse-hazard-gateway
.ucsd.edu

node-b-msfc--muir-rsm
.ucsd.edu

ser10-msfc1-v708.gw
.utexas.edu

ser3-gige1-2.gw
.utexas.edu

almr55
.unibo.it

rc-unibo.bo
.garr.net

planet2.cs
.ucsb.edu

csworld.cs
.ucsb.edu

buf-m20-roc-m10
.nysernet.net

abilene-clev
.mich.net

abilene-psc.abilene
.ucaid.edu

clev-nycm.abilene
.ucaid.edu

abilene-clev-buf-m20
.nysernet.net

border-gw-ge-wan3-1.fas
.harvard.edu

192.5
.66.5

unknown
.Level3.net

uwbr1-GE0-0.cac
.washington.edu

uwbr1-GE3-0.cac
.washington.edu

filterqueen-GE1-8.cac
.washington.edu

uwbr2-GE0-0.cac
.washington.edu

regina-GE1-2.cac
.washington.edu

GIGROUTER.NET.CS
.CMU.EDU

CORE255-VL255.GW
.CMU.NET

mi-bo-g
.garr.net

kupl2.ittc
.ku.edu

nichols-router.ittc
.ku.edu

planetlab3.csres
.utexas.edu

ibm-gw.cs
.utexas.edu

righthand.eecs
.harvard.edu

140.247
.60.1

INTRAIBT.GIGAPOP.GEN
.TX.US

i2-houston.gw
.utexas.edu

ABILENE.GIGAPOP.GEN
.TX.US

tst2.cs
.rice.edu

sequoia-fa1-0-0-a
.rice.edu

fr.de1.de
.geant.net

it.de2.de
.geant.net

de1-1.de2.de
.geant.net

planetlab3.xeno.cl.cam
.ac.uk

gatwick-s.net.cl.cam
.ac.uk

216.165
.108.1

EXTGWB-GE-3-0-0
.NYU.NET

prs1-wes-ge-0-1-0-0
.pnw-gigapop.net

128.252
.1.49

ncrc-atm
.wustl.edu

SUBNET-6-ROUTER.CIS
.UPENN.EDU

BORDER.CIS
.UPENN.EDU

SUNV--BERK.POS
.calren2.net

SUNV--STAN.POS
.calren2.net

scrm-losa.abilene
.ucaid.edu

Abilene--QSV.POS
.calren2.net

uk.fr1.fr
.geant.net

po0-0.london-bar4
.ja.net

geant-gw
.ja.net

155.98
.35.1

155.98
.127.45

snv-lbl-oc48
.es.net

seattle-snv
.es.net

ipls-atla.abilene
.ucaid.edu

Abilene.dng
.vbns.net

ipls-clev.abilene
.ucaid.edu

kscy-ipls.abilene
.ucaid.edu

ks-2-abilene-ks.r
.greatplains.net

er100gw
.lbl.gov

131.243
.128.5+

128.252
.100.253

gbr1-p51.phlpa.ip
.att.net

gbr4-p20.n54ny.ip
.att.net

route-cent-3.cam
.ac.uk

beast-bar
.psc.net

USC--ucsb.ATM
.calren2.net

USC--UCSD.POS
.calren2.net

losa-hstn.abilene
.ucaid.edu

Abilene--USC.ATM
.calren2.net

vlan11.inr-202-doecev
.Berkeley.EDU

gigE3-0.inr-000-eva
.Berkeley.EDU

gbr5-p51.sffca.ip
.att.net

gbr4-p100.sffca.ip
.att.net

roc-m10-nyc-m20
.nysernet.net

planetlab2.CS
.UniBO.IT

cs-gw-cesia.cs
.unibo.it

CAEN-EECS-GW.eecs
.umich.edu

141.213
.101.4

cesia-csgw.cs
.unibo.it

gbr4-p20.st6wa.ip
.att.net

gbr4-p80.st6wa.ip
.att.net

gar1-p360.stwwa.ip
.att.net

gar1-p370.stwwa.ip
.att.net

janet.uk1.uk
.geant.net

planetlab2.eecs
.umich.edu

eecscomp2-4.eecs
.umich.edu

planetlab2.netlab
.uky.edu

206.240
.24.17

c2-12008
.usc.edu

128.125
.251.65+

152.3
.136.61

152.16
.51.221

ae0-52.gar2.Seattle1
.Level3.net

sttl-dnvr.abilene
.ucaid.edu

sttl-snva.abilene
.ucaid.edu

216.165
.109.1

PlanetLab3.cs
.duke.edu

gateway.cts
.wustl.edu

12.108
.127.129

12.119
.166.213

ks-2-a10-55.r
.greatplains.net

phl-02.backbone
.magpi.net

remote1.abilene
.magpi.net

