
Alpine: A User-Level Infrastructure for Network Protocol Development

David Ely, Stefan Savage, and David Wetherall

Department of Computer Science and Engineering
University of Washington, Seattle WA

Abstract

In traditional operating systems, modifying the network
protocol code is a tedious and error-prone task, largely be-
cause the networking stack resides in the kernel. For this
reason, among others, many have proposed moving the net-
working stack to user-level. Unfortunately, implementations
of this design have never entered widespread use due to the
impractical requirements they place on the user: either the
kernel or applications must be modified; or code cannot be
moved seamlessly between the user-level and kernel stacks.
In this paper, we present Alpine, a user-level networking in-
frastructure free from these drawbacks. Alpine supports a
FreeBSD networking stack on top of a Unix operating sys-
tem. It is freely available as source code. In this paper, we
discuss the challenges we faced in virtualizing the FreeBSD
networking stack without compromising on kernel, network-
ing stack, and application compatibility. We then show how
Alpine is effective at easing the burden of debugging and
testing protocol modifications or new network protocols. In
our experience, Alpine can reduce the overhead of modify-
ing a protocol from hours to minutes.

1 Introduction

The Internet enables a wide range of applications and sup-
ports clients with a wide range of connectivity, from low
bandwidth mobile clients to clients with Gb/sec links; and
yet there two protocols, UDP and TCP, that govern most
of this communication. For this reason, many have pro-
posed modifications and specializations to UDP or TCP to
better serve the needs of applications. A literature search
for proposed modifications quickly returns many results
[3, 4, 5, 6, 10, 11, 13, 16, 18, 20, 23, 25, 28, 30, 31].

This work was funded by generous grants from NSF (DGE-9616736)
and DARPA (F30602-00-2-0565). Correspondence concerning this paper
may be sent to ely@cs.washington.edu.

Because the networking stack is traditionally part of the
operating system, most of these modifications were devel-
oped and tested on “live” kernels, which has many draw-
backs. Moving the networking stack into a user-level library
for development gains the following advantages over devel-
oping protocols in the kernel:

� Shortened revise/test cycle. Kernel development in-
cludes an additional step in the revise/test cycle: a
system reboot. This inconvenience increases the
turnaround between revisions from a few seconds to a
few minutes.

� Easier debugging. User-level development allows for
easier source-level debugging.

� Improved stability. When developing protocols in a
user-level environment, an unstable stack affects only
the application using it and does not cause a system
crash.

To provide these advantages to protocol developers, we
have created Alpine (Application Level Protocol Infrastruc-
ture for Network Experimentation), a publically available
practical tool that moves network protocols into a user-level
library to facilitate development. The key distinction be-
tween our system and other user-level networking infras-
tructures is that we have been unwilling to compromise on
compatibility with either existing application or kernel code.
Once modifications have been developed and tested using
Alpine, they are easily moved back into the kernel because
Alpine and the kernel use the exact same source files. Fur-
thermore, Alpine works with unmodified application bina-
ries and requires no kernel modifications.

In the process of developing Alpine, we identified three
fundamental requirements of virtualizing kernel services to
user-level:

� Virtualization of hardware and kernel routines. Rou-
tines normally available to the kernel but are not avail-
able in user-space must be simulated. Hardware must



also be virtualized because the actual hardware devices
cannot be accessed from user-level.

� Synchronization with kernel services. Resources that
are shared between the virtualized service and the ker-
nel must be kept consistent without changing the kernel.

� Transparent integration with applications. The original
semantics of applications that use the virtualized ser-
vices must be preserved without changing their source
code.

Our implementation section provides a more detailed dis-
cussion of how Alpine satisfies each of these requirements.
The remainder of the paper is organized as follows. We first
discuss how our infrastructure relates to previous work and
how it differs. Then we present our design and implemen-
tation of Alpine in more detail. We then evaluate Alpine’s
success based on several factors, including performance and
ease-of-use. Finally, we conclude with some comments on
our experience of building this infrastructure and give direc-
tions for future work.

2 Previous Work

Many have proposed moving some or all of the network
stack’s functionality to user-space. There are essentially
three motivations behind this user-level networking:

1. Improved performance over the kernel’s stack. Work
has been done to design high-speed access to device
hardware for low-latency cluster processing[8, 32]. In
contrast, Alpine is focused on normal applications that
use normal networking APIs.

2. Per-application specialization. Many have shown that
special kernel modifications or downloadable kernel
code make application specialization of the network-
ing stack possible [7, 9, 14, 15, 21, 24, 27, 29, 33].
Alpine supports specialization, but this is not its focus.
Since our design constraints include requiring no kernel
or application modifications, Alpine cannot achieve the
high-performance of many of these systems.

3. Simplified development. Work has also been done to
make kernel development easier. For example, [12] re-
designed the kernel from scratch to allow user and ker-
nel modules to be interchanged. Likewise, [17] sim-
plifies development by separating the operating system
kernel into encapsulated components, which can be in-
terchanged or reused. In contrast, we have developed
Alpine for an unmodified legacy operating system with
unmodified application binaries.

��������	



���
��

���

��

���������������

���
��	����

��������

�������	��

�����
���	��

Figure 1: In a traditional network stack, applications interface with
the network through a set of system calls (e.g., socket, bind,
send), and all network processing is performed in the kernel.

While Alpine provides per-application specialization, its pri-
mary purpose is to simplify protocol development. Very lit-
tle work has been done in this area. Alpine is the first user-
level protocol development environment that runs on an un-
modified legacy operating system and works with unmodi-
fied application binaries. We are focused on delivering an
environment that makes modifying and developing network-
ing protocols easier.

Some of our goals are shared by network simulators,
which offer a convenient way to test an entire network on
a single machine. Unlike Alpine, simulators are very rarely
built using the kernel’s networking stack. An exception to
this is Entrapid [19], which is a simulator that allows a de-
veloper to simulate an entire network on a single machine
using a modified FreeBSD networking stack. This system
is intended more for developing higher level protocols be-
cause changes made in the modified stack might not be eas-
ily moved into the kernel. While a user can use our library
to simulate multiple nodes in a network, Alpine is different
from most network simulators [1, 22] because it is not con-
fined to communicating only within a single machine or a
single simulation environment.

