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Abstract

We use simulation to study whether overlays based
on the recent distributed hash tables (DHTs) have
the potential to deliver performance comparable
to that of overlays based on measurements. Our
work is motivated by the use of DHTs for ser-
vices such as multicast, which is already targeted by
measurement-based overlays; there is currently little
understanding of how the two approaches compare
at scales where both are viable.

We compare three DHT-based overlays (CAN,
Chord and Pastry) with two measurement-based
overlays (Narada and NICE), as well as power-law
random graphs (PLRGs) that represent Gnutella.
To enable comparisons, we con�gure the overlays
with the same average out-degree and focus on mod-
erate scale. To gauge potential, we look at current
and idealized DHT algorithms. We �nd that basic
versions of DHTs have a latency stretch that is at
least twice that of NICE and Narada, but similar
performance in terms of bandwidth hotspots. How-
ever, DHT performance can be improved consid-
erably with routing heuristics and topology-aware
overlay construction, which have the potential to
bring DHT performance at par with NICE. We also
report on performance of overlays with power-law
structure and the impact of hierarchy on perfor-
mance.

1 Introduction

Overlays have become the preferred vehicle for pro-
viding new Internet services, e.g., CDNs [1, 12],
application-level multicast [15, 4, 17, 16, 20, 25, 7,
39, 20, 34], and P2P �le sharing [18, 13, 10, 22, 11].
As such, overlay construction protocols that provide
good levels of performance, scalability, and robust-
ness are of considerable importance. There has been
a surge of interest in the area, along with rapid ad-
vances that have led to two main approaches to over-
lay construction: protocols based on measurements,
and protocols based on the recently developed dis-
tributed hash tables (DHTs).

Measurement-based protocols use estimates of net-
work properties such as latency between overlay
nodes to make an informed choice of overlay struc-
ture. They were initially motivated by application-
level multicast. Examples include Narada [15],
RON [2], NICE [4], Kudos [16] and TAG [20]. These
algorithms provide good performance via high qual-
ity paths. Recent extensions have allowed them to
scale up to tens of thousands of nodes by using hi-
erarchy [4, 19].

On the other hand, DHT-based protocols begin with
structure in mind, and may fold measurement infor-
mation into that structure. They map the overlay
nodes to a virtual space commonly known as the
node identi�er space, typically pseudo-randomly to
achieve a balanced distribution. The overlay topol-
ogy, which determines how the nodes connect to
each other, is governed mainly by these node identi-
�ers. Examples include CAN [27], Chord [30], Pas-
try [28] and Tapestry [37]. These algorithms are ex-
tremely scalable and were motivated by peer-to-peer
(P2P) applications such as distributed �le sharing,
where millions of nodes may be involved.

While originally developed for di�erent purposes,
DHT-based overlays are now being targeted at
some of the same applications as measurement-
based overlays, most visibly application-level multi-
cast [25, 7, 31, 39]. Here, eÆcient use of the network
is a key concern, more so than for earlier DHT appli-
cations such as distributed indexing. Much recent
work thus aims to better the performance of DHT-
based overlays with improved construction heuris-
tics [5, 36, 38, 24, 32]. However, despite this con-
vergence of purpose and plenitude of work, there is
no real understanding of how the two approaches
compare.

In this paper, we study the performance of
DHT-based overlays at moderate scales (1000s
of nodes) where they represent an alternative to
measurement-based overlays for multicast and other
services. In contrast, most other work on DHTs
studies scales up to hundreds of thousands or mil-



lions of nodes. We seek to determine whether DHT-
based overlays have the potential to deliver per-
formance that is comparable to measurement-based
overlays at our scales. If so, then research on im-
proved heuristics is more likely to be fruitful.

Our approach is to side-step ongoing improvements
to DHTs. Rather than report on the many proposed
versions of DHT-based overlays that may quickly
become outdated, we study both basic and ideal-
ized DHT variants that use global knowledge. This
allows us to bound the extent to which performance
can be improved as better heuristics are discovered.
We use simulation to compare CAN, Chord and
Pastry with Narada and NICE when run on the
same topologies, at the same scale, and with the
same metrics. We also report on power-law random
graphs (PLRGs) with ooding based routing, repre-
senting Gnutella, to provide another point of com-
parison. To our knowledge, this is the �rst \apples
to apples" comparison of these approaches.

We �nd that when con�gured with the same aver-
age out-degree, basic versions of CAN, Chord and
Pastry have a latency stretch longer than NICE and
Narada by a factor of two or more, depending on the
scale. Somewhat surprisingly, all these algorithms
showed similar performance in terms of bandwidth
hotspots. PLRGs performed better than the basic
versions of DHTs in terms of latency stretch due to
the use of ooding as the routing mechanism, but
poorly in terms of bandwidth hotspots due to highly
variable node out-degrees and the same use of ood-
ing. We also �nd that considerable latency perfor-
mance gain can be achieved in DHTs with better
routing heuristics and topology awareness, though
it is more diÆcult to simultaneously achieve both
good latency and good bandwidth performance. To-
gether, these techniques have the potential to bring
DHT performance at par with NICE, and thus are
a promising direction for future research. As oth-
ers [4, 19, 16] we �nd that the hierarchy used to
help NICE scale does not signi�cantly degrade its
performance as compared to Narada.

The paper proceeds as follows. We describe the rel-
evant overlay algorithms in Section 2. Section 3
discusses the metrics of interest when evaluating
overlays, and Section 4 describes our experimental
methodology. We present our results in Section 5,
discuss related work in Section 6, and conclude in
Section 7.

