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Abstract

Previous research has addressed the scalability and
availability issues associated with the construction of
cluster-based network services. This paper studies the
clustering of replicated services when the persistent ser-
vice data is frequently updated. To this end we pro-
pose Neptune, an infrastructural middleware that pro-
vides a flexible interface to aggregate and replicate ex-
isting service modules. Neptune accommodates a va-
riety of underlying storage mechanisms, maintains dy-
namic and location-transparent service mapping to iso-
late faulty modules and enforce replica consistency. Fur-
thermore, it allows efficient use of a multi-level replica
consistency model with staleness control at its highest
level. This paper describes Neptune’s overall architec-
ture, data replication support, and the results of our per-
formance evaluation.

1 Introduction

High availability, incremental scalability, and manage-
ability are some of the key challenges faced by design-
ers of Internet-scale network services and using a cluster
of commodity machines is cost-effective for addressing
these issues [4, 7, 17, 23]. Previous work has recognized
the importance of providing software infrastructures for
cluster-based network services. For example, the TACC
and MultiSpace projects have addressed load balancing,
failover support, and component reusability and extensi-
bility for cluster-based services [7, 12]. These systems
do not provide explicit support for managing frequently
updated persistent service data and mainly leave the re-
sponsibility of storage replication to the service layer.
Recently the DDS project has addressed replication of
persistent data using a layered approach and it is focused
on a class of distributed data structures [11]. In compar-
ison, we design and build an infrastructural middleware,

called Neptune, with the goal of clustering and replicat-
ing existing stand-alone service modules that use various
storage management mechanisms.

Replication of persistent data is crucial to achieving high
availability. Previous work has shown that synchronous
replication based on eager update propagations does not
deliver scalable solutions [3, 9]. Various asynchronous
models have been proposed for wide-area or wireless
distributed systems [2, 3, 9, 15, 22]. These results are
in certain parts applicable for cluster-based Internet ser-
vices; however they are designed under the constraint
of high communication overhead in wide-area or wire-
less networks. Additional studies are needed to address
high scalability and runtime failover support required by
cluster-based Internet services [6, 18].

The work described in this paper is built upon a large
body of previous research in network service cluster-
ing, fault-tolerance, and data replication. The goal of
this project is to propose a simple, flexible yet efficient
model in aggregating and replicating network service
modules with frequently updated persistent data. The
model has to be simple enough to shield application pro-
grammers from the complexities of data replication, ser-
vice discovery, load balancing, failure detection and re-
covery. It also needs to have the flexibility to accom-
modate a variety of data management mechanisms that
network services typically rely on. Under the above con-
sideration, our system is designed to support multiple
levels of replica consistency with varying performance
tradeoffs. In particular, we have developed a consistency
scheme with staleness control.

Generally speaking, providing standard system compo-
nents to achieve scalability and availability tends to de-
crease the flexibility of service construction. Neptune
demonstrates that it is possible to achieve these goals by
targeting partitionable network services and by provid-
ing multiple levels of replica consistency.

The rest of this paper is organized as follows. Sec-



tion 2 presents Neptune’s overall system architecture
and the assumptions that our design is based upon. Sec-
tion 3 describes Neptune’s multi-level replica consis-
tency scheme and the failure recovery model. Section 4
illustrates a prototype system implementation and three
service deployments on a Linux cluster. Section 5 eval-
uates Neptune’s performance and failure management
using those three services. Section 6 describes related
work and Section 7 concludes the paper.

2 System Architecture and Assumptions

Neptune’s design takes advantage of the following char-
acteristics existing in many Internet services: 1) Infor-
mation independence. Network services tend to host a
large amount of information addressing different and in-
dependent categories. For example, an auction site hosts
different categories of items. Every bid only accesses
data concerning a single item, thus providing an intuitive
way to partition the data. 2) User independence. Infor-
mation accessed by different users tends to be indepen-
dent. Therefore, data may also be partitioned according
to user accounts. Email service and Web page hosting
are two examples of this. With these characteristics in
mind, Neptune is targeted at partitionable network ser-
vices in the sense that data manipulated by such a service
can be divided into a large number of independent data
partitions and each service access can be delivered in-
dependently on a single partition; or each access is an
aggregate of a set of sub-accesses each of which can be
completed independently on a single partition. With fast
growing and wide-spread usage of Internet applications,
partitionable network services are increasingly common.