3 Design

Alpine’s primary goal is to be a practical platform for de-
veloping network protocols and protocol modifications. This
goal lead us to four related design constraints:

� No kernel changes. Tools that require kernel modifi-
cations are difficult to deploy because of the general
apprehension of installing unproven code in the kernel.
Kernel modifications are often not portable to other ver-
sions of the same kernel, which limits the accessibility
of tools that require them.



� No application changes. Requiring application changes
more severely limits the usefulness of a development
tool because each application must be modified. Also,
the developer might be unfamiliar with the application
source code or the application is available only in bi-
nary form.

� No networking stack changes. If the networking stack
were altered, then moving protocol modifications back
into the kernel would be difficult because the two stacks
are built from separate source code.

� No administrative oversight. Administrative barriers,
such as requiring an Alpine user to obtain a sec-
ondary IP address from their network provider, must
be avoided.

In other words, we require Alpine to integrate transparently
from the kernel, the application, and the programmer’s per-
spective. This presents the dual challenge of virtualizing ac-
cess to network and kernel resources while integrating this
virtualized system into the native environment. These con-
straints limit how applications can interface with Alpine and
how Alpine can interface with the operating system.

In the traditional Unix network design, a user applica-
tion interfaces to the network through the socket interface.
A socket is a unique communication channel between two
hosts, which allow applications to connect to a remote com-
puter, to send and receive data, and to listen for incoming
connections. The socket API is a collection of system calls
(e.g., connect, sendmsg, recvmsg, and listen). Fig-
ure 1 shows that the application interacts with the network
exclusively through the socket API. The socket code calls
into the transport layer (either UDP or TCP), which allows
messages to be transmitted between hosts. After UDP or
TCP has packaged the message, it sends it to the IP layer,
which determines how to route the packet to the destination
computer. After determining the appropriate route, IP sends
the packet to the interface driver, which is responsible for
actually putting the packet on the wire. Each layer includes
additional information with the packet in the form of packet
headers. In this architecture, the message crosses the divid-
ing line between user-space and kernel-space very early (at
the system call layer). This makes debugging the network
stack difficult.

We propose to move this line much lower. In Alpine all
of the packet processing and framing occurs inside of a user-
level networking library. The fully-formed packet (includ-
ing TCP/IP headers) is sent directly from user-space to the
network interface. In our design, we have moved the bar-
rier between user code and kernel code from the system call
level to the interface driver. As Figure 2 shows, the unmod-
ified socket layer and the TCP/IP layers have been moved
into a library, which is responsible for sending and receiv-
ing packets and maintaining state about connections. Ide-

��������	�


���������	�


�������

�����	�����

��������
��	�
��

�����������	�����

��	���

���

��

�����������

�����
��������������

 �������!�������

����"�#��"

$�%���"�

Figure 2: In Alpine the unmodified networking code is placed
in a user-level library. An application is not modified because it
interfaces with the library using the traditional socket system API.

ally, this library interacts with the interface (e.g., Ethernet
card) directly, but for security reasons, the interface cannot
be accessed without going through the kernel. For this rea-
son, we wrote a software-only interface driver that does not
control a hardware interface, but instead it sends packets us-
ing a raw socket and receives them using a packet capture
library1. This system-independent device is termed a faux-
ethernet driver because from IP’s perspective, it is identical
to a normal ethernet driver. To prevent the kernel’s network-
ing stack from reacting to packets destined for applications
using Alpine, a firewall is installed that filters out Alpine’s
packets before they reach the kernel’s stack.

At the application interface to the networking stack, we
exported the same networking API as the kernel. This in-
volved writing a pseudo-system call layer that replaced the
traditional networking system calls with our own. We also
provide some support code that emulates kernel functions
upon which the networking stack relies. These mostly in-
clude synchronization functions and functions manipulating
kernel data structures.

The following section discusses this design in more detail
and attempts to classify the challenges we met when imple-
menting Alpine.

1Using raw sockets and the packet capture library requires root privi-
leges, but this is seen as only a minor inconvenience since modifying the
kernel also requires root access. In section 6, we propose a solution to this
shortcoming.



4 Implementation

We now discuss the implementation challenges of virtu-
alizing network protocols with the design constraint that the
kernel, the applications, and the networking stack remain un-
modified. All of these challenges are either challenges in vir-
tualization or challenges in integration. From the perspective
of the networking stack we must virtualize kernel services;
from the perspective of the application we must virtualize
the system call interface to network protocols. We must also
integrate this virtualized system into a native running envi-
ronment. This involves managing shared resources such as a
port space and a file descriptor table.

Achieving both service virtualization and seamless inte-
gration was the main technical challenge we overcame when
building Alpine. The following are three fundamental re-
quirements for virtualizing kernel services and integrating
them into a running environment:

� Virtualization of hardware and kernel routines

� Synchronization with kernel services

� Transparent integration with applications

These three requirements are not unique to Alpine. They
can, and should, be used as guidelines for virtualizing other
kernel services. Organized according to these three require-
ments, our discussion of Alpine follows.

4.1 Virtualization of Hardware and Kernel Ser-
vices

In Alpine an unmodified kernel networking stack runs in-
side a user-level library where it is not possible to supply
all kernel facilities, such as direct access to hardware or fine
grain timers. These facilities must be virtualized using only
user-level services because the kernel cannot be modified to
extend these services to user-level. In this section, we dis-
cuss the specific virtualization challenges that we met, in-
cluding sending and receiving full-formed IP packets from
user-level, simulating the boot process for the networking
stack, and managing protocol timers.

Sending/receiving through the faux-ethernet interface

For security reasons, applications and user-level libraries
cannot directly access a hardware interface but instead must
go through the kernel. We use two different techniques for
sending and receiving packets that are similar to accessing
the interface directly but do not violate the security imposed
by the kernel.