abilene-gw
.ncni.net

tbr1-p013301.n54ny.ip
.att.net

tbr1-p013801.cgcil.ip
.att.net

ucsd-gw--node-b-msfc
.ucsd.edu

ir1000gw
.lbl.gov

planetlab3.comet
.columbia.edu

mudd-edge-1.net
.columbia.edu

Gates-gateway
.Stanford.EDU

i2-gateway
.Stanford.EDU

128.163
.55.137

128.163
.55.46

gsr-roti-vlan200.netcom
.duke.edu

PlanetLab2.Millennium
.Berkeley.EDU

169.229
.51.249

12.124
.44.29

LINK2RICE.GIGAPOP.GEN
.TX.US

198.32
.248.185

planetlab3
.ucsd.edu

205.124
.249.9

205.124
.237.10

dnvr-kscy.abilene
.ucaid.edu

crebc-r1eng.net
.utah.edu

gsr.noc
.ucsb.edu

pos3-0.c2-berk-gsr
.Berkeley.EDU

planet2.berkeley
.intel-research.net

fast-0-0.blouter
.intel-research.net

planet3.seattle
.intel-research.net

12.17
.136.129

rlgh1-gw-to-ncni-oc48
.ncren.net

lbl2-ge-lbnl
.es.net

vn3.cs
.wustl.edu

HYPER-VL502.GW
.CMU.NET

bar-cmu-g4-0-0-1
.psc.net

atla.abilene
.sox.net

so-0-0-0.sttlwa1-hcr1
.bbnplanet.net

interconnect-eng.Seattle1
.Level3.net

planetlab3.lcs
.mit.edu

anacreon.lcs
.mit.edu

12.119
.199.33

206.117
.37.1

198.32
.16.81

radole.lcs
.mit.edu

ISC-GW-FE.CIS
.UPENN.EDU

EXTERNAL-GE.ROUTER
.UPENN.EDU

planetlab2
.lbl.gov

204.198
.77.17

abilene-gtren-gw.de2.de
.geant.net

ABILENE-GIGAPOPNE
.NOX.ORG

nycm-wash.abilene
.ucaid.edu

s3-0-8.sttlwa2-cr1
.bbnplanet.net

so-2-0-0.sttlwa2-br1
.bbnplanet.net

hnsp1-wes-so-5-0-0-0
.pnw-gigapop.net

ATM10-400-OC12-GIGAPOPNE
.NOX.ORG

192.5
.89.89

route-enet-3.cam
.ac.uk

cambridge-bar
.ja.net

B24-RTR-1-LCS-LINK
.MIT.EDU

EXTERNAL-RTR-2-BACKBONE
.MIT.EDU

local.upenn
.magpi.net

128.83
.37.17

nyc-m20-columbia
.nysernet.net

nyc-m20-nyu
.nysernet.net

garr.it1.it
.geant.net

128.163
.55.82

gbr2-p40.n54ny.ip
.att.net

208.196
.23.6

planetlab-2
.Stanford.EDU

tbr2-p012501.cgcil.ip
.att.net

ricepl-3.cs
.rice.edu

STAN.POS
.calren2.NET

128.125
.251.65++

128.125
.251.65+++

planetlab2.ext
.postel.org

sodaBB-ptp-milGW.Millennium
.Berkeley.EDU

core-1-gw-vl415.fas
.harvard.edu

wr1ebc-crebc.net
.utah.edu

nn2k-gw.net
.columbia.edu

fretless.cs.washington.edu

atm3-0x1.michnet8
.mich.net

ge-0-1-0x22.aa1
.mich.net

planetlab3.flux
.utah.edu

planetlab2.cis
.upenn.edu

planet2.scs.cs
.nyu.edu

planetlab03.cs
.washington.edu

planetlab01.cs
.washington.edu

141.213
.127.14

PLANETLAB-3.CMCL.CS
.CMU.EDU

gbr3-p50.st6wa.ip
.att.net

planet3.pittsburgh
.intel-research.net

10.212
.3.1

gbr2-p20.st6wa.ip
.att.net

128.125
.251.65++++

po11-0.lond-scr
.ja.net

planetlab2.hbtn.portland
.or.us

Figure 6: An excerpt from a reverse path tree measured by Scriptroute. Line thickness represents the number of paths
that traverse the link. Aliases are listed together. Most of the tree is to the right and above: this is the neighborhood
of the root. Those IP addresses listed with ‘+’ are unresponsive successors of an IP address.