Neptune encapsulates an application-level network ser-
vice through a service access interface which contains
several RPC-like access methods. Each service access
through one of these methods can be fulfilled exclusively
on one data partition. Neptune employs a flat architec-
ture in constructing the service infrastructure and a node
is distinguished as a client or a server only in the context
of each specific service invocation. In other words, a
server node in one service invocation may act as a client
node in another service invocation. Within a Neptune
cluster, all the nodes are loosely connected through a
well-known publish/subscribe channel. Published infor-
mation is kept as soft state in the channel such that it has
to be refreshed frequently to stay alive [16]. This chan-
nel can be implemented using IP multicast or through
a highly available well-known central directory. Each
cluster node can elect to provide services through re-

peatedly publishing the service type, the data partitions
it hosts, and the access interface. Each node can also
choose to host a Neptune client module which sub-
scribes to the well-known channel and maintains a ser-
vice/partition mapping table. Services can be acquired
by any node in the cluster through the local Neptune
client module by using the published service access in-
terface. The aggregate service could be exported to ex-
ternal clients through protocol gateways.

Wide Area Network

Web
Server

Web
Server

WAP
Gateway

WAP
Gateway

Wireless Network

System Area Network
(contains a well-known

publish/subscribe channel)

Discussion
Group

Partition
0 - 9

Discussion
Group

Partition
5 -14

Discussion
Group

Partition
10 -19

Discussion
Group

Partition
0-4, 15-19

Image
Store

Partition
0 - 9

Image
Store

Partition
10 - 19

Photo
Album

Partition
0 - 19

Photo
Album

Partition
0 - 19

Neptune client module

Web
Browser

Web
Browser

Web
Browser

Web
Browser

Wireless
Client

Wireless
Client

Wireless
Client

Figure 1: Architecture of a sample Neptune service clus-
ter.

Figure 1 illustrates the architecture of a sample Nep-
tune service cluster. In this example, the service clus-
ter delivers a discussion group and a photo album ser-
vice to wide-area browsers and wireless clients through
web servers and WAP gateways. All the persistent data
are divided into twenty partitions according to user ac-
counts. The discussion group service is delivered inde-
pendently while the photo album service relies on an in-
ternal image store service. Therefore, each photo album
node needs to host a Neptune client module to locate and
access the image store in the service cluster. A Neptune
client module is also present in each gateway node in or-
der to export internal services to external clients. The
loosely-connected and flat architecture allows Neptune
service infrastructure to operate smoothly in the pres-
ence of transient failures and through service evolution.



2.1 Neptune Modules and Interfaces

Neptune supports two communication schemes between
clients and servers: a request/response scheme and a
stream-based scheme. In the request/response scheme,
the client and the server communicate with each other
through a request message and a response message. For
the stream-based scheme, Neptune sets up a bidirec-
tional stream between the client and the server as a result
of the service invocation. Stream-based communication
can be used for asynchronous service invocation and it
also allows multiple rounds of interaction between the
client and the server. Currently Neptune only supports
stream-based communication for read-only service ac-
cesses because of the complication in replicating and
logging streams. The rest of this section focuses on the
support for the request/response scheme.

For the simplicity of the following discussion, we clas-
sify a service access as a read access (or read in short)
if it does not change the persistent service data, or as a
write access (or write in short) otherwise.

Neptune provides a client-side module and a server-side
module to facilitate location-transparent service invoca-
tions. Figure 2 illustrates the interaction among service
modules and Neptune modules during a service invo-
cation. Basically, each service access request is made
by the client with a service name, a data partition ID, a
service method name, and a read/write access mode, as
discussed below on the client interface. Then the Nep-
tune client module transparently selects a service node
based on the service/partition availability, access mode,
consistency requirement, and runtime workload. Cur-
rently Neptune’s load balancing decision is made based
on the number of active service invocations at each ser-
vice node. Previous work has also shown that locality-
aware request distribution could yield better caching per-
formance [14]. We plan to incorporate locality-based
load-balancing schemes in the future. Upon receiving
the request, the Neptune server module in the chosen
node spawns a service instance to serve the request and
return the response message when it completes. The
service instance could be compiled into a dynamically
linked library and linked into Neptune process space
during runtime. Alternatively, it could run as a separate
process, which would provide better fault isolation and
resource control at the cost of degraded performance.
Finally, since a data partition may be replicated across
multiple nodes, the Neptune server module propagates
writes to other replicas to maintain replica consistency.

We discuss below the interfaces between Neptune and

service modules at both the client and the server sides:

� At the client side, Neptune provides a unified
interface to service clients for seeking location-
transparent request/response service access. It is
shown below in a language-neutral format:
NeptuneRequest(NeptuneHandle; ServiceName;

PartitionID; ServiceMethod;AccessMode;

RequestMsg;ResponseMsg);
A NeptuneHandle should be used in every
service request that a client invokes. It maintains
the information related to each client session and
we will discuss it further in Section 3.1. The
meanings of other parameters are straightforward.