Sending. Sending a packet is straightforward. We chose
to use a per-application raw socket that sends preformed IP
packets to the operating system for transmission. A raw
socket bypasses the transport and IP layer of processing and

is sent directly to the hardware interface. The packets sent
to a raw socket are identical to those sent to the interface,
and there is no impact on the IP layer because it generates
identical packets whether it is part of the kernel or part of
Alpine.

Receiving. Receiving packets is more complicated. We
use the libpcap packet capture library [2] to receive pack-
ets. This library enables a user application to receive copies
of all packets that are received by a given interface. Other
user-level protocol implementations have used this same ap-
proach to receive packets [24]. Although Alpine has access
to all incoming and outgoing packets, it installs a Berkeley
Packet Filter that discards packets destined for other appli-
cations. This limits the kernel resources needed to buffer
packets that have been received.

Faux-Ethernet. We have encapsulated our methods of
sending and receiving packets into a faux-ethernet device
which presents itself to IP as any other interface. Although
this interface has been named faux-ethernet, it is not specific
to ethernets and can easily be adapted to other interfaces
such as modems.2 This faux-ethernet device is attached to
the user-level stack during initialization. Because it is the
only interface present in the user-level stack, all IP packets
are sent through it.

Simulating interrupts

Packets can be sent synchronously, that is, when a user calls
send, the packet can actually be placed on the wire before
returning. But packets arrive asynchronously and cannot be
processed in this fashion. The kernel receives an interrupt
whenever a packet arrives, but this interrupt is not passed up
to the application level. We could have modified the ker-
nel to forward this interrupt to Alpine using signals, but this
would have violated a design constraint. In order for Alpine
to receive packets, it continually poll libpcap to check if a
packet has arrived. This is done approximately once every
millisecond by using SIGALRM to call an interrupt handler
1000 times per second. This could be done more often if
we changed the granularity of the kernel’s software timer,
but polling for packets once every millisecond has been suf-
ficient. Because we are polling for packets instead of re-
ceiving interrupts, there may be up to a 1ms delay between
when a packet is received by the interface and when Alpine
processes the packet.

Pseudo-kernel environment

Not surprisingly, the TCP/IP stack is not a completely sep-
arable part of the kernel. It relies on many features that are
only available in the kernel, such as scheduling and certain

2It may be necessary to alter certain parameters, such as MTU, to match
that of the actual machine interface.



memory allocation routines. The stack also relies on being
properly initialized during system startup.

The FreeBSD kernel was modular enough to extract the
networking stack without having to bring along a lot of ad-
ditional code, but some kernel code not pertaining directly
to the networking stack was imported for convenience. This
includes code to manipulate certain system data structures,
synchronization code, and code used for timeouts. The net-
working stack also relied on certain functions that could not
be directly imported from the kernel.

Support Functions. As Figure 2 shows, we implemented
a small set of support functions that emulate their counter-
parts in the kernel. These functions include several opera-
tions dealing with memory allocation.

Software Interrupts. The kernel’s processing of incoming
packets is asynchronous and driven by software interrupts.
The interface driver and the protocol layer both use software
interrupts to schedule packet processing routines. Like hard-
ware interrupts, a priority level is assigned to each interrupt,
and an interrupt service routine can only be interrupted by
a higher priority interrupt. The kernel provides functions,
such as splnet and splhigh, to raise the interrupt level
and splx to restore a previous level. The networking stack
often raises the interrupt level when executing critical re-
gions of code to prevent shared data structures from being
corrupted. Alpine includes implementations of these soft-
ware interrupt functions. They are used primarily to prevent
Alpine’s SIGALRM handler from executing when the appli-
cation is in a critical region of code. Beyond providing this
support code, the second major issue was ensuring that all of
the copies of system data structures are properly initialized.

Initialization. Alpine’s initialization routine must be
called before the user makes any calls into the library. Alpine
supplies an init function that executes before any other li-
brary function is called. It initializes its own internal data
structures as well as calling a modified version of the ker-
nel’s main function. The kernel’s main function calls the
various network initialization routines, such as ip init
and tcp init. Finally, a set of dynamic ports is allocated
to be used for sockets that are not explicitly bound to ports.

Timer management

An operating system performs many tasks. These include
synchronous tasks such as flushing the file cache to disk
or scheduling processes, and asynchronous tasks, such as
handling user input or processing incoming packets. The
networking stack uses timeout to handle synchronous
events and tsleep/wakeup for asynchronous events. For
Alpine’s stack to function properly, we must correctly im-
plement each of these functions and do so without affecting
the semantics of the application.

Timeout. The kernel allows protocols such as IP and TCP
to export two functions, slowtimo and fasttimo, which

are called periodically. Fasttimo is called five times per
second, while slowtimo is called only twice per second.
TCP uses these functions to retransmit missing packets after
a given interval and for delayed acknowledgements. Calling
these functions five and two times per second is not diffi-
cult because Alpine is already using SIGALRM to poll for
packets every millisecond. The slowtimo and fasttimo
functions are instances of a more general problem. The ker-
nel has a function, timeout, that allows an arbitrary func-
tion to be called after a specified number of clock ticks. This
timeout function is used in multiple places in the TCP/IP
stack, and we were able to import the kernel’s timeout
implementation with few modifications.

Tsleep and Wakeup. The function tsleep allows the
caller to wait on a specific event until a timeout expires. This
permits functions such as recv to wait until a packet ar-
rives. The caller is restarted when the timeout expires or
when wakeup is called on the appropriate event. For ex-
ample, a socket can sleep on its incoming queue, and when a
packet is appended to this queue, wakeup is called to restart
the caller.
Tsleep and wakeup are not exposed to a user-level ap-

plication but can only be used inside the kernel. Therefore,
it was necessary to implement our own versions of tsleep
and wakeup that preserve their original semantics. The ker-
nel can suspend the caller process until the timeout expires or
wakeup is called, but because the application and the user-
level networking library run in the same process, doing so
in Alpine would result in the process sleeping forever. This
makes implementing tsleep and wakeup more difficult
because Alpine must continue to run even if the application
is blocked. In our simple implementation, tsleep busy
waits on a global flag, which is set by wakeup. To reduce
CPU utilization, tsleep sleeps for a few microseconds be-
tween checks of this global flag.