cse-hazard-gateway
.ucsd.edu

node-b-msfc--muir-rsm
.ucsd.edu

ser10-msfc1-v708.gw
.utexas.edu

ser3-gige1-2.gw
.utexas.edu

almr55
.unibo.it

rc-unibo.bo
.garr.net

planet2.cs
.ucsb.edu

csworld.cs
.ucsb.edu

buf-m20-roc-m10
.nysernet.net

abilene-clev
.mich.net

abilene-psc.abilene
.ucaid.edu

clev-nycm.abilene
.ucaid.edu

abilene-clev-buf-m20
.nysernet.net

border-gw-ge-wan3-1.fas
.harvard.edu

192.5
.66.5

unknown
.Level3.net

uwbr1-GE0-0.cac
.washington.edu

uwbr1-GE3-0.cac
.washington.edu

filterqueen-GE1-8.cac
.washington.edu

uwbr2-GE0-0.cac
.washington.edu

regina-GE1-2.cac
.washington.edu

GIGROUTER.NET.CS
.CMU.EDU

CORE255-VL255.GW
.CMU.NET

mi-bo-g
.garr.net

kupl2.ittc
.ku.edu

nichols-router.ittc
.ku.edu

planetlab3.csres
.utexas.edu

ibm-gw.cs
.utexas.edu

righthand.eecs
.harvard.edu

140.247
.60.1

INTRAIBT.GIGAPOP.GEN
.TX.US

i2-houston.gw
.utexas.edu

ABILENE.GIGAPOP.GEN
.TX.US

tst2.cs
.rice.edu

sequoia-fa1-0-0-a
.rice.edu

fr.de1.de
.geant.net

it.de2.de
.geant.net

de1-1.de2.de
.geant.net

planetlab3.xeno.cl.cam
.ac.uk

gatwick-s.net.cl.cam
.ac.uk

216.165
.108.1

EXTGWB-GE-3-0-0
.NYU.NET

prs1-wes-ge-0-1-0-0
.pnw-gigapop.net

128.252
.1.49

ncrc-atm
.wustl.edu

SUBNET-6-ROUTER.CIS
.UPENN.EDU

BORDER.CIS
.UPENN.EDU

SUNV--BERK.POS
.calren2.net

SUNV--STAN.POS
.calren2.net

scrm-losa.abilene
.ucaid.edu

Abilene--QSV.POS
.calren2.net

uk.fr1.fr
.geant.net

po0-0.london-bar4
.ja.net

geant-gw
.ja.net

155.98
.35.1

155.98
.127.45

snv-lbl-oc48
.es.net

seattle-snv
.es.net

ipls-atla.abilene
.ucaid.edu

Abilene.dng
.vbns.net

ipls-clev.abilene
.ucaid.edu

kscy-ipls.abilene
.ucaid.edu

ks-2-abilene-ks.r
.greatplains.net

er100gw
.lbl.gov

131.243
.128.5+

128.252
.100.253

gbr1-p51.phlpa.ip
.att.net

gbr4-p20.n54ny.ip
.att.net

route-cent-3.cam
.ac.uk

beast-bar
.psc.net

USC--ucsb.ATM
.calren2.net

USC--UCSD.POS
.calren2.net

losa-hstn.abilene
.ucaid.edu

Abilene--USC.ATM
.calren2.net

vlan11.inr-202-doecev
.Berkeley.EDU

gigE3-0.inr-000-eva
.Berkeley.EDU

gbr5-p51.sffca.ip
.att.net

gbr4-p100.sffca.ip
.att.net

roc-m10-nyc-m20
.nysernet.net

planetlab2.CS
.UniBO.IT

cs-gw-cesia.cs
.unibo.it

CAEN-EECS-GW.eecs
.umich.edu

141.213
.101.4

cesia-csgw.cs
.unibo.it

gbr4-p20.st6wa.ip
.att.net

gbr4-p80.st6wa.ip
.att.net

gar1-p360.stwwa.ip
.att.net

gar1-p370.stwwa.ip
.att.net

janet.uk1.uk
.geant.net

planetlab2.eecs
.umich.edu

eecscomp2-4.eecs
.umich.edu

planetlab2.netlab
.uky.edu

206.240
.24.17

c2-12008
.usc.edu

128.125
.251.65+

152.3
.136.61

152.16
.51.221

ae0-52.gar2.Seattle1
.Level3.net

sttl-dnvr.abilene
.ucaid.edu

sttl-snva.abilene
.ucaid.edu

216.165
.109.1

PlanetLab3.cs
.duke.edu

gateway.cts
.wustl.edu

12.108
.127.129

12.119
.166.213