� At the server side, all the service method imple-
mentations need to be registered at the service de-
ployment phase. This allows the Neptune server
module to invoke the corresponding service in-
stance when a service request is received. In addi-
tion, each service has to provide a CHECK callback
which allows the Neptune server module to check
if a previously spawned service instance has been
successfully completed. The CHECK callback is
very similar to the REDO and UNDO callbacks that
resource managers provide in the transaction pro-
cessing environment [10]. It is only invoked dur-
ing the node recovery phase and we will further
discuss its usage and a potential implementation in
Section 3.2.

2.2 Assumptions

We assume all hardware and software system modules
follow the fail-stop failure model and network partitions
do not occur inside the service cluster. Nevertheless, we
do not preclude catastrophic failures in our model. In
other words, persistent data can survive through a fail-
ure that involves a large number of modules or even all
nodes. In this case, the replica consistency will be main-
tained after the recovery. This is important because soft-
ware failures are often not independent. For instance, a
replica failure triggered by high workload results in even
higher workload in remaining replicas and may cause
cascading failures of all replicas.

Neptune supports atomic execution of data operations
through failures only if each underlying service mod-
ule can ensure atomicity in a stand-alone configuration.
This assumption can be met when the persistent data
is maintained in transactional databases or transactional
file systems. To facilitate atomic execution, we assume
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Figure 2: Interaction among service modules and Neptune modules during a request/response service invocation.

that each service module provides a CHECK callback
so that the Neptune server module can check if a pre-
viously spawned service instance has been successfully
completed.

3 Replica Consistency and Failure Recov-
ery

In general, data replication is achieved through either
eager or lazy write propagations [5, 9]. Eager propaga-
tion keeps all replicas exactly synchronized by acquiring
locks and updating data at all replicas in a globally coor-
dinated manner. In comparison, lazy propagation allows
lock acquisitions and data updates to be completed in-
dependently at each replica. Previous work shows that
synchronous eager propagation leads to high deadlock
rates when the number of replicas increases [9]. In order
to ensure replica consistency while providing high scal-
ability, the current version of Neptune adopts a primary
copy approach to avoid distributed deadlocks and a lazy
propagation of updates to the replicas where the updates
are completed independently at each replica. In addition,
Neptune addresses the load-balancing problems of most
primary copy schemes through data partitioning.

Lazy propagation introduces the problems of out-of-
order writes and accessing stale data versions. Nep-
tune provides a three-level replica consistency model to
address these problems and exploit their performance
tradeoff. Our consistency model extends the previous
work in lazy propagation with a focus on high scala-
bility and runtime failover support. Particularly Nep-
tune’s highest consistency level provides a staleness con-
trol which contains not only the quantitative staleness
bound but also a guarantee of progressive version deliv-
ery for each client’s service accesses. We can efficiently
achieve this staleness control by taking advantage of the
low latency, high throughput system-area network and
Neptune’s service publishing mechanism.

The rest of this section discusses the multi-level consis-
tency model and Neptune’s support for failure recovery.

It should be noted that the current version of Neptune
does not have full-fledged transactional support largely
because Neptune restricts each service access to a single
data partition.

3.1 Multi-level Consistency Model

Neptune’s first two levels of replica consistency are more
or less generalized from the previous work [5, 17] and
we provide an extension in the third level to address the
data staleness problem from two different perspectives.
Notice that a consistency level is specified for each ser-
vice and thus Neptune allows co-existence of services
with different consistency levels.

Level 1. Write-anywhere replication for commuta-
tive writes. In this level, each write is initiated at
any replica and is propagated to other replicas asyn-
chronously. When writes are commutative, even-
tually the client view will converge to a consistent
state for each data partition. Some append-only dis-
cussion groups satisfy this commutativity require-
ment. Another example is a certain kind of email
service [17], in which all writes are total-updates,
so out-of-order writes could be resolved by discard-
ing all but the newest.

Level 2. Primary-secondary replication for ordered
writes. In this consistency level, writes for each
data partition are totally ordered. A primary-copy
node is assigned to each replicated data partition,
and other replicas are considered as secondaries.
All writes for a data partition are initiated at the
primary, which asynchronously propagates them in
a FIFO order to the secondaries. At each replica,
writes for each partition are serialized to preserve
the order. This results in a loss of write concurrency
within each partition. However, the large number
of independent data partitions usually yields signif-
icant concurrency across partition boundaries. In
addition, the concurrency among reads is not af-
fected by this scheme.