2 Background

This section provides an overview of the overlay con-
struction algorithms that we study. An overlay is

built by forming virtual links or tunnels between
the participating nodes; a tunnel between a pair of
nodes usually traverses multiple links in the under-
lying network. Given a set of nodes, the goal of an
overlay construction algorithm is to select the vir-
tual links and to determine how to route over that
topology.

2.1 Measurement-based Overlays

Measurement-based overlays are constructed pri-
marily using active measurements of network prop-
erties such as latency between overlay nodes. Sev-
eral algorithms for building these kind of overlays
exist, most of which target multicast services [15,
4, 34, 16, 23, 20, 17, 9]. We study Narada [15] and
NICE [4], both of which are optimized for latency.

Narada creates a at i.e no hierarchal overlay topol-
ogy that minimizes the latency between nodes while
keeping a small number of tunnels per node. This
is accomplished by choosing an initial set of tun-
nels, and periodically adding new tunnels and drop-
ping existing ones. The tunnel addition and deletion
process is governed by the utility of the tunnel. The
utility metric is computed using the reduction in dis-
tance to other nodes the tunnels brings about. This
computation requires periodic exchange of routing
tables between neighbors and every node probing
every other node. This poses a barrier to scalability,
but provides all nodes with near global knowledge
and leads to an optimized overlay.

To address the scalability problem with a at mea-
surement based overlay, NICE creates a hierarchy of
node clusters. At the bottom of hierarchy, nodes are
partitioned into clusters of �xed size. Each cluster
has a representative node that lies roughly at the
topological center of the cluster. It is determined
by having nodes in the cluster probe each other.
The representative node of a lower-level cluster is a
member in the next level of the hierarchy. This pro-
cess is recursively repeated, yielding a tree topology.
The per node network bandwidth required for over-
lay maintenance is O(log(n)), compared to O(n) in
Narada, where n is the number of nodes.

For the purpose of our study, Narada provides a
baseline for an overlay with high quality paths at
small scale. NICE provides an indication of the per-
formance that can be maintained when additional
structure is imposed to scale to larger sizes.

2.2 DHT-based Overlays

DHT-based overlays are constructed using algo-
rithms for distributed hash tables (DHTs) [27, 30,



28, 37, 32]. These algorithms were originally de-
veloped to provide highly scalable and fully dis-
tributed indexing services for peer-to-peer �le shar-
ing. They have since been applied to other services
such as multicast [25, 31, 7, 39]. We study CAN [27],
Chord [30] and Pastry [28].

In CAN, nodes are mapped pseudo-randomly to a
virtual d-dimensional Cartesian space, which wraps
around at the edges and has no resemblance to the
underlying physical topology. Every node has 2� d
neighbors, corresponding to the adjacent nodes in
each dimension. Routing is achieved by following a
path through the Cartesian space that increasingly
progresses from source to destination. The average
path length is O(dn1=d), where n is the number of
nodes in the overlay and the per node network band-
width required for protocol maintenance is O(d).

In Chord, every node is pseudo-randomly assigned
an m bit identi�er. For simplicity of explanation,
assume n = 2m, where n is the number of nodes in
the overlay. Every node is connected to m neigh-
bors (i.e. log(n) neighbors) with identi�ers that
are spaced at distances of 20; 21; 22 : : : 2m�1 from
its identi�er in identi�er space using modulo arith-
metic. A packet from node ns to node nd is for-
warded to the neighbor of ns that is arithmetically
closest to nd but less than or equal to nd. The
above process ensures that route between any two
nodes has at most log(n) hops. The per node net-
work bandwidth required for protocol maintenance
for Chord is O(log(n)).

In Pastry, nodes are pseudo-randomly mapped to
an m-bit identi�er space in base 2b. The routing
table of a Pastry node is a matrix with m=b rows,
and 2b columns. The node in cell (r; c) shares the
�rst r digits with the local node and has the last
digit equal to c. Routing is accomplished by each
node forwarding a message for key k to the node in
its routing table with the longest matching pre�x;
ties are broken using arithmetic closeness to k. Both
the average number of hops required to route a mes-
sage and per node bandwidth required for overlay
maintenance in Pastry is O(log(n)).

What we have summarized above are the basic ver-
sions of CAN, Chord and Pastry. De�nitive de-
scriptions are provided in the papers that we ref-
erence. Several modi�cations have also been pro-
posed [27, 30, 24, 11, 5]. Some of these target per-
formance, while others target application-speci�c
aspects such as data availability, resiliency and
hotspot management. Since the primary focus of
our work is performance, we study only the per-
formance enhancing heuristics, in Section 4.1, and
ignore the rest.

For the purpose of our study, CAN, Chord and
Pastry represent the di�erent, major, families of
algorithms, all of which are being actively devel-
oped [25, 24, 31, 11]. Tapestry [37] is similar to
Pastry, and we believe our results are relevant for
Tapestry as well.

2.3 Random Power-Law Overlays

We study one more class of overlays to provide
another point of comparison: power-law random
graphs (PLRGs). It has been observed that the
topology of \naturally emerging overlays" such as
Gnutella, which are formed when users create links
to other nodes, are characterized by a node out-
degree distribution that obeys a power law. Rout-
ing in such overlays is accomplished through ood-
ing over all links. These overlays are attractive for
their simplicity and high tolerance to random fail-
ures [29].