ks-2-a10-55.r
.greatplains.net

phl-02.backbone
.magpi.net

remote1.abilene
.magpi.net

abilene-gw
.ncni.net

tbr1-p013301.n54ny.ip
.att.net

tbr1-p013801.cgcil.ip
.att.net

ucsd-gw--node-b-msfc
.ucsd.edu

ir1000gw
.lbl.gov

planetlab3.comet
.columbia.edu

mudd-edge-1.net
.columbia.edu

Gates-gateway
.Stanford.EDU

i2-gateway
.Stanford.EDU

128.163
.55.137

128.163
.55.46

gsr-roti-vlan200.netcom
.duke.edu

PlanetLab2.Millennium
.Berkeley.EDU

169.229
.51.249

12.124
.44.29

LINK2RICE.GIGAPOP.GEN
.TX.US

198.32
.248.185

planetlab3
.ucsd.edu

205.124
.249.9

205.124
.237.10

dnvr-kscy.abilene
.ucaid.edu

crebc-r1eng.net
.utah.edu

gsr.noc
.ucsb.edu

pos3-0.c2-berk-gsr
.Berkeley.EDU

planet2.berkeley
.intel-research.net

fast-0-0.blouter
.intel-research.net

planet3.seattle
.intel-research.net

12.17
.136.129

rlgh1-gw-to-ncni-oc48
.ncren.net

lbl2-ge-lbnl
.es.net

vn3.cs
.wustl.edu

HYPER-VL502.GW
.CMU.NET

bar-cmu-g4-0-0-1
.psc.net

atla.abilene
.sox.net

so-0-0-0.sttlwa1-hcr1
.bbnplanet.net

interconnect-eng.Seattle1
.Level3.net

planetlab3.lcs
.mit.edu

anacreon.lcs
.mit.edu

12.119
.199.33

206.117
.37.1

198.32
.16.81

radole.lcs
.mit.edu

ISC-GW-FE.CIS
.UPENN.EDU

EXTERNAL-GE.ROUTER
.UPENN.EDU

planetlab2
.lbl.gov

204.198
.77.17

abilene-gtren-gw.de2.de
.geant.net

ABILENE-GIGAPOPNE
.NOX.ORG

nycm-wash.abilene
.ucaid.edu

s3-0-8.sttlwa2-cr1
.bbnplanet.net

so-2-0-0.sttlwa2-br1
.bbnplanet.net

hnsp1-wes-so-5-0-0-0
.pnw-gigapop.net

ATM10-400-OC12-GIGAPOPNE
.NOX.ORG

192.5
.89.89

route-enet-3.cam
.ac.uk

cambridge-bar
.ja.net

B24-RTR-1-LCS-LINK
.MIT.EDU

EXTERNAL-RTR-2-BACKBONE
.MIT.EDU

local.upenn
.magpi.net

128.83
.37.17

nyc-m20-columbia
.nysernet.net

nyc-m20-nyu
.nysernet.net

garr.it1.it
.geant.net

128.163
.55.82

gbr2-p40.n54ny.ip
.att.net

208.196
.23.6

planetlab-2
.Stanford.EDU

tbr2-p012501.cgcil.ip
.att.net

ricepl-3.cs
.rice.edu

STAN.POS
.calren2.NET

128.125
.251.65++

128.125
.251.65+++

planetlab2.ext
.postel.org

sodaBB-ptp-milGW.Millennium
.Berkeley.EDU

core-1-gw-vl415.fas
.harvard.edu

wr1ebc-crebc.net
.utah.edu

nn2k-gw.net
.columbia.edu

fretless.cs.washington.edu

atm3-0x1.michnet8
.mich.net

ge-0-1-0x22.aa1
.mich.net

planetlab3.flux
.utah.edu

planetlab2.cis
.upenn.edu

planet2.scs.cs
.nyu.edu

planetlab03.cs
.washington.edu

planetlab01.cs
.washington.edu

141.213
.127.14

PLANETLAB-3.CMCL.CS
.CMU.EDU

gbr3-p50.st6wa.ip
.att.net

planet3.pittsburgh
.intel-research.net

10.212
.3.1

gbr2-p20.st6wa.ip
.att.net

128.125
.251.65++++

po11-0.lond-scr
.ja.net

planetlab2.hbtn.portland
.or.us

Figure 7: The complete reverse path tree, of which Fig-
ure 6 is an excerpt. This overall view shows the detail
available by combining many vantage points.