Level 3. Primary-secondary replication with stale-
ness control. Level two consistency is intended
to solve the out-of-order write problem resulting
from lazy propagation. This additional level is de-
signed to address the issue of accessing stale data
versions. The primary-copy scheme is still used to
order writes in this level. In addition, we assign a
version number to each data partition and this num-
ber increments after each write. The staleness con-
trol provided by this consistency level contains two
parts: 1) Soft quantitative bound. Each read is
serviced at a replica that is at most x seconds stale
compared to the primary version. The quantitative
staleness between two data versions is defined by
the elapsed time between the two corresponding
writes accepted at the primary. Thus our scheme
does not require a global synchronous clock. Cur-
rently Neptune only provides a soft quantitative
staleness bound and it is described later in this sec-
tion. 2) Progressive version delivery. From each
client’s point of view, the data versions used to ser-
vice her read and write accesses should be mono-
tonically non-decreasing. Both guarantees are im-
portant for services like large-scale on-line auction
when strong consistency is hard to achieve.

We explain below our implementations for the two stal-
eness control guarantees in level three consistency. The
quantitative bound ensures that all reads are serviced at
a replica at most x seconds stale compared to the pri-
mary version. In order to achieve this, each replica pub-
lishes its current version number as part of the service
announcement message and the primary publishes its
version number at x seconds ago in addition. With this
information, Neptune client module can ensure that all
reads are only directed to replicas within the specified
quantitative staleness bound. Note that the “x seconds”
is only a soft bound because the real guarantee also de-
pends on the latency, frequency and intermittent losses
of service announcements. However, these problems are
insignificant in a low latency, reliable system area net-
work.

The progressive version delivery guarantees that: 1) Af-
ter a client writes to a data partition, she always sees the
result of this write in her subsequent reads. 2) A user
never reads a version that is older than another version
she has seen before. In order to accomplish this, each
service invocation returns a version number to the client
side. For a read, this number stands for the data version
used to fulfill this access. For a write, it stands for latest
data version as a result of this write. Each client keeps
this version number in a NeptuneHandle and carries it

in each service invocation. The Neptune client module
can ensure that each client read access is directed to a
replica with a published version number higher than any
previously returned version number.

3.2 Failure Recovery

In this section, we focus on the failure detection and re-
covery for the primary-copy scheme that is used in level
two/three consistency schemes. The failure management
for level one consistency is much simpler because the
replicas are more independent from each other.

In order to recover lost propagations after failures, each
Neptune service node maintains a REDO write log for
each data partition it hosts. Each log entry contains the
service method name, partition ID, the request message
along with an assigned log sequence number (LSN). The
write log consists of a committed portion and an uncom-
mitted portion. The committed portion records those
writes that are already completed while the uncommit-
ted portion records the writes that are received but not
yet completed.

Neptune assigns a static priority for each replica of a
data partition. The primary is the replica with the high-
est priority. When a node failure is detected, for each
partition that the faulty node is the primary of, the re-
maining replica with the highest priority is elected to be-
come the new primary. This election algorithm is based
on the classical Bully Algorithm [8] except that each
replica has a priority for each data partition it hosts.
This failover scheme also requires that the elected pri-
mary does not miss any write that has committed in the
failed primary. To ensure that, before the primary exe-
cutes a write locally, it has to wait until all other replicas
have acknowledged the reception of its propagation. If
a replica does not acknowledge in a timeout period, this
replica is considered to fail due to our fail-stop assump-
tion and thus this replica can only rejoin the service clus-
ter after going through the recovery process described
below.

When a node recovers after its failure, the underlying
single-site service module first recovers its data into a
consistent state. Then this node will enter Neptune’s
three-phase recovery process as follows:

Phase 1: Internal synchronization. The recovering
node first synchronizes its write log with the
underlying service module. This is done by using
the registered CHECK callbacks to determine



whether each write in the uncommitted log has
been completed by the service module. The
completed writes are merged into the committed
portion of the write log and the uncompleted writes
are reissued for execution.

Phase 2: Missing write recovery. In this phase, the re-
covering node announces its priority for each data
partition it hosts. If the partition has a higher pri-
ority than the current primary, this node will bully
the current primary into a secondary as soon as its
priority announcement is heard. Then it contacts
the deposed primary to recover the writes that it
missed during its down time. For a partition that
does not have a higher priority than the current pri-
mary, this node simply contacts the primary to re-
cover the missed writes.

Phase 3: Operation resumption. After the missed
writes are recovered, this recovering node resumes
normal operations by publishing the services it
hosts and accepting requests from the clients.