3 Overlay Performance Metrics

In this section, we describe the metrics used in our
study. Choosing appropriate metrics for compar-
ing overlays is not straightforward because perfor-
mance depends on the applications. However, the
latency overhead of an overlay and its use of net-
work bandwidth is always a concern. For this rea-
son two criteria have been widely used in overlay
evaluation: relative delay penalty (RDP) and link
stress [15, 4, 25, 31, 17, 5, 7]. We use both of these,
along with a third, Load Balance Ratio, that mea-
sures the distribution of the routing responsibility
in the overlay.

Ideally, an overlay would deliver latencies and band-
widths between nodes that match those of the un-
derlying network. However, there is a penalty for
routing between overlay nodes. If there are multi-
ple virtual links between two overlay nodes, the path
between them through the overlay will be longer
than the path through the underlying network. If
several virtual links pass over an underlying physical
link, the link will experience higher load and in case
of multicast the same message may travel over it
multiple times. This latency overhead is measured
using RDP, and the bandwidth penalty using link
stress.

3.1 Relative Delay Penalty

Relative delay penalty (RDP) is a measure of the
additional packet delay introduced by the overlay
on the delivery of a message between two nodes. It
is de�ned as the ratio of the latency experienced
when sending data using the overlay to the latency
experienced when sending data directly using the
underlying network.
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Figure 1: Example overlay topologies. The physical network is shown in the �rst pane followed by three possible
overlays. The logical topology in shown on the top, and the paths taken when A sends a message to B, C and D is
shown on the bottom.

As de�ned, RDP is measured between a pair of
nodes and thus provides a set of values for the over-
lay. To gauge the level of performance of the entire
overlay, we use the 90th percentile from the RDP
distribution. Various authors have used the same
criteria for several reasons [15, 31, 25]. First, the
90th percentile serves to bound the delay multiplier
that will be seen by most nodes in practice, whereas
the average by itself does not convey any sense of
the variation. Second, choosing the 90th percentile
rather than the worst case RDP hides sensitivity to
simulation parameters. Finally, RDP can easily be
very high when the physical latency is small, and
using the 90th percentile instead of the worst case
RDP �lters out these outliers [15].

3.2 Link Stress

Link stress is de�ned as the number of tunnels that
send traÆc over a physical link. Links with high
stress are potential bandwidth hotspots in the sys-
tem. In case of unicast, it is a measure of load ex-
perienced by the link; more tunnels means higher
load. In case of multicast, it becomes a measure
of excess bandwidth consumption induced by the
overlay; more tunnels means more duplicate mes-
sages. For multicast, stress is a function of both the
topology and the multicast tree. Two approaches to
implement multicast exist { ooding [25] and tree-
based [31, 7, 39]. For DHTs and measurement-based
overlays, we consider only the latter as it is believed
to be more eÆcient [8]. Here the multicast tree is
the union of the unicast routes from the source to
all destinations. For PLRGs we use ooding, the
default mechanism.

Stress as de�ned above is a distribution over all
physical links for each multicast tree, i.e, per source.

To gauge the level of performance of the entire over-
lay, we use the 90th percentile of the distribution
given by the worst stress for each multicast tree. Us-
ing worst case distribution conveys a bound on the
stress seen by any link, and using the 90th percentile
reduces the sensitivity to simulation parameters as
before.

An ideal overlay should have both low RDP and
low stress. Unfortunately, it may be diÆcult to si-
multaneously achieve both objectives. For instance,
consider the physical network and three possible
overlays topologies shown in Figure 1. Figure 1(b1)
shows a fully connected overlay topology, in which
the RDP between all pairs is 1, but the stress on
links close to the end hosts is high. To communi-
cate with B, C, and D simultaneously, A must send
three packets over its physical access link, leading
to a stress of 3. Next consider the overlay topol-
ogy in Figure 1(c1), which has low stress on links
close to the end hosts. In this case, all overlay tun-
nels go over the high latency physical link joining
r1 and r2. This leads to high RDP between most
pairs. Figure 1(d) shows a good overlay with both
acceptably low RDPs and low stresses.

3.3 Load Balance

In an overlay, nodes also act as routers and for-
ward packets between other nodes. Ideally an over-
lay would not place a much higher forwarding load
on one node compared to other nodes1. Otherwise,
with increasing workload the overloaded node would
soon become a hotspot for the system, leading to

1Here we are assuming homogeneous nodes. Although
this may not be a realistic assumption in practice, existing
protocols are not designed to take into account heterogeneity
of members [26]. Any variation in forwarding load is thus
unintended.



degraded performance. For example, logical topolo-
gies such as a star or a tree are not well balanced
compared to a ring topology because they have key
nodes that are used for most point-to-point commu-
nications.

To measure the distribution of the forwarding load,
we de�ne a metric called the Load Balance Ratio,
which is computed as follows. For each node in the
overlay, the routing load is the number of source-
destination pairs between which it forwards mes-
sages. Load balance ratio is the ratio of the maxi-
mum routing load to the median routing load. This
measures how much worse the maximally loaded
node is compared to the halfway loaded node. This
metric is less relevant for multicast where all nodes
forward one message for a given source. It is im-
portant when overlays are used more generally for
multiple point-to-point communications.