For an unmodified networking stack to run within Alpine,
it was necessary to virtualize several kernel services using
only user-level services. These virtualized services borrow
heavily from the kernel implementations and are often more
simple than the kernel version because the service is only
used by a single process. Because the kernel and Alpine
share certain state, including a port space and file descrip-
tors, it is necessary to synchronize state with these kernel
services. This is discussed in the next section.

4.2 Synchronization with Kernel Services

Alpine provides a service that is also provided by the ker-
nel, and state shared with the kernel, such as ports and file
descriptors, must be synchronized between the two stacks.
The kernel assumes that it is the exclusive manager of this
state, and due to our design constraints, Alpine is respon-
sible for keeping this state consistent without violating the
kernel’s assumption. To minimize administrative burden,



��������	
���
������


����������
������
�����

������

��������

	������
��������
�������

��������

�
��������������������

���������������������

���������������������

����������
���

���
����������
������
���

 ������!!���
�����
�
���������
���

�
����������!�������
���	


�
�
��

��
�
��
	

�
�


�

������

������ ���

Figure 3: The role of Alpine’s central port server is shown. The
central server is responsible for allocating ports to each Alpine pro-
cess. It uses a dummy socket to prevent the kernel from binding
another socket to the port, and it uses a firewall to prevent the ker-
nel’s stack from reacting to packets sent to the bound port.

Alpine and the kernel’s stack share an IP address. Thus,
they share a port space that must be kept consistent. We
found that having a central user-level process allocate ports
to Alpine applications to be the best way to isolate faults and
keep the two sets of ports synchronized. As section 3 men-
tions, Alpine interfaces with applications at the socket layer
where Unix applications refer to sockets using file descrip-
tors. Several system calls, includingopen and close, were
overridden to synchronize Alpine’s set of file descriptors (al-
located to Alpine’s sockets) with the kernel’s file descriptors
(allocated to files and pipes). Details of the methods we used
to keep both the set of ports and file descriptors consistent
follow.

Using a central server to mangage port allocation

Many conflicts between the kernel and Alpine can be
avoided by allocating a separate IP address to Alpine. How-
ever, sometimes obtaining additional IP addresses is not fea-
sible or desirable. In this case, the kernel and Alpine must
share a single IP address and the port space that accompa-
nies it. The user-level stack should not interfere with the
port allocations of the kernel by re-allocating ports that the
kernel has already allocated, and the kernel should not allo-
cate ports that the user-library is using.

To solve both of these problems, each Alpine application
allocates ports from a central user-level process. The central
server’s role in Alpine is shown in Figure 3 with its three
specific duties listed below:

� A dummy socket is bound to each port that an Alpine
application requests to prevent the kernel from allocat-
ing this port to another process.

� A firewall is installed that filters out packets destined

for this port to prevent the kernel’s stack from receiving
and reacting to packets destined for an Alpine applica-
tion. 3

� After each Alpine process exits, the firewall is updated
and the dummy socket closed for each port that the ap-
plication was using, allowing other applications to bind
to the port.

The primary reason for using a central server is to keep
the firewall consistent with the set of ports that Alpine appli-
cations are using. Each Alpine application could update the
firewall on its own, but this leads to two problems: 1) race
conditions exist if multiple applications try to update the fire-
wall concurrently and 2) if the process does not exit cleanly,
the firewall may not be uninstalled properly, preventing other
applications from using the blocked ports. Centralizing port
allocation for Alpine processes is a reasonable way to ensure
that the firewall remains consistent. Our approach is similar
to that proposed in [29], which uses a “dedicated registry
server” to handle connection setup and teardown.

Allocating Alpine file descriptors

For security reasons, applications in Unix cannot directly ac-
cess a file on disk. Rather, they refer to open files using a file
descriptor, which is merely an index into a per-process table
of all open files. When a file is opened, a new file descrip-
tor is created, and this file descriptor is passed to subsequent
read and write calls to distinguish which file is being ac-
cessed. Because the socket API also uses file descriptors
to distinguish between open sockets, we had to override all
system calls that allocate or deallocate file descriptors.

Open and Close. A new file descriptor is created when-
ever open is called to open a file or pipe, or when socket
is called to create a new socket. Because Alpine must know
which file descriptors to allocate to its user-level sockets, it
keeps track of the file descriptors being used by the kernel
by overriding all system calls that create or delete file de-
scriptors. This not only includes open and socket, which
create a file descriptor, but also close, which deletes a file
descriptor, and dup, which creates a copy of a file descrip-
tor. As with the port space, the kernel and Alpine must share
a set of file descriptors. Alpine cannot indiscriminately allo-
cate file descriptors to the sockets that it creates because the
kernel could allocate the same descriptor to a file in a future
call to open. We solve this problem by opening a dummy
file whenever a new user-level socket is created.

Whenever socket is called, Alpine assigns the same
file descriptor to this socket as the kernel would, and then
it opens the file “/dev/null,” which prevents the ker-
nel from allocating the chosen file descriptor to another file.

3Because the firewall runs on the same machine as the user-level stack,
the packet capture library described previously is still able to receive all
incoming packets.



This file is closed when the socket is closed. This approach
allocates file descriptors identically to the kernel, preserv-
ing the original behavior of the application. A table is kept
to distinguish our file descriptors from actual kernel file de-
scriptors, enabling Alpine to correctly multiplex overloaded
system calls such as read.

Although challenges of managing a shared port space and
a shared file descriptor table may seem different, they essen-
tially both involve keeping a shared namespace consistent.
In fact, they are both solved using the same technique of at-
taching a false “name” (i.e. a dummy socket or a dummy
open file) to a kernel resource to prevent the kernel from al-
locating it elsewhere.