of GNP itself are unimportant for this paper; our aim
is simply to demonstrate the utility and scalability of
Scriptroute by repeating a real experiment. For this
analysis, we require a dataset consisting of measured
latencies between Scriptroute servers and many Inter-
net hosts. These measurements can then be compared
against GNP-derived estimates. The GNP study re-
quired the authors to obtain accounts on 19 machines
distributed around the globe – we would like to make
this sort of measurement study nearly trivial.

As input to the GNP analysis tool, we gathered a set
of latency measurements from 31 Scriptroute servers as
vantage points and roughly 3200 other Internet hosts
from a previously selected database. This is actually a
considerably larger dataset than that used in [40]. Each
Scriptroute script pinged a random selection of ten hosts
at a time and returned the minimum round trip latency
to the client. Each host was pinged 15 times, rather than
220 as in [40].

We used these latency measurements as a dataset to eval-
uate the accuracy of GNP estimates. Fifteen Scriptroute
servers are designated as landmarks, and we use the
GNP analysis tool to compare GNP estimates to mea-

0.0 0.5 1.0 1.5 2.0

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

GNP dataset
Scriptroute dataset

Figure 8: Relative error distribution of GNP.

sured latencies between the non-landmark Scriptroute
servers and the hosts. In Figure 8, we plot both our re-
sults for the cumulative distribution of relative error (as
defined in [40]) and the results from the data set used
in [40]. We find a slightly higher relative error, but on
the whole the results are comparable, despite our lack of
tuning.

This experiment highlights the capabilities of Scrip-
troute as a tool for gathering network performance data.
The code size for the client and server scripts is given

Component Code Length
Ping sweep (shipped) 33 lines
Analysis (client) 55 lines

Ping packets 60K per server
1.8M overall

Execution time 2 hours 30 minutes
(in parallel)

Table 5: GNP dataset collector statistics.

in Table 5, along with the run time and packet counts as
before. We see that the experiment scripts again are very
small and run relatively quickly. Similar datasets could
be gathered for other experiments, such as checking the
latency savings of Detour paths in RON [3, 51].

6 Related Work

We describe existing distributed network measurement
and debugging systems classified by whether they sup-
port unauthenticated clients, as this is a key feature of
our design. We then describe safe local interfaces for
network measurement that share attributes of the Scrip-
troute software architecture.

6.1 Unauthenticated Systems

Unauthenticated systems are often provided to aid in
network debugging. Such debugging infrastructure in-
cludes public looking-glass servers, which show BGP
configuration, and public traceroute servers, which show
the path to an arbitrary destination. They are widely
deployed: in the Rocketfuel project, traceroute servers
represented over 700 vantage points in the network [53].
Such servers are inflexible: only a few measurements are
supported, optimizations such as those we used in Sec-
tion 5.1 are unavailable, and modifications to use less-
filtered protocols [39, 56] or different logic are impossi-
ble. These servers are often tedious to use cooperatively:
they may come and go faster than Web directories can
be updated, and often use distinct interfaces. Scriptroute
was designed to address these problems while building
on the successes of these unauthenticated systems.

6.2 Authenticated Systems

Systems for network research, including Netbed (for-
merly emulab) [57], NIMI [45], Surveyor [30],
IPMA [24], AMP [1], and RON [3]. From our per-
spective, these systems are similar, so we describe the
most established one, NIMI. The National Internet Mea-
surement Infrastructure (NIMI) is a research platform
for distributed network measurement. Their design fo-
cus was on scalability and security, and a goal of their
project was to support standardized network metrics
from the IETF’s IPPM working group [46].

NIMI, and the Network Probe Daemon upon which it
is based, have similar goals as Scriptroute but different
approaches. The NIMI approach to security is one of a

closed system of trusted users who authenticate them-
selves, communicate using an encrypted protocol, and
run standardized measurement tools. The Scriptroute
approach, in contrast, is to permit any user to connect
and run arbitrary measurement scripts, so long as the
generated traffic conforms to a model of safe traffic.