For the purpose of our study, load balance ratio ex-
poses how performance-based routing concentrates
traÆc in non-uniform ways. One of the favorable
arguments behind DHT-based approaches is that
they are better load balanced because of their reg-
ular geometric structure and use of randomization.
But heuristics that improve performance can inter-
fere with this. We also note that load balance dis-
tinguishes topologies and routing protocols that are
only suited for multicast from those that are more
widely applicable. For example, protocols such as
NICE that use hierarchy are good for multicast but
would place extremely high load on nodes high in
the tree if used for general unicast communications.

3.4 Other Considerations

There are several other performance measures that
we do not explore in this paper. We do not mea-
sure the overhead of the overlay protocols, either
in terms of the amount of state or traÆc that is
needed to maintain the overlay. It is well known
that pure DHT algorithms make only local mea-
surements and scale extremely well, while schemes
such as Narada perform global measurements and
scale relatively poorly. Our emphasis instead is on
the performance levels that can be achieved at a
given scale for which the overhead of the algorithms
under study has been deemed acceptable. For exam-
ple, NICE is able to scale to 1000s of nodes (because
its overhead is logarithmic with overlay size), while
Narada is not. Thus, for overlays this large, NICE is
our only option among measurement-based overlays
for comparison with DHTs.

We also do not measure protocol dynamics, such as
maintaining connectivity in face of failures. Over-
lays are expected to operate with members leaving

dynamically, and di�erent overlay construction al-
gorithms may be disrupted in di�erent ways; in the
extreme, partitions are possible. While these dy-
namic properties are important, our focus is to �rst
understand the static performance potentials of the
di�erent algorithms.

4 Methodology

In this section, we describe our experimental
methodology. We �rst describe the variations of the
DHT-based algorithms that we compare. We then
describe our simulation set-up.

Recall that our goal is to understand whether DHT-
based overlays will be able to match the level of
performance of measurement-based overlays, which
are constructed speci�cally to provide good quality
paths. One diÆculty is that di�erent heuristics are
continually being proposed to enhance the perfor-
mance of DHT-based overlays [24, 27, 38, 31, 32, 5],
and we do not wish our results to quickly become
irrelevant by being tied too closely to speci�c heuris-
tics. Instead, we side-step this race by taking ad-
vantage of simulation as a tool to report on the per-
formance of both the current versions and idealized
versions that enhance performance by using global
knowledge.

4.1 DHT Heuristics

We study performance-enhancing variations to
DHTs along two dimensions { those that attempt
to �nd better paths over a given overlay, and those
that construct the overlay itself in a topology-aware
manner. We describe each in turn.

4.1.1 Routing Heuristics

In the simplest version of DHTs, routing proceeds
using only the geometric properties of the overlay
algorithm. We refer to this as the Base variant. It
is possible to improve performance by routing across
the overlay in a manner that takes latency into ac-
count. The structure of the overlay itself remains
una�ected. We study the heuristic speci�ed in [27]
for CAN and [11] for Chord. Here, the chosen next
hop is the one out of all possible neighbors that
results in the maximum progress towards the desti-
nation, where progress is de�ned as the ratio of the
distance in identi�er space to the physical latency.
We refer to these versions of CAN and Chord as
the Proximity variants. In Pastry, the next hop is
unique and therefore it does not have a correspond-
ing proximity routing variant. Comparison between
Base and Proximity shows the value of the current
routing heuristics.



Other heuristics have been proposed, e.g., smallest
physical latency for CAN as described in [8]. How-
ever, rather than simulate all the di�erent heuristics
we can �nd, we stick with the above as a yardstick
(since it applies to both CAN and Chord and is the
subject of most published results) and de�ne a new
variant intended to provide an upper bound on how
well any future heuristic can perform. This variant,
Shortest-Path, comes from the observation that the
maximum gain achievable by any routing heuristic
is that of shortest path routing (implemented using
a distance vector or link state algorithm). This al-
gorithm requires global knowledge, unlike proposed
heuristics, and so may not be a good choice at large
scales. However, it can readily be computed in our
simulation setting to provide a bound on the per-
formance of better heuristics that will inevitably be
proposed. That is, comparison between Proximity

and Shortest-Path shows how much room routing
heuristics have for improvement. Another advan-
tage is that the Shortest-Path variant is indepen-
dent of the actual overlay algorithm and therefore
it applies to all three DHTs.

4.1.2 Topology Awareness

In the simplest version of DHTs, both the map-
ping of nodes to identi�ers and the choice of tunnels
(when multiple choices are possible as in Pastry)
is pseudo-random to provide a well-balanced struc-
ture. This overlay construction process, which we
refer to as the Random variant, is unaware of the
underlying topology.

In a topology aware overlay, heuristics are used to
create an overlay that reects the underlying net-
work topology. The intuition is that if the overlay
and the underlying network topology closely mirror
one another, then the overlay paths will closely fol-
low network paths and good performance will result.
We now describe how to achieve topology awareness
in Pastry, CAN and Chord.

In Pastry topology awareness can be achieved
through neighbor selection [5]. A routing table entry
can be �lled by any node that matches the criteria
for that cell. Topology aware construction chooses
the closest such node. Achieving perfect aware-
ness using this method requires global knowledge,
though reasonable approximations that rely only on
limited information exchange are possible [5]. In
this paper, we only consider the global knowledge
approach.

The above neighbor-selection approach is not appli-
cable to CAN and Chord because in both these algo-
rithms topology is completely de�ned once the iden-
ti�er assignment is done. Instead topology aware-
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ness is achieved through intelligent identi�er as-
signment. For instance, identi�er assignment based
on proximity to landmarks has been proposed as a
heuristic [24] to achieve a topology aware mapping
in CAN.