4.3 Integration with Applications

For a development environment of Alpine’s nature to be
useful, it must work without modifying existing applica-
tions. For instance, having to rewrite application source
code is unacceptable. Therefore, Alpine exports the tradi-
tional interface to network communication, the socket API.
Furthermore, requiring recompiling or relinking of an appli-
cation may seem acceptable, but this is sometimes incon-
venient or impossible, which is why Alpine works with ex-
isting executable binaries. Exporting the socket API from
Alpine requires manipulating the order in which the appli-
cation is linked; by linking with the Alpine library before
other libraries, Alpine’s networking stack is used instead of
the kernel’s. To work with existing binaries, Alpine exploits
dynamic linking; by loading Alpine’s dynamic library be-
fore any other dynamic library, its networking stack is used
instead of the kernel’s. This technique cannot be used for
applications that are statically linked. Fortunately, most ap-
plications are dynamically linked, especially those whose
source code is unavailable.

There is an additional concern involved with preserving
application semantics. We must ensure that none of the tech-
niques Alpine uses to virtualize kernel services affects the
semantics of the application. Two problems that could af-
fect applications involve Alpine’s SIGALRM handler which
is used to perform periodic duties. First, we must allow the
application to install a SIGALRM handler, and yet not allow
the application to override Alpine’s SIGALRM handler. Sec-
ond, we must deal with the reentrancy issues introduced by
having a signal handler that calls non-reentrant library rou-
tines.

Overriding socket system calls

Because we cannot modify the networking stack, we use a
faux-ethernet device to send and receive packets. This is the
interface that Alpine has with the operating system. A simi-
lar issue is at what level to interface with the user application.
Applications interface with the network through the socket

API, which is a set of system calls that allows an application
to connect to another computer and send and receive data.
As a design constraint we avoid application modifications,
so having Alpine export a socket API is the only choice.

Send and Recv. System calls that are only used by sock-
ets, such as send, recv and connect, were the simplest
to implement. These system calls are replaced with our iden-
tically named functions, and as long as Alpine is loaded be-
fore libc, these socket system calls will be called instead of
the kernel’s.

Read and Write. In Unix, file descriptors are overloaded
to refer to files, pipes, and sockets. With any of these types of
“file”, the user can call a certain set of overloaded functions
including read, write, and ioctl. The operating system
multiplexes calls to these functions into the appropriate file,
pipe or socket function calls. For example, if read is called
with a socket file descriptor then the system translates this
into a call to soreceive. Therefore, we have to override
these system calls and multiplex these calls between actual
kernel files or Alpine sockets.

Select and Poll. Finally, parameters to functions such as
select and poll, which determine if there is anything
to “read” in a set of files or sockets, can include both file
descriptors referring to files and to sockets. A timeout pa-
rameter associated with select and poll determines how
long the operating system should wait for the “file” to be-
come readable or writeable4. For instance, an application
may block waiting either for a pipe to become readable or
data to be received in a socket. Select will return when
either the pipe or the socket becomes readable or when the
timeout expires.

Alpine can determine locally if there is anything to read
out of the socket buffers, but it must make a select call
into the kernel to determine if there is anything to read out of
the files. The timeout value cannot be passed through to the
kernel because an incoming packet might cause a selecting
socket to become readable. Thus, when an application is
waiting on both a socket and a file, we poll (e.g., use a zero
timeout) both the kernel file descriptors and the socket file
descriptors until the timeout expires.

Transparent integration with existing binaries

Alpine can be used with unmodified application binaries
by exploiting dynamic linking, which delays the bind-
ing of function calls until the application executes. The
LD PRELOAD environment variable allows the Alpine dy-
namic library to be loaded before any other library, which
implies that Alpine’s networking stack will be used instead
of the kernel’s. This enables Alpine to be used with any dy-
namically linked application.

4Libpcap’s file descriptor cannot be passed directly to select because
Alpine’s SIGALRM handler would not run while the process was blocked,
preventing packets from being retransmitted.



Application timers

Applications also use SIGALRM for timeouts and to per-
form periodic duties, but Unix only allows a single signal
handler to be installed for each signal. We must not allow the
application to replace Alpine’s signal handler, however, we
cannot prevent the application from using timers. To solve
this problem, Alpine replaces many of the signal based sys-
tem calls, such as setsigaction and setitimer, with
its own implementations. Alpine records any SIGALRM
handler that the application installs, but it does not change
the actual handler for this signal. When the application
schedules a SIGALRM to be delivered, the application sig-
nal handler is called from Alpine’s signal handler after the
application-specified delay. Because Alpine’s signal handler
is called at the highest possible frequency, it will always be
able to call the application’s signal handler at the correct
time. However, if Alpine is executing a critical region of
code, then this signal is delayed until the next clock tick.
This is acceptable because the kernel can also delay delivery
of signals for the same reason.

Non-reentrant library routines

Even though Alpine does not use threads, problems still arise
with reentrancy because Alpine’s SIGALRM handler can be
called while the application is executing a non-reentrant li-
brary routine. For example, the signal handler should not call
malloc if the application is updating a global data structure
inside of free. To solve this problem, Alpine uses wrapper
functions to place a lock around non-reentrant library rou-
tines, and its signal handler does not execute if the appli-
cation is executing one of these routines. The application
cannot call a non-reentrant library routine in an unsafe way
because Alpine’s signal handler always runs to completion.

To integrate with unmodified applications, Alpine is re-
quired to export the traditional socket interface to the net-
work, and to ensure that the virtualization of kernel services
has not altered the semantics of applications. We solved
these two classes of challenges by exploiting properties of
the linker, which allows Alpine to override any system call
or library routine without modifying the application.

5 Experiences

Alpine has been fully implemented in the FreeBSD 3.3
operating system. However, very little of this code is spe-
cific to this version of FreeBSD, and most of it is portable
to any Unix environment. It was successfully implemented
without requiring modifications to the host operating system
or applications using Alpine, and the same source files are
used to build both Alpine and the kernel’s networking stack.
Alpine works with most applications, but it does not yet sup-
port applications that call fork because the fork produces

Link Bandwidth vs Throughput 

2001

3990

7980

15699

27051

38390

1988

3986

7853

12348 11866 12268

40390

12497

1000

10000

100000

1000 10000 100000

Link Bandwidth (Kbits/sec)

T
h

ro
u

g
h

p
u

t 
(k

b
it

s/
se

c)

Kernel Throughput

Alpine Throughput

Figure 4: The throughput of both the kernel stack and Alpine are
shown as the speed of the link increases. The extra copies, which
are used by Alpine to maintain compatibility, limit it to a through-
put of 12 Mbit/sec.

a second networking stack. Open connections can be shared
between the parent and child processes, which leads to prob-
lems in Alpine. For example, because the parent and child
have their own copies of the networking stack, each will send
acknowledgements to incoming TCP packets. In section 6,
we discuss a way to extend Alpine to handle fork.