The most significant advantage that authenticated sys-
tems have is that users are assumed to be friendly, which
simplifies resource allocation. As an example, storage
resources can be allocated to users, allowing measure-
ments to be scheduled and their results stored until the
user returns to claim them.

6.3 Extensible Network Measurement

Safe interfaces for network measurement have generated
recent interest. The FLAME project provides a sys-
tem for passive monitoring of network traffic, using a
type-safe language (Cyclone [28]) and run-time verifi-
cation [2]. FLAME provides extensibility to the mon-
itoring facilities offered by routers, installing code into
the operating system kernel.

Two projects support active measurements on a single
system using a similar API. The PeriScope [22] project
provides a kernel API to send groups of ICMP echo re-
quests without returning to user space, which they argue
helps accuracy. Ṕasztor and Veitch [43] also separate
measurement logic from sending probe packets in dif-
ferent processes, but they do so for precisely scheduled
packet transmission using a real time task in RTLinux.
Scriptroute complements these systems by providing a
layer between scripts and the kernel that can be ex-
tended to support these richer interfaces. Scriptroute
currently supports raw sockets with libpcap by default,
and Scout’s safe raw sockets on Planetlab, allowing mea-
surement scripts to transparently take advantage of new
host operating system features.

7 Conclusions and Future Work

We have presented the design and implementation of
Scriptroute, a new platform that allows ordinary Inter-
net users to make network measurements from remote
vantage points. Scriptroute is motivated by the popular-
ity and utility of public traceroute servers. Clients locate
servers using the DNS and ship measurement tasks as
scripts. This provides the flexibility to implement a vari-
ety of non-intrusive tools for measuring path properties
and makes it easy to coordinate measurements across

servers. To protect servers from abuse, measurement
scripts are executed in a resource-limited sandbox con-
trolled by the local administrator. To prevent the sys-
tem from being used to launch denial-of-service attacks,
measurement traffic is checked, rate-limited, and logged
for accountability.

The Scriptroute software is publicly available [52], in-
cluding clients and sample measurement scripts, as well
as the server and interpreter source. We have deployed
servers across the PlanetLab testbed of 42 sites. We
have used the resulting system to measure routing trees
around a destination and to collect a latency dataset
suitable for evaluating Internet distance prediction tech-
niques. Our early experience suggests that the system
is quite flexible and useful, despite its security restric-
tions, and that scripting is an apt choice for expressing
and combining measurement tasks.

We view Scriptroute as a work in progress. We believe
that Scriptroute shows how a public infrastructure can
substantially improve our ability to make safe, flexible
network measurements. With experience, we hope to
improve the system and better assess our design choices.
Some interesting features are not yet implemented, in-
cluding support for measurements using TCP connec-
tions and tools that send responses rather than probes.
We also expect our security policies to evolve as we un-
cover patterns of preferred usage and attempted abuse,
and as our model of safe network measurement traffic is
broadened with the advent of new tools.

Acknowledgements

We wish to thank Intel Research for providing access to
their PlanetLab resources. Mike Wawrzoniak and Andy
Bavier made it possible for Scriptroute to run using Plan-
etLab’s safe raw sockets. Vern Paxson provided help-
ful comments. We also thank David Richardson, Brent
Chun, and Ratul Mahajan.

This work was supported by DARPA under grant no.
F30602-00-2-0565.

References

[1] Active Measurement Project.http://amp.nlanr.
net/ .

[2] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, and
M. Greenwald. Open packet monitoring on FLAME:
Safety, performance and applications. InIFIP Int’l
Working Conference on Active Networks (IWAN), 2002.

[3] D. Anderson, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient overlay networks. InSOSP, 2002.

[4] J. Bellardo and S. Savage. Measuring packet reorder-
ing. In ACM SIGCOMM Internet Measurement Work-
shop, 2002.

[5] R. L. Carter and M. E. Crovella. Measuring bottleneck
link speed in packet-switched networks. Tech. Rep. TR-
96-006, Boston University CS Dept., 1996.

[6] R. L. Carter and M. E. Crovella. Dynamic server selec-
tion using bandwidth probing in wide-area networks. In
IEEE INFOCOM, 1997.

[7] CERT. TCP SYN flooding and IP spoofing at-
tacks. http://www.cert.org/advisories/
CA-1996-21.html , 1996.