However, it is generally the case that heuristics for
topology-aware identi�er assignment are not as well
de�ned nor studied as heuristics for improving rout-
ing. To understand how much topology awareness
itself can improve performance, assuming that good
heuristics will be found, we would like to use an ana-
logue to our Shortest-Path variation above, rather
than simulate many possible heuristics. However
no such globally optimal assignment has been de-
�ned for either CAN or Chord. So, we use a greedy
assignment based on global knowledge to construct
a good assignment. Our greedy assignment2 rule
works as follows: the identi�er of a new node join-
ing the overlay is chosen so that it is a neighbor of
the node that is closest to it in the underlying net-
work. That is, the rule makes the overlay neighbors
of a node similar to the neighbors of the node in the
underlying topology. Figure 2 illustrates the con-
cept for a 2-dimensional CAN. This also requires
global knowledge (or at least a knowledge of dis-
tances to all nodes in the vicinity) and so may not
be a good implementation choice at large scales. In-
terestingly, a similar heuristic has been proposed in
parallel with our work [32].

4.2 Simulation Setup

Since our primary interest is in understanding per-
formance under static environments, we simulate

2We believe that our approach based on global knowledge
would yield a better mapping than using a �xed number of
landmarks. The performance of the latter is also sensitive to
the choice and number of landmarks.



overlay construction using centralized algorithms.
The only exception is Narada, which we simulated
using an event-driven simulator because Narada
does dynamic evaluations to improve the overlay
over time. To generate PLRGs overlays, we �rst
generated power-law topologies using Brite [21], and
then randomly mapped the nodes in this graph to
the nodes in the overlay. For DHTs, pseudo-random
hash functions are used to provide a well-balanced
structure. However, since we are using simulation
we created well-balanced structures by uniformly
partitioning the space directly. This is a conser-
vative simpli�cation that is consistent with our goal
of presenting the DHT-based overlays in their best
light.

An important parameter that a�ects the perfor-
mance is the average out-degree (the number of
neighbors of a node). It determines the number
of links in the overlay and therefore directly a�ects
performance. For example, an overlay with more
links will have lower RDPs because of shorter paths
but higher stress because more overlay links traverse
a physical link. We study the e�ect of out-degree
in Section 5.4. The average out-degree is a con�g-
urable parameter in all overlays except Chord. In
Chord the outdegree is log2(overlay size). In Pas-
try the average degree depends on b and varies as
blog2b(overlay size). We �xed b as 1 to make Pas-
try's average degree comparable to that of Chord.
The values of degree we study range from 4 to 12.

We used the transit-stub model of GT-ITM [35] to
generate the physical network topology. GT-ITM
also assigns latencies to links in the physical topol-
ogy. Additional nodes were attached to the stub
nodes to represent hosts connected to lower level
routers. Overlay nodes were picked randomly from
these hosts.

The overlay algorithms that we compare are sum-
marized in Table 1. We study one version of each
of Narada [15], NICE [4], and PLRG. Narada and
NICE build their topologies using latency measure-
ments as described earlier, and they use shortest
path routing using latency as the metric. PLRG
forms a random topology where the node outde-
gree distribution follows a power law, and nodes
ood over this topology; this represents Gnutella-
like overlays.

For each parameter setting we ran 9 simulations,
three di�erent physical network topologies, each
with three random seeds. Each topology had 4,040
backbone nodes and 20,200 stub nodes. Simulated
overlay sizes were varied from 64 to 4096.

Topology
Awareness

Routing Degree

Narada - Shortest-Path 4� 12
NICE - Shortest-Path 4� 12
CAN Topology-

Aware,

Random

Shortest-Path,

Proximity,

Base

4� 12

Chord Topology-

Aware,

Random

Shortest-Path,

Proximity,

Base

�

Pastry Topology-

Aware,

Random

Shortest-Path,

Base

�

PLRG - Flooding 4� 12

Table 1: Summary of simulated algorithms.

5 Results

We now present the results of comparing di�erent
protocols and their variants on each of our three
performance metrics. We �rst consider a compar-
ison using an out-degree of 10 for all overlays ex-
cept Chord and Pastry. This out-degree was found
to be a good representative by experimenting with
di�erent out-degrees. The e�ect of out-degree on
performance is described in Section 5.4.

5.1 RDP

This section investigates the latency stretch of var-
ious overlays. We start by studying the impact of
heuristics in DHT-based overlays, and then compare
all the overlays.

5.1.1 E�ect of Heuristics

Figures 3 and 5 show the impact of routing heuris-
tics in CAN on top of an overlay with Random and
with Topology-Aware overlay construction, respec-
tively. They plot the 90th percentile RDP for the
Base version of CAN, CAN with Proximity rout-
ing, and CAN with Shortest-Path routing (the best
possible performance for a given overlay). Similar
results were obtained using 50th percentile and 95th
percentile RDP and are not shown. Figures 4 and 6
show the same results for Chord. Results from all
9 simulations are presented to show the variance
and the line is drawn through the average. This
representation is used in all plots unless otherwise
speci�ed.

For both CAN and Chord, improved routing brings
about signi�cant improvement in RDP. Proximity

routing does quite well; it reduces the RDPs to
roughly halfway between Base and Shortest-Path
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Figure 3: E�ect of routing heuristics on RDP in CAN

with Random overlay construction.
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Figure 4: E�ect of routing heuristics on RDP in Chord

with Random overlay construction.