Note that if a recovering node has the highest priority
for some data partitions, there will be no primary avail-
able for those partitions during phase two of the recov-
ery. This temporary blocking of writes is essential to
ensure that the recovering node can bring itself up-to-
date before taking over as the new primary. We will
present the experimental study for this behavior in Sec-
tion 5.3. We also want to emphasize that a catastrophic
failure that causes all replicas for a certain partition to
fail requires special attention. No replica can success-
fully complete phase two recovery after such a failure
because there is no pre-existing primary in the system
to recover missed writes. In this case, the replica with
newest version needs to be manually brought up as the
primary then all other replicas can proceed the standard
three-phase recovery.

Before concluding our failure recovery model, we de-
scribe a possible CHECK callback support provided by
the service module. We require the Neptune server mod-
ule to pass the LSN with each request to the service
instance. Then the service instance fulfills the request
and records this LSN on persistent storage. When the
CHECK callback is invoked with an LSN during a re-
covery, the service module compares it with the LSN of
the latest completed service access and returns appropri-
ately. As we mentioned in Section 2.2, Neptune provides
atomic execution through failures only if the underlying
service module can ensure atomicity on single-site ser-
vice accesses. Such support can ensure the service ac-
cess and the recording of LSN take place as an atomic
action.

4 System and Service Implementations

We have implemented and deployed a prototype Nep-
tune infrastructure on a Linux cluster. The node work-
load is acquired through the Linux /proc file system.
The publish/subscribe channel is implemented using IP
multicast. Each multicast message contains the service
announcement and node runtime workload. We try to
limit the size of each multicast packet to be within an
Ethernet maximum transmission unit (MTU) in order to
minimize the multicast overhead. We let each node send
the multicast message once every second and all the soft
states expire in five seconds. That means a faulty node
will be detected when five of its multicast messages are
not heard in a row. These numbers are rather empirical
and we never observed a false failure detection in prac-
tice. This is in some degree due to the fact that each
node has two network interface cards, which allows us
to separate the multicast traffic from other service traffic.

Each Neptune server module could be configured to run
service instances as either threads or processes. The
server module also keeps a growable process/thread pool
and a waiting queue. When the upper limit for the grow-
able pool is reached, subsequent requests will be queued.
This scheme allows the Neptune server module to grace-
fully handle spikes in the request volume while main-
taining a desirable level of concurrency.

We have deployed three network services in the Nep-
tune infrastructure. The first service is on-line discus-
sion group, which handles three types of requests for
each discussion topic: viewing the list of message head-
ers (ViewHeaders), viewing the content of a mes-
sage (ViewMsg), and adding a new message (AddMsg).
Both ViewHeaders and ViewMsg are read-only re-
quests. The messages are maintained and displayed in
a hierarchical format according to the reply-to relation-
ships among them. The discussion group uses MySQL
database to store and retrieve messages and topics.

The second service is a prototype auction service, which
is also implemented on MySQL database. The auc-
tion service supports five types of requests: viewing
the list of categories (ViewCategories), viewing the
available items in an auction category (ViewCate-
gory), viewing the information about a specific item
(ViewItem), adding a new item for auction (Ad-
dItem), and bidding for an item (BidItem). Level
three consistency with proper staleness bound and pro-
gressive version delivery is desirable for this service in
order to prevent auction users from seeing declining bid-
ding prices.



Our final study was a persistent cache service, which
supports two service methods: storing a key/data pair
into the persistent cache (CacheUpdate) and retriev-
ing the data for a given key (CacheLookup). The per-
sistent cache uses an MD5 encoding based hashing func-
tion to map the key space into a set of buckets. Each
bucket initially occupies one disk block (1024 bytes) in
the persistent storage and it may acquire more blocks in
the case of overflow. We use mmap() utilities to keep an
in-memory reference to the disk data and we purge the
updates and the corresponding LSN into the disk at every
tenth CacheUpdate invocation. The LSN is used to
support the CHECK callback that we discussed in Sec-
tion 3.2. The persistent cache is most likely an internal
service, which provides a scalable and reliable data store
for other services. We used level two consistency for this
service, which allows high throughput with intermittent
false cache misses. A similar strategy was adopted in an
earlier study on Web cache clustering [13].

We note that MySQL database does not have full-fledged
transactional support, but its latest version supports
“atomic operations”, which is enough for Neptune to
provide cluster-wide atomicity. On the other hand, our
current persistent cache is built on a regular file system
without atomic recovery support. However, we believe
such a setting is sufficient for illustrative purposes.