[8] CERT. UDP port denial of service attack.
http://www.cert.org/advisories/
CA-1996-01.html , 1996.

[9] CERT. IP denial of service attacks.http://www.
cert.org/advisories/CA-1997-28.html ,
1997.

[10] CERT. Smurf IP denial of service attacks.
http://www.cert.org/advisories/
CA-1998-01.html , 1998.

[11] Cooperative Association for Internet Data Analysis
(CAIDA). Internet tools taxonomy. http://www.
caida.org/tools/taxonomy/ , 2002.

[12] Cowzilla and P. Dreamer. Puke.http://www.
cotse.com/sw/dos/icmp/puke.c , 1996.

[13] C. Dovrolis, P. Ramanathan, and D. Moore. What do
packet dispersion techniques measure? InIEEE INFO-
COM, 2001.

[14] A. B. Downey. trout.http://rocky.wellesley.
edu/downey/trout/ , 1999.

[15] A. B. Downey. Using pathchar to estimate Internet link
characteristics. InACM SIGCOMM, 1999.

[16] Fyodor. NMAP: The network mapper.http://www.
insecure.org/nmap/ .

[17] E. Gavron. NANOG traceroute.ftp://ftp.login.
com/pub/software/traceroute/beta/ .

[18] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A
secure environment for untrusted helper applications. In
USENIX Security Symposium, 1996.

[19] R. Govindan and V. Paxson. Estimating router ICMP
generation delays. InPassive & Active Measurement
(PAM), 2002.

[20] R. Govindan and H. Tangmunarunkit. Heuristics for In-
ternet map discovery. InIEEE INFOCOM, 2000.

[21] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:
Estimating latency between arbitrary Internet end hosts.
In ACM SIGCOMM Internet Measurement Workshop,
2002.

[22] K. Harfoush, A. Bestavros, and J. Byers. PeriScope: An
active measurement API. InPassive & Active Measure-
ment (PAM), 2002.

[23] C. Hawblitzel,et al. Implementing multiple protection
domains in Java. InUSENIX Annual Technical Confer-
ence, 1998.

[24] Internet Performance Measurement and Analysis
(IPMA) project.http://www.merit.edu/ipma/ ,
2002.

http://amp.nlanr.net/
http://amp.nlanr.net/
http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/advisories/CA-1996-01.html
http://www.cert.org/advisories/CA-1996-01.html
http://www.cert.org/advisories/CA-1997-28.html
http://www.cert.org/advisories/CA-1997-28.html
http://www.cert.org/advisories/CA-1998-01.html
http://www.cert.org/advisories/CA-1998-01.html
http://www.caida.org/tools/taxonomy/
http://www.caida.org/tools/taxonomy/
http://www.cotse.com/sw/dos/icmp/puke.c
http://www.cotse.com/sw/dos/icmp/puke.c
http://rocky.wellesley.edu/downey/trout/
http://rocky.wellesley.edu/downey/trout/
http://www.insecure.org/nmap/
http://www.insecure.org/nmap/
ftp://ftp.login.com/pub/software/traceroute/beta/
ftp://ftp.login.com/pub/software/traceroute/beta/
http://www.merit.edu/ipma/

[25] V. Jacobson. Pathchar.ftp://ftp.ee.lbl.gov/
pathchar .

[26] V. Jacobson. Traceroute.ftp://ftp.ee.lbl.
gov/traceroute.tar.Z .

[27] M. Jain and C. Dovrolis. End-to-end available band-
width: measurement methodology, dynamics, and rela-
tion with TCP throughput. InACM SIGCOMM, 2002.

[28] T. Jim,et al. Cyclone: A safe dialect of C. InUSENIX
Annual Technical Conference, 2002.

[29] R. Jones. Netperf.http://www.netperf.org/ .
[30] S. Kalidindi and M. J. Zekauskas. Surveyor: An in-

frastructure for Internet performance measurements. In
INET’99, 1999.

[31] M. Kenney, ed. Ping o’ death. http://www.
insecure.org/sploits/ping-o-death.
html , 1996.

[32] T. Kernen. traceroute.org. http://www.
traceroute.org .

[33] K. Lai and M. Baker. Nettimer: A tool for measuring
bottleneck link bandwidth. InUSITS, 2001.

[34] B. Mah. Estimating bandwidth and other network prop-
erties. InInternet Statistics and Metrics Analysis Work-
shop, 2000.