Topology Awareness
Routing Random Topology-Aware

Base 8.89 7.05
Proximity 6.87 4.71
Shortest-Path 5.55 3.02

Table 2: E�ect of heuristics on 90th percentile RDP
for CAN with 1024 nodes

routing. However, it does not match the perfor-
mance of Shortest-Path routing because while the
former is a greedy decision at each hop, the lat-
ter computes globally optimal paths. The improve-
ment in Chord using Proximity routing is slightly
greater because as we increase the overlay size, the
number of choices for the next hop increases, lead-
ing to better paths. As a result, Proximity routing
comes closer to Shortest-Path routing in Chord than
in CAN.

To understand the e�ect of combining the di�erent
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Figure 5: E�ect of routing heuristics on RDP in CAN

with Topology-Aware overlay construction.
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Figure 6: E�ect of routing heuristics on RDP in Chord

with Topology-Aware overlay construction.

heuristics, we tabulate the 90th percentile RDP for
CAN with 1024 nodes in Table 2. Observe that
the e�ect of heuristics compose and the best perfor-
mance is achieved by enabling both Shortest-Path

routing and Topology-Aware overlay construction.
This improvement is substantial, from 8.89 to 3.02
(almost a 70% reduction), and indicates the poten-
tial for improvement through more practical heuris-
tics. By looking across columns in the table, we
deduce that being topology aware by itself brings
about a signi�cant performance gain.

Figure 7 shows the e�ect of both topology awareness
and routing heuristics on RDP for Pastry. As before
the heuristics lead to substantial improvement.

5.1.2 Comparing All Protocols

We try to answer two questions now:

1. How do DHTs with only scalable heuristics (such
as Proximity routing) compare to measurement-
based overlays, especially NICE since it has similar
scalability?
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Figure 7: E�ect of heuristics on RDP in Pastry.
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with Random overlay construction and Proximity rout-
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Base routing.

2. How do DHTs compare to the other approaches
when Shortest-Path routing along with Topology-

Aware overlay construction is implemented?

Figure 8 shows the 90th percentile RDP as a func-
tion of overlay size for di�erent protocols3. Proxim-

ity routing is used for CAN and Chord with Ran-

dom overlay construction. For Pastry we show
Random overlay construction with Base routing.
These represent simple, eÆcient, and practical ver-
sions of these overlays. A distributed implementa-
tion of topology awareness is shown to be a reason-
able approximation in [6]. We believe that by the
same token, similar implementations are possible for
CAN/Chord because a new node being able to �nd
the closest live node is a key assumption in both sce-
narios. Instead of assuming this to be a fact and for

3For Narada, results are not shown for overlay sizes
greater than 1024 nodes because simulation times were on
the order of days.
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fairness of comparison, we chose to use the Random
overlay construction for all DHTs.

We make the following observations:

� The di�erence in RDP between NICE and the
DHTs is large and grows with the overlay size. It is
a factor of two for 1024 nodes.

� Flooding over PLRGs performs well, because with
ooding the shortest path between nodes is taken.
This also indicates that without heuristics DHT
overlays are not better than random overlays from
a latency perspective.

� All DHTs have similar RDPs. The slightly worse
performance for Pastry stems from the absence of a
Proximity routing equivalent, and the slightly bet-
ter performance of Chord for overlay sizes greater
than 1024 stems from a higher average out-degree
in Chord compared to CAN beyond this size,4 which
leads to shorter paths.

� The performance of NICE does not deteriorate
with increasing overlay size even though the levels
of hierarchy increase. Further, it is not much worse
than that of Narada. Our �ndings agree with those
of the authors of NICE [4].

Figure 9 compares DHTs with Topology-Aware over-
lay construction and Shortest-Path routing with all
other protocols. This represents the maximum per-
formance one can achieve from a latency perspective
for these overlays. There is no real qualitative dif-
ference between performance in this case. This is
encouraging because it shows that RDPs compara-
ble to measurement-based overlays can be achieved
using improved versions of DHT-based overlays.

4Average degree for Chord is log(n) { for 1024 nodes av-
erage degree is 10 which is the same as the average degree
con�gured for CAN.
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Figure 10: E�ect of routing heuristics on link stress in

CAN with Random overlay construction.

5.2 Stress

We now investigate how the various protocols com-
pare on the metric of the worst case stress, and
the impact on stress of RDP-enhancing heuristics
in DHT-based overlays.

5.2.1 E�ect of Heuristics

Figures 10 and 11 show stress as a function of over-
lay size for CAN with Random and Topology-Aware

overlay construction, respectively. The three lines
correspond to the three routing variants { Base,
Proximity and Shortest-Path. The results for Chord
were similar, and have been omitted due to space
constraints.

Somewhat surprisingly, improved routing does not
have much negative impact on stress. With im-
proved routing, we expected stress near a few well-
placed nodes to go up. This is evident to some de-
gree in the fact that the worst case stress does go up
slightly. But at the same time, this increase is rea-
sonably countered because improved routing leads
to shorter paths, which means that fewer links are
traversed. By comparing the results across Random
(Figure 10) and Topology-Aware (Figure 11), we can
also see that topology awareness has little impact on
stress.