5 System Evaluations

Our experimental studies are focused on performance-
scalability, availability, and consistency levels of Nep-
tune cluster services. All experiments described here
were conducted on a rack-mounted Linux cluster with
around 40 nodes. The nodes we used in the experi-
ments include 16 dual 400 Mhz Pentium II processors,
and 4 quad 500 Mhz Pentium II Xeon processors, all
of which contains 1 GBytes memory. Each node runs
Linux 2.2.15 and has two 100 Mb/s Ethernet interfaces.
The cluster is connected by a Lucent P550 Ethernet
switch with 22 Gb/s backplane bandwidth.

Even though all the services rely on protocol gateways
to reach end clients, the performance between protocol
gateways and end clients is out of the scope of this pa-
per. Our experiments are instead focused on studying
the performance between clients and services inside a
Neptune service cluster. During the evaluation, the ser-
vices were hosted on dual-Pentium IIs and we ran testing
clients on quad-Xeons. MySQL 3.23.22-Beta was used
as the service database.

We used synthetic workloads in all the evaluations. Two
types of workloads were generated for this purpose: 1)
Balanced workloads where service requests are evenly
distributed among data partitions were used to measure
the best case scalability. 2) Skewed workloads, in com-
parison, were used to measure the system performance
when some particular partitions draw an disproportional
number of service requests. We measured the maximum
system throughput when more than 98% of client re-
quests were successfully completed within two seconds.
Our testing clients attempted to saturate the system by
probing the maximum throughput. In the first phase,
they doubled their request sending rate until 2% of the
requests failed to complete in 2 seconds. Then they ad-
justed the sending rates in smaller steps and resumed
probing.

Our experience of using Linux as a platform to build
large-scale network services has been largely positive.
However, we do observe intermittent kernel crashes un-
der some network-intensive workload. Another problem
we had during our experiments is that the system only al-
lows around 4000 ports to stay in the TCP TIME WAIT
state at a given time. This causes our testing clients
to perform abnormally in some large testing configu-
rations, which forces us to use more machines to run
testing clients than otherwise needed. We have recently
ported Neptune to Solaris and we plan to conduct fur-
ther studies on the impact of different OS networking
kernels.

The rest of this section is organized as follows. Sec-
tion 5.1 and Section 5.2 present the system performance
under balanced and skewed workload. Section 5.3 il-
lustrates the system behavior during failure recoveries.
The discussion group service is used in all the above ex-
periments. Section 5.4 presents the performance of the
auction and persistent cache service.

5.1 Scalability under Balanced Workload

We use the discussion group to study the system scala-
bility under balanced workload. In this evaluation, we
studied the performance impact when varying the repli-
cation degree, the number of service nodes, the write
percentage, and consistency levels. The write percent-
age is the percentage of writes in all requests and it is
usually small for discussion group services. However,
we are also interested in assessing the system perfor-
mance under high write percentage, which allows us to
predict the system behavior for services with more fre-
quent writes. We present the results under two write per-
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Figure 3: Scalability of discussion group service under balanced workload.

centages: 10% and 50%. In addition, we measured all
three consistency levels in this study. Level one con-
sistency requires writes to be commutative and thus, we
used a variation of the original service implementation
to facilitate it. For the purpose of performance compar-
ison with other consistency levels, we kept the changes
to be minimum. For level three consistency, we chose
one second as the staleness bound. We also noticed that
the performance of level three consistency is affected by
the request rate of individual clients. This is because
a higher request rate from each client means a higher
chance that a read has to be forwarded to the primary
node to fulfill progressive version control, which in turn
restricts the system load balancing capabilities. We rec-
ognized that most Web users spend at least several sec-
onds between consecutive requests. Thus we chose one
request per second as the client request rate in this eval-
uation to measure the worst case impact.

The number of discussion groups in our synthetic work-
load was 400 times the number of service nodes. Those
groups were in turn divided into 64 partitions. These par-
titions and their replicas were evenly distributed across

service nodes. Each request was sent to a discussion
group chosen according to an even distribution. The dis-
tribution of different requests (AddMsg, ViewHead-
ers and ViewMsg) was determined based on the write
percentage.

Figure 3 shows the scalability of discussion group ser-
vice with three consistency levels and two write per-
centages (10% and 50%). Each sub-figure illustrates the
system performance under no replication (NoRep) and
replication degrees of two, three and four. The NoRep
performance is acquired through running a stripped
down version of Neptune which does not contain any
replication overhead except logging. The single node
performance under no replication is 152 requests/second
for 10% writes and 175 requests/second for 50% writes.
We can use them as an estimation for the basic ser-
vice overhead. Notice that a read is more costly than
a write because ViewHeaders displays the message
headers in a hierarchical format according to the reply-
to relationships, which may invoke some expensive SQL
queries.