In the remainder of this section, we first compare Alpine’s
performance with the performance of the kernel’s stack, and
then we show possible uses of Alpine. While demonstrat-
ing ease-of-use quantitatively is difficult, we believe this sec-
tion will enable the reader to understand the improvements
Alpine makes over kernel development. The examples pre-
sented in this section are all related to TCP, but Alpine is
certainly not limited to being used with TCP. It can be used
to modify or test any transport level protocol.

5.1 Performance

Because Alpine is a user-level development infrastructure
and is not intended as a replacement for the kernel’s stack,
its success does not depend on outperforming the kernel.
However, Alpine must have reasonable performance in or-
der to be a useful tool. Although certainly slower than the
kernel’s stack, Alpine can satisfy almost every application’s
bandwidth and latency requirements. Alpine cannot compete
with the kernel’s stack on the highest bandwidth links, al-
though for link speeds up to 10 Mb/sec the two achieve sim-
ilar performance. Latency in the local area is only slightly
worse for the user-level stack.

Figure 4 shows how the kernel and Alpine performed as
the link speed was varied. The test machine sent data as
fast as possible to a second machine. Each machine was
configured to use a third machine as a gateway, which used
Dummynet to limit the bandwidth of the link [26]. All ex-
periments were run on 200MHz Pentium-Pro PCs running



Link Latency vs Application Latency

0

10

20

30

40

50

60

70

80

0.1 1 10 100

Link Latency (ms)

A
p

p
lic

at
io

n
 L

at
en

cy
 (

m
s)

Kernel Latency

User Latency

Figure 5: The application latency of the kernel stack and Alpine is
shown. Due to additional overhead, the user-level stack is consis-
tently 2.5 ms slower than the kernel network stack.

FreeBSD 3.3. The two stacks are comparable up to link
speeds of 10 Mbits/sec, where they start to diverge. While
the kernel can achieve up to 40 Mbits/sec, the user-level
stack can obtain at most 12 Mbits/sec. Less modest ma-
chines could achieve even higher performance.

The extra data copies Alpine needs to integrate seam-
lessly with applications and the unmodified kernel stack are
responsible for this slowdown. In Alpine approximately
five copies are necessary between when the application calls
send and the packet is actually placed on the wire. Com-
paring this to the two or three copies the kernel needs, it is
not surprising that Alpine cannot compete at higher band-
widths5.

Figure 5 depicts how these extra copies and other over-
head affect latency. In this experiment, one byte of data was
sent to a remote computer, which immediately echoed the
data. The link latency was varied from having no artificial
link latency at .25 ms to having a 64 ms link latency. (In the
local-area, .25 ms latencies are common, while in the wide-
area, latencies of 30-60 ms are typical.) Alpine’s latency was
consistently 2.5 ms larger than the kernel latency, which is
negligible for wide-area applications and is acceptable for
most local-area applications.

We hope to improve the throughput and latency of Alpine,
but the current design will always be slower than the kernel’s
stack. This is only a minor drawback because once proto-
col modifications have been tested in Alpine, they are easily
moved back into the kernel where they can achieve higher
performance.

5The additional copies required by Alpine occur at the interface to the
application and the interface to the raw socket. The user buffer is copied into
the kernel mbuf data structure which is shared by each layer of the protocol
stack. Finally, the faux-ethernet driver copies the fully-formed packet out
of the mbuf into a buffer, which is passed to the raw socket send.

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (sec)

S
e
q

u
e

n
c
e
 N

u
m

b
e
r 

(b
y
te

s
)

Alpine w/ Normal TCP

Alpine w/ TCP Daytona

Kernel w/ TCP Daytona

247 247.1 247.2 247.3 247.4

…

switch to 
Daytona 
kernel stack

reboot/login

switch to 
Daytona 
Alpine stack

247 247.1 247.2 247.3

Figure 6: With Alpine very little time is needed to run an applica-
tion with two different networking stacks, but it requires over four
minutes to switch the kernel’s networking stack.

5.2 Alpine Improves Protocol Development

By moving protocols into a user-level library, Alpine im-
proves many aspects of protocol development. In this sec-
tion, we try to give the reader an appreciation of these im-
provements.

Alpine shortens the revise/test cycle

With Alpine almost no time is needed between testing an ap-
plication with two different networking stacks, and Figure 6
demonstrates this. The graph in Figure 6 is a time sequence
plot where each mark represents a packet being received at
the client. A 60 KB file is first downloaded using Alpine run-
ning a normal TCP stack, the same file is then downloaded
using Alpine running TCP Daytona6[28], and after a system
reboot, the file is downloaded using the kernel stack running
TCP Daytona. For all downloads, the same unmodified ap-
plication was used.

The transition between the two Alpine stacks takes less
than a second because only an environment variable must be
changed to switch between the two stacks. However, switch-
ing to a different version of the kernel stack requires more
than four minutes because the machine must be rebooted.
While this example may seem extreme, it does demonstrate
that time and effort are saved by eliminating the system re-
boot from the protocol development process.

Alpine improves protocol debugging

When an application uses Alpine, the networking stack runs
in user-level. Thus, it can be examined and changed just as

6TCP Daytona is a set of modifications to TCP that allow the receiver
to artificially override congestion control. This allows a client to gain an
unfair share of network bandwidth without explicit help from the server.



any other part of the application source code. Any source-
level debugger7 can be used to set break points in the net-
working stack, step through untested modifications, or mod-
ify protocol state by changing protocol variables.