Figure 12 shows the e�ect of heuristics on link stress
for Pastry. As for CAN, both routing heuristics had
no signi�cant impact on stress. However, topology
awareness with Base routing had much worse (al-
most factor of 2) stress values. A key di�erence
between the topology aware overlay construction
mechanisms of Pastry and CAN/Chord is that in
Pastry a few well placed nodes can be the neighbors
of many nodes, whereas in CAN/Chord a node can
be a neighbor of only a small number of other nodes.
This has a direct consequence on link stress and load
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Figure 11: E�ect of routing heuristics on link stress in

CAN with Topology-Aware overlay construction.
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Figure 12: E�ect of heuristics on link stress in Pastry.

balancing. Hence, our results should be interpreted
as highlighting the di�erence between the two meth-
ods to achieve topology-awareness { choosing node
identi�er assignment and choosing neighbors.

5.2.2 Comparing All Protocols

Figure 13 shows how stress varies with size for dif-
ferent algorithms. Since the performance of vari-
ous variants of DHTs was largely similar, we show
the stress only for the best version, Topology-Aware
overlay construction with Shortest-Path routing.
The striking artifact in the graph is that PLRG
has very high stress, more than �ve times worse
than the other protocols for 1024 nodes. This is
due to its use of ooding as the routing mechanism,
and an uneven out-degree distribution among nodes.
All other protocols exhibit similar stress values, al-
though for large overlay sizes (over 2048 nodes)
NICE has slightly smaller values. Large group sizes
have higher density for a �xed topology size, which
has the tendency to increase the stress on the back-
bone links in DHTs. In this situation, the clustering
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Figure 14: E�ect of routing heuristics on load balancing
in CAN with Random overlay construction.

of close nodes in NICE helps to reduce the stress on
the backbone links.

In summary, for similar average out-degrees all pro-
tocols exhibited similar worst case stress proper-
ties. In case of CAN and Chord heuristics have
no signi�cant impact on stress properties. For Pas-
try, however, Topology-Awareness with Base routing
had signi�cantly higher stress than other variants.

5.3 Load Balancing

We now study the load balancing properties.

5.3.1 E�ect of Heuristics

Figure 14 shows the load balancing ratio for di�er-
ent overlay sizes for CAN with random overlay con-
struction. As before, the three lines correspond to
the three routing variants. With Base routing, the
load is balanced very evenly, with the ratio between
one and two. This is a direct consequence of the reg-
ular structure and the random overlay construction
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Figure 15: E�ect of heuristics on load balancing in Pas-
try.

in the DHT algorithms. With the Proximity rout-
ing, load balancing deteriorates slightly but grows
very slowly with the overlay size. However, there is
a signi�cant degradation with Shortest-Path routing
because there exist well-placed nodes in the topol-
ogy that have a low latency to many nodes, and
therefore are used very often independent of their
node-ID. This raises the issue of the value of a rout-
ing heuristic that mimics Shortest-Path routing if
balanced load is desired.

We observed similar behavior for CAN with
Topology-Aware overlay construction because being
topology aware only changes the relative assign-
ments and does not modify the DHT structure it-
self. The results for Chord were also similar; we
omit them due to space constraints.

Figure 15 shows the load balancing ratio for di�er-
ent heuristics. As in CAN we �nd signi�cant degra-
dation with Shortest-Path routing. We can also
see that in the case of Pastry Topology-Awareness

caused the load balance to deteriorate. This is for
same reasons, as for higher link stress, mentioned in
Section 5.2.1.

5.3.2 Comparing All Protocols

Figure 16 shows the load balancing ratio for all the
protocols. The Shortest-Path routing variant for
DHTs is shown, as it had the highest load. Note
that the scale of y-axis di�ers from that in Figure 14.
We can see that NICE has an extremely high load
balancing ratio (two orders of magnitude for over-
lays bigger than 1024). This is because in the NICE
hierarchy, the root of hierarchy is responsible for for-
warding all packets whose source and destination lie
in di�erent sub-trees. On the other hand, Narada, a
measurement-based overlay with no hierarchy, per-
forms similarly to CAN and Chord with Shortest-

Path routing. PLRG too has a high load balancing



 0

 100

 200

 300

 400

 500

 600

 100  1000

Lo
ad

 B
al

an
ce

 R
at

io

Overlay size(nodes)

NICE
Narada
PLRG

Pastry Topology-Aware, Shortest-Path
Chord Topology-Aware, Shortest-Path

CAN Topology-Aware, Shortest-Path

Figure 16: Variation of load balancing ratio with size

for various overlays. Variants of DHTs with Topology-

Aware overlay construction and Shortest-Path routing

are shown.

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

90
%

 R
D

P(
ra

tio
)

Average Degree

CAN Random, Proximity
CAN Topology-Aware, Shortest-Path

PLRG
NICE

Narada

Figure 17: E�ect of out-degree in various overlays. Two
variants of CAN are shown { Random overlay construc-

tion with Proximity routing and Topology-Aware overlay

construction with Shortest-Path routing.

ratio because of a highly uneven degree distribution.
Note that the relatively sharp increase in NICE at
some points (256 and 4096) is a quantization e�ect
due to formation of unbalanced trees.

In summary, our results point at the limitations
of hierarchy for applications involving general uni-
cast communications. DHT routing heuristics that
mimic Shortest-Path routing can have signi�cant
negative impact on load balancing and thus may not
be a suitable choice for some applications. Although
Topology-Aware overlay construction by itself does
not degrade load balancing in CAN/Chord, it de-
grades it in the case of Pastry.