We can draw the following conclusions based on the
results in Figure 3: 1) When the number of service
nodes increases, the throughput steadily scales across
all replication degrees. 2) Service replication comes
with an overhead because every write has to be executed
more than once. Not surprisingly, this overhead is more
prominent under higher write percentage. In general, a
non-replicated service performs twice as fast as its coun-
terpart with a replication degree of four at 50% writes.
However, Section 5.2 shows that replicated services can
outperform non-replicated services under skewed work-
loads due to better load balancing. 3) All three consis-
tency levels perform very closely under balanced work-
load. This means level one consistency does not provide
a significant performance advantage and a staleness con-
trol does not incur significant overhead either. We rec-
ognize that higher levels of consistency result in more
restrictions on Neptune client module’s load balancing
capability. However, those restrictions inflict very little
performance impact for balanced workload.

5.2 Impact of Workload Imbalance

This section studies the performance impact of workload
imbalance. Each skewed workload in this study consists
of requests that are chosen from a set of partitions ac-
cording to a Zipf distribution. Each workload is also
labeled with a workload imbalance factor, which indi-
cates the proportion of the requests that are directed to
the most popular partition. For a service with 64 par-
titions, a workload with an imbalance factor of 1/64 is
completely balanced. A workload with an imbalance
factor of 1 is the other extremity in which all requests
are directed to one single partition. Again, we use the
discussion group service in this evaluation.
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Figure 4: Impact of workload imbalance on the replica-
tion degrees with 8 service nodes.

Figure 4 shows the impact of workload imbalance on
services with different replication degree. The 10%

write percentage, level two consistency, and eight ser-
vice nodes were used in this experiment. We see that
even though service replication carries an overhead un-
der balanced workload (imbalance factor = 1/64), repli-
cated services can outperform non-replicated ones under
skewed workload. Specifically, under the workload that
directs all requests to one single partition, the service
with a replication degree of four performs almost three
times as fast as its non-replicated counterpart. This is
because service replication provides better load-sharing
by spreading hot-spots over several service nodes, which
completely amortizes the overhead of extra writes in
achieving the replica consistency.
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Figure 5: Impact of workload imbalance on consistency
levels with 8 service nodes.

We learned from Section 5.1 that all three consistency
levels perform very closely under balanced workload.
Figure 5 illustrates the impact of workload imbalance
on different consistency levels. The 10% write percent-
age, a replication degree of four, and eight service nodes
were used in this experiment. The performance differ-
ence among three consistency levels becomes slightly
more prominent when the workload imbalance factor in-
creases. Specifically under the workload that directs all
requests to one single partition, level one consistency
yields 12% better performance than level two consis-
tency, which in turn performs 9% faster than level three
consistency with staleness control at one second. Based
on these results, we learned that: 1) The freedom of
directing writes to any replica in level one consistency
only yields moderate performance advantage. 2) Our
staleness control scheme carries an insignificant over-
head even though it appears slightly larger for skewed
workload.
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Figure 6: Behavior of the discussion group service during three node failure and recoveries. Eight service nodes,
level two consistency, and a replication degree of four were used in this experiment.

5.3 System Behavior during Failure Recover-
ies

Figure 6 depicts the behavior of a Neptune-enabled dis-
cussion group service during three node failures in a
200-second period. Eight service nodes, level two con-
sistency, and a replication degree of four were used in the
experiments. Three service nodes fail simultaneously at
time 50. Node 1 recovers 30 seconds later. Node 2 re-
covers at time 110 and node 3 recovers at time 140. It is
worth mentioning that a recovery in 30 seconds is fairly
common for component failures. System crashes usu-
ally take longer to recover, but operating systems like
Linux could be configured to automatically reboot a few
seconds after kernel panic. We observe that the system
throughput goes down during the failure period. And we
also observe a tail of errors and timeouts trailing each
node recovery. This is caused by the lost of primary and
the overhead of synchronizing lost updates during the re-
covery as discussed in Section 3.2. However, the service
quickly stabilizes and resumes normal operations.

5.4 Auction and Persistent Cache

In this section, we present the performance of the
Neptune-enabled auction and persistent cache service.
We analyzed the data published by eBay about the re-
quests they received from May 29 to June 9, 1999. Ex-
cluding the requests for embedded images, we estimate
that about 10% of the requests were for bidding, and 3%
were for adding new items. More information about this
analysis can be found in our earlier study on dynamic
web caching [24]. We used the above statistical infor-
mation in designing our test workload. We chose the
number of auction categories to be 400 times the number

of service nodes. Those categories were in turn divided
into 64 partitions. Each request was made for an auc-
tion category selected from a population according to an
even distribution. We chose level three consistency with
staleness control at one second in this experiment.
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Figure 7: Performance of auction on Neptune.