Figure 7 shows a screen shot of Alpine running in a graph-
ical debugger. The large window in the foreground shows a
telnet application stopped at the tcp output function with
the fields of the protocol control block (PCB) associated with
this connection shown in the upper-half of the window. With
Alpine, protocol state is easily displayed and modified. Tcp-
dump[2] runs at the bottom of the screen, showing packets
that have already been transferred in the connection. The
mail program and web browser running in the background
are unaffected by the networking stack halted in the debug-
ger because they are using the kernel’s networking stack.

We have found that the power of user-level debuggers
makes debugging protocol modifications much easier. Minor
bugs that sometimes take hours to find in the kernel usually
are found in only a few minutes when using Alpine.

Alpine enables protocol instrumentation

To demonstrate that Alpine can be used in ways the kernel’s
stack cannot, we instrumented the Alpine networking stack
to continuously display the fields of a TCP protocol control
block (PCB). A TCP protocol control block (PCB) contains
all of the relevant information pertaining to a single connec-
tion such as the initial sequence numbers and the size of the
congestion window. Figure 8 shows this utility monitoring
the wget utility while a file is being downloaded. When
the PCB for this connection changes, the new PCB is auto-
matically displayed in the window on the right. Achieving
this task with the kernel’s stack is more complicated because
without modifying an application, it is difficult to instrument
the kernel on an application-by-application basis. However,
with Alpine this utility required only about an hour of pro-
gramming, and it works with unmodified application bina-
ries.

Alpine simplifies protocol modification

To test Alpine’s usefulness when making protocol modifica-
tions, we made modifications of varying sizes to TCP. We
had many choices for how to modify TCP. For example,
we could have changed TCP to get better performance over
wireless or satellite links. Instead, we chose to design and
implement solutions to prevent the receiver-based TCP at-
tacks, collectively named TCP Daytona, that Savage et. al.

7To seamlessly integrate with applications, we must prevent the SIGAL-
RMs from being delivered while the application is stopped (e.g. at a break-
point). This is easily done by using a debugger initialization file to install
hooks that stop these signals when the application stops and resumes them
when the application resumes. Alpine provides this initialization file for
gdb, a popular debugger that is used as a back-end for most Unix-based
debuggers.

Figure 8: Alpine was used to extend the networking stack to dis-
play a connection’s TCP PCB as it changes. The window on the
right displays the values of fields in the PCB while the applica-
tion on the left, which is using Alpine, downloads a file. Doing
this in the kernel is much more difficult because it does not allow
application-specific instrumentation. With the kernel’s stack, the
PCB must be displayed for all applications or none at all.

recently discovered [28]. TCP Daytona artificially forces
congestion control to be overriden by manipulating receiver
behavior, which allows the connection to gain an unfair share
of network bandwidth. It is not the goal of this work to de-
scribe these attacks or discuss how we solved them. Instead,
we provide insight into the benefits of using Alpine to im-
plement and test our solutions.

Solutions to two of the attacks required modifications only
to be made on the sender (e.g. server) and required approx-
imately twenty lines of code to be added to the networking
stack. We found Alpine to be a useful tool during the en-
tire development process. Packet processing code is often
written with attention paid to speed (i.e. avoiding procedure
calls) instead of code modularity8, which makes understand-
ing the flow of control difficult. Using Alpine to step through
the networking stack, we quickly found the proper place to
implement these two solutions. Once our solutions were im-
plemented, we were able to trace through the code to verify
that the modifications behaved as expected, and we quickly
discovered a bug, which was easily fixed. Once our solutions
were sufficiently tested, they were moved into the kernel’s
stack without having to make any additional changes.

The solution to the third TCP Daytona attack required
modifications to both the sender and the receiver (e.g. server

8For example, the two functions used to send and receive TCP packets,
tcp input and tcp output, are over 1500 and 700 lines respectively.
Understanding the flow of control in such functions is difficult without using
a source-level debugger to step through the code.



Figure 7: Alpine enables network protocols to be debugged using any source-level debugger. The application being debugged has stopped
at a breakpoint in the tcp output function, and the connection’s TCP protocol control block (PCB) is being examined. Programs running
in the background including a mail client and a web browser continue to use the kernel’s networking stack.

and client), and required incorporating almost 100 lines of
code into the networking stack. These changes were much
more complex and required changing TCP’s packet process-
ing code in several places. Beyond the benefits listed previ-
ously, making these modifications exposed two other signif-
icant benefits of Alpine. First, Alpine allowed us to imple-
ment our solution in small increments. The high penalty of
making a kernel modification leads many protocol develop-
ers to implement and test large pieces of code at once. This
increases the number of bugs and probably is more costly
in the long run. Our modifications were incrementally im-
plemented and tested because of the absence of the kernel’s
high modification penalty. Second, Alpine enabled us to run
both the sender and receiver concurrently on the same ma-
chine. We found this convenience to be very useful because

we were able to trace through both stacks concurrently veri-
fying that our modifications behaved as expected. Once this
solution was completely tested, it was also moved into the
kernel without any additional changes.

6 Future Work

Currently, Alpine’s largest drawback is that root privileges
are needed to use the infrastructure. (Opening a raw socket,
capturing packets using libpcap, and installing a firewall all
require root access.) A possible solution to this limitation is
to move more functionality, specifically sending and receiv-
ing packets, into the central server, which is already used to
manipulate the firewall. Once the central server is installed
with root access, applications could use Alpine without any



special privileges. The central server could also verify the
source address of all packets being transmitted to prevent
users from abusing the privilege of sending raw packets.

We also have not addressed the issue of what happens
when an application forks. Because a forked process inher-
its its parent’s open sockets, handling this issue is tricky. We
plan to solve this problem by converting the socket system
calls into RPCs that communicate with another process that
contains only the Alpine networking stack. In this scenario,
a separate user-level networking stack is not created when
an application forks, and multiple applications can share a
single Alpine stack.

Besides continuing the ongoing maintenance of Alpine,
we also hope to port this development infrastructure to Linux
and other Unix environments to facilitate protocol develop-
ment on other platforms. Also, since the FreeBSD version of
Alpine relies on almost no platform specific code, it should
be easily ported to Linux, allowing an unmodified FreeBSD
stack to run on top of the Linux operating system.