5.4 E�ect of Out-Degree

In this section we study the e�ect of increasing the
average out-degree of nodes in various overlays. In-
tuitively, increasing out-degree will decrease RDP
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Figure 18: Variation of link stress with RDP. Two vari-

ants of CAN, same as those in Figure 17, are shown.

because it reduces the number of overlay hops. But
at the same time, stress could increase because the
number of overlay links per physical link increases.

Node out-degree is controlled in CAN by varying
the number of dimensions. We consider two ver-
sions of CAN: i) Proximity routing with Random

overlay construction; and ii) Shortest-Path routing
with Topology-Aware overlay construction. Narada
and PLRG algorithms can be con�gured with an
average out-degree, and the out-degree in NICE is
controlled through cluster size. Chord and Pastry
are not shown because the out-degree of nodes can
not be varied independent of the overlay size.

The results in this section are presented for a �xed
overlay size of 1024 nodes and only averages over
simulations are plotted. Figure 17 shows the e�ect
of increasing average out-degree on RDP for di�er-
ent protocols. Two observations can be made. First,
there is a sharp reduction in RDP for CAN variants
as the average degree is increased. For other proto-
cols also, the RDP decreases with increasing degree
but the gain is much less. Second, NICE was able
to achieve good RDPs with a much lower average
out-degree compared to CAN with Proximity rout-
ing over Random overlay construction.

We now explore the trade-o� between RDP and link
stress. Figure 18 shows the relationship between
stress and RDP. It plots the measured stress for a
given RDP obtained by varying the node out-degree
(Figure 17). The worst case stress for PLRGs was
extremely high, and hence has not been shown in
this graph. All overlays exhibit the basic tradeo�
between RDP and link stress, though to varying
degrees. By increasing average out-degree, RDP
can be reduced, but that reduction comes at the
cost of higher stress. However, note that the CAN



variant with Proximity routing over random over-
lay construction lies further away from the origin
than NICE. This means that it is harder to simul-
taneously achieve both low stress and low RDP in
this variant of CAN than in NICE. At the same
time CAN with Shortest-Path routing and Topology-
Aware overlay construction performs comparably to
NICE, which again points favorably towards the po-
tential of optimization in DHT-based approaches.

6 Related Work

Many overlay construction schemes have been pro-
posed, both measurement-based [15, 4, 20, 2, 23, 9,
34, 17] and DHT-based [27, 30, 28, 37]. Much ongo-
ing work aims to improve the performance of DHT-
based approaches [5, 36, 38, 24, 33, 31, 11] and the
scalability of measurement-based approaches [4, 20],
as well as look at how DHT-based approaches can
provide multicast and other services [25, 7, 39, 31].
However, there has been very little work on study-
ing how these di�erent overlay algorithms compare
to each other. Our work and that of a few other
researchers are �rst steps in this direction.

Castro et.al compare the performance of tree build-
ing and ooding on top of CAN and Pastry [8].
They �nd that ooding has high overhead compared
to tree-based approaches. This is consistent with
our results, where we found that ooding on top of
PLRGs has much higher overhead compared to tree-
based protocols. A qualitative comparison of vari-
ous overlay protocols is provided in [3]. Our focus,
however, is on empirical evaluation under identical
environments.

Finally, Ratnasamy et. al outline the challenges fac-
ing DHT-based overlays [26]. They identify perfor-
mance with respect to latency as a key open issue.
Our work indicates that with good routing heuris-
tics and topology-awareness, DHT-based overlays
can match the performance of measurement-based
overlays.

7 Conclusions and Future Work

In this paper we studied the performance po-
tential of DHT-based overlays at moderate scale
(1000s of nodes) where they represent an alterna-
tive to measurement-based overlays for multicast
and other services. We used simulation to compare
basic and ideal DHT-based overlay protocols with
measurement-based protocols, at the same scale,
using the same topology, and with the same per-
formance metrics. Speci�cally, we compared CAN,
Chord and Pastry with Narada and NICE, as well
as power-law random graphs.

Our key �ndings are:

� For the same average out-degree, basic versions
of DHTs have a latency stretch that is longer than
NICE and Narada by a factor of two or more, de-
pending on the size of the overlay. The performance
in terms of bandwidth hotspots is similar however.

� Considerable performance gains in latency can be
achieved in DHTs with better routing heuristics and
with topology-aware overlay construction. These
heuristics had no substantial adverse e�ect on link
stress, except when the choice of tunnels was di-
rectly sensitive to latency, as in Pastry. However,
the heuristics (and especially the routing heuristics)
do lead to relatively higher load on some nodes.

� As others [4, 16, 19], we found that the hierar-
chy in NICE does not signi�cantly degrade perfor-
mance compared to Narada from a latency perspec-
tive. The e�ect of hierarchy on bandwidth hotspots
was minimal too. We also note that power-law ran-
dom graphs had a latency stretch that is competitive
with that of NICE, but performed poorly in terms
of bandwidth hotspots.

In summary our �ndings indicate that DHT-based
overlays are a promising direction, with the poten-
tial to achieve not only scale but good levels of
performance. Better heuristics that come closer to
achieving this potential without sacri�cing scalabil-
ity are the subject of other, ongoing research.

There are also directions in which we hope to ex-
tend our study. The optimizations we considered in
this paper are biased towards latency. We do not
yet know if bandwidth heuristics (we are not aware
of any at present) can deliver levels of bandwidth
that are comparable to that of bandwidth optimiz-
ing protocols such as Overcast [17] and the enhanced
version of Narada [14]. Performance in dynamic en-
vironments is another area worthy of exploration.
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