Figure 7 shows the performance of a Neptune-enabled
auction service. Its absolute performance is slower than
that of the discussion group because the auction service
involves extra overhead in authentication and user ac-
count maintenance. In general the results match the per-
formance of the discussion group with 10% writes in
Section 5.1. However, we do observe that the replication
overhead is smaller for the auction service. The reason
is that the tradeoff between the read load sharing and ex-
tra write overhead for service replication depends on the
cost ratio between a read and a write. For the auction ser-
vice most writes are bidding requests which incur very
little overhead by themselves.

Figure 8 illustrates the performance of the persistent
cache service. Level two consistency and 10% write per-
centage were used in the experiment. The results show
large replication overhead caused by extra writes. This is
because CacheUpdatemay cause costly disk accesses
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Figure 8: Performance of persistent cache on Neptune.

while CacheLookup can usually be fulfilled with in-
memory data.

6 Related Work

Our work is in large part motivated by the TACC and
MultiSpace projects [7, 12] with a focus on providing
infrastructural support for data replication and service
clustering. It should be noted that replication support
for cluster-based network services is a wide topic. Pre-
vious research has studied the issues of persistent data
management for distributed data structures [11] and op-
timistic replication for Internet services [18]. Our work
complements these studies by providing infrastructural
software support for clustering stand-alone service mod-
ules with the capability of accommodating various un-
derlying data management solutions and integrating dif-
ferent consistency models.

The earlier analysis by Gray et al. shows that the syn-
chronous replication based on eager update propaga-
tions leads to high deadlock rates [9]. A recent study
by Anderson et al. confirms this using simulations [3].
The asynchronous replication based on lazy propaga-
tions has been used in Bayou [15]. Adya et al. have stud-
ied lazy replication with a type of lazy consistency in
which server data is replicated in a client cache [1]. The
serializability for lazy propagations with the primary-
copy method is further studied by a few other research
groups [3, 5] and they address causal dependence when
accessing multiple objects. The most recent work by
Yu and Vahdat provides a tunable framework to exploit
the tradeoff among availability, consistency, and per-
formance [22]. These studies are mainly targeted on
loosely-coupled distributed services, in which commu-
nication latency is relatively high and unbounded. In
comparison, our contribution focuses on time-based stal-

eness control by taking advantage of low latency and
high throughput system area networks.

Commercial database systems from Oracle, Sybase and
IBM support lazy updates for data replication and they
rely on user-specified rules to resolve conflicts. Neptune
differs from those systems by taking advantage of the in-
herently partitionable property of most Internet services.
As a result, Neptune’s consistency model is built with re-
spect to single data partition, which enables Neptune to
deliver highly consistent views to clients without losing
performance and availability. Nevertheless, Neptune’s
design on communication schemes and failure recovery
model benefits greatly from previous work on transac-
tional RPC and transaction processing systems [20, 10].

Providing reliable services in the library level is ad-
dressed in the SunSCALR project [19]. Their work re-
lies on IP failover to provide failure detection and au-
tomatic reconfiguration. The Microsoft cluster service
(MSCS) [21] offers an execution environment where off-
the-shelf server applications can operate reliably on an
NT cluster. These studies do not address persistent data
replication.

7 Concluding Remarks

Our work is targeted at aggregating and replicating parti-
tionable network services in a cluster environment. The
main contributions are the development of a scalable and
highly available clustering infrastructure with replica-
tion support and the proposal of a weak replica consis-
tency model with staleness control at its highest level.
In addition, our clustering and replication infrastructure
is capable of supporting application-level services built
upon a heterogeneous set of databases, file systems, or
other data management systems.

Service replication increases availability, however, it
may compromise the throughput of applications with
frequent writes because of the consistency management
overhead. Our experiments show that Neptune’s highest
consistency scheme with staleness control can still de-
liver scalable performance with insignificant overhead.
This advantage is gained by focusing on the consistency
for a single data partition. In terms of service guarantees,
our level three consistency ensures that client accesses
are serviced progressively within a specified soft stal-
eness bound, which is sufficient for many Internet ser-
vices. In that sense, a strong consistency model, which
allows clients to always get the latest version with the



cost of degraded throughput, may not be necessary in
many cases. Nevertheless, we plan to further investigate
the incorporation of stronger consistency models in the
future.
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