[35] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson.
Inferring link weights using end-to-end measurements.
In ACM SIGCOMM Internet Measurement Workshop,
2002.

[36] M. Mathis. Windowed ping: an IP layer performance
diagnostic. InINET’94/JENC5, 1994.

[37] M. Mathis. Diagnosing Internet congestion with a trans-
port layer performance tool. InINET’96, 1996.

[38] S. McCanne and V. Jacobson. The BSD packet filter:
A new architecture for user-level packet capture. In
USENIX Winter Technical Conference, 1993.

[39] N. McCarthy. fft. http://www.mainnerve.com/
fft/ .

[40] T. E. Ng and H. Zhang. Predicting Internet network dis-
tance with coordinates-based approaches. InIEEE IN-
FOCOM, 2002.

[41] J. Padhye and S. Floyd. Identifying the TCP behavior of
Web servers. InACM SIGCOMM, 2001.

[42] V. N. Padmanabhan, L. Qiu, and H. J. Wang. Passive
network tomography using bayesian inference. InACM
SIGCOMM Internet Measurement Workshop, 2002.

[43] A. Pásztor and D. Veitch. A precision infrastructure for
active probing. InPassive & Active Measurement (PAM),
2001.

[44] V. Paxson. An analysis of using reflectors for distributed
denial-of-service attacks.ACM Computer Communica-
tion Review, 2001.

[45] V. Paxson, A. Adams, and M. Mathis. Experiences with
NIMI. In Passive & Active Measurement (PAM), 2000.

[46] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis.
Framework for IP performance metrics. RFC 2330,
1998.

[47] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the
Internet. InHotNets-I, 2002.

[48] J. Poskanzer. thttpd. http://www.acme.com/
software/thttpd/ .

[49] S. Saroiu, P. K. Gummadi, and S. D. Gribble. Sprobe:
A fast technique for measuring bottleneck bandwidth
in uncooperative environments. InSubmitted for publi-
cation, 2002.http://sprobe.cs.washington.
edu/sprobe.ps .

[50] S. Savage. Sting: a TCP-based network measurement
tool. In USITS, 1999.

[51] S. Savage,et al. The end-to-end effects of Internet path
selection. InACM SIGCOMM, 1999.

[52] Scriptroute.http://www.scriptroute.org/ .
[53] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP

topologies with Rocketfuel. InACM SIGCOMM, 2002.
[54] H. Tangmunarunkit, R. Govindan, D. Estrin, and

S. Shenker. The impact of routing policy on Internet
paths. InIEEE INFOCOM, 2001.

[55] A. Tirumala, F. Qin, J. Dugan, and J. Ferguson.
Iperf. http://dast.nlanr.net/Projects/
Iperf/ , 2002.

[56] M. C. Toren. tcptraceroute. http://michael.
toren.net/code/tcptraceroute/ .

[57] B. White,et al. An integrated experimental environment
for distributed systems and network. InOSDI, 2002.

ftp://ftp.ee.lbl.gov/pathchar
ftp://ftp.ee.lbl.gov/pathchar
ftp://ftp.ee.lbl.gov/traceroute.tar.Z
ftp://ftp.ee.lbl.gov/traceroute.tar.Z
http://www.netperf.org/
http://www.insecure.org/sploits/ping-o-death.html
http://www.insecure.org/sploits/ping-o-death.html
http://www.insecure.org/sploits/ping-o-death.html
http://www.traceroute.org
http://www.traceroute.org
http://www.mainnerve.com/fft/
http://www.mainnerve.com/fft/
http://www.acme.com/software/thttpd/
http://www.acme.com/software/thttpd/
http://sprobe.cs.washington.edu/sprobe.ps
http://sprobe.cs.washington.edu/sprobe.ps
http://www.scriptroute.org/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://michael.toren.net/code/tcptraceroute/
http://michael.toren.net/code/tcptraceroute/

	Introduction
	Goals and Approach
	Philosophy
	Flexible Measurement Tools
	Protecting Scriptroute Servers
	Preventing Network Attacks

	System Design
	System Management
	Server Front-End
	Script Interpreter
	Network Guardian

	Implementation
	Script Interpreter
	Network Guardian

	Evaluation
	Reverse Path Tree (RPT)
	Validating GNP

	Related Work
	Unauthenticated Systems
	Authenticated Systems
	Extensible Network Measurement

	Conclusions and Future Work