7 Conclusion

We have presented an argument for the necessity of a user-
level infrastructure for developing network protocols. De-
veloping outside the kernel has many advantages, including
easy source-level debugging and quick turnaround between
revisions. We discussed our design and implementation of
Alpine, which is a publically available tool that enables an
unmodified FreeBSD kernel stack to execute in a user-level
library. We also presented guidelines for virtualizing other
kernel services in a user-level environment. Finally, we
showed that Alpine offers many improvements over tradi-
tional kernel protocol development. For more information
about Alpine or to download the latest version of Alpine,
please visit http://alpine.cs.washington.edu/.

References

[1] Ns network simulator. See http://www-mash.cs.

berkeley.edu/ns/.

[2] Tcpdump home page. See http://www.tcpdump.

org/.

[3] M. Allman. On the generation and use of TCP ac-
knowledgments. INFOCOM ’98, 28(5):4–21, October
1998.

[4] M. Allman. TCP byte counting refinements. Computer
Communications Review, 29(3), July 1999.

[5] M. Allman, D. Glover, and L. Sanchez. Enhanc-
ing TCP over satellite channels using standard mech-

anisms. Request for Comments 2488, Internet Engi-
neering Task Force, January 1999.

[6] H. Balakrishnan. Challenges to Reliable Data Trans-
port over Heterogeneous Wireless Networks. PhD the-
sis, Computer Science Division, Univ. of California at
Berkeley, Berkeley, CA, August 1998.

[7] A. Banerji, J. Tracey, and D. Cohn. Protected shared
libraries-A new approach to modularity and sharing.
In 1997 Annual Technical Conference, January 6–10,
1997. Anaheim, CA, pages 59–75, Berkeley, CA, USA,
January 1997. USENIX.

[8] A. Basu, V. Buch, W. Vogels, and T. von Eicken. Unet:
A user-level network interface for parallel and dis-
tributed computing. In Proceedings 15th ACM Sympo-
sium on Operating Systems Principles, Copper Moun-
tain CO, December 1995.

[9] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fi-
uczynski, D. Becker, S. Eggers, and C. Chambers. Ex-
tensibility, safety and performance in the SPIN operat-
ing system. In Proceedings 15th ACM Symposium on
Operating Systems Principles, pages 267–284, Copper
Mountain CO, December 1995.

[10] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,
and W. Weiss. An architecture for differentiated ser-
vices: IETF RFC 2475, December 1998.

[11] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP Vegas: New techniques for congestion detec-
tion and avoidance. In Proceedings, 1994 SIGCOMM
Conference, pages 24–35, London, UK, August 31st -
September 2nd 1994.

[12] R. Draves and S. Cutshall. Unifying the user and ker-
nel environments. Technical Report MSR-TR-97-10,
Microsoft Research, March 1997.

[13] R. Durst, G. Miller, and E. Travis. TCP extensions for
space communications. In Proceedings, 1996 Mobi-
Comm Conference, November 1996.

[14] D. Engler, M. Kaashoek, and J. O’Toole Jr. Exoker-
nel: An operating system architecture for application-
level resource management. In Proceedings of the Fif-
teenth ACM Symposium on Operating Systems Princi-
ples, December 1995.

[15] M. Fiuczynski and B. Bershad. An extensible pro-
tocol architecture for application-specific networking.
In USENIX 1996 Annual Technical Conference, San
Diego, California, January 1996.

[16] S. Floyd and T. Henderson. The NewReno modifica-
tion to TCP’s fast recovery algorithm. Internet Draft,



Internet Engineering Task Force, February 1999. Work
in progress.

[17] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The flux oskit: A substrate for os and lan-
guage research. In 16th ACM Symposium on Operating
Systems Principles, October 1997.

[18] T. Henderson and R. Katz. Transport protocols for
internet-compatible satellite networks. IEEE Journal
of Selected Areas in Communications, 17(2):326–344,
February 1999.

[19] X. Huang, R. Sharma, and S. Keshav. The Entrapid
protocol development environment. In INFOCOM ’99,
New York, March 1999.

[20] V. Jacobson, B. Braden, and L. Zhang. TCP extension
for high speed paths. RFC 1185, October 1990.

[21] M. F. Kaashoek, D. Engler, G. Ganger, H. Briceño,
R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jan-
notti, and K. Mackenzie. Application performance and
flexibility on exokernel systems. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Prin-
ciples, October 1997.

[22] S. Keshav. Real 5.0 network simulator. See
http://www.cs.cornell.edu/skeshav/real/

overview.html.

[23] L. Larzon, M. Degermark, and S. Pink. UDP lite for
real time multimedia applications. Technical Report
HPL-IRI-1999-001, HP Labroratories, April 1999.

[24] C. Maeda and B. Bershad. Protocol service decompo-
sition for high-performance networking. In 14th ACM
Symposium on Operating Systems Principles, Decem-
ber 1993. also CMU Technical Report CMU-CS-93-
131.

[25] R. Ramanathan. TCP for high performance in hybrid
fiber coaxial broad-band access networks. IEEE/ACM
Transactions on Networking, 6(1):15–29, February
1998.

[26] L. Rizzo. Dummynet: A simple approach to the evalua-
tion of network protocols. Computer Communications
Review, 27(1):31–41, January 1997.

[27] M. Rozier, V. Abrossimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrmann, C. Kaiser,
S. Langlois, P. Leonard, and W. Neuhauser. Overview
of the chorus distributed operating system. In Proceed-
ings USENIX Workshop on Micro-kernels and Other
Kernel Architectures, pages 39–69, 1992.

[28] S. Savage, N. Cardwell, D. Wetherall, and T. Ander-
son. TCP congestion control with a misbehaving re-
ceiver. Computer Communications Review, 29(3), Oc-
tober 1999.

[29] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska.
Implementing network protocols at user level. IEEE/
ACM Transactions on Networking, 1(5):554–565, Oc-
tober 1993.

[30] F. Theodore, J. Touch, and W. Yue. The TIME-WAIT
state in TCP and its effect on busy servers. In INFO-
COM ’99, New York, March 1999.

[31] V. Visweswaraiah and J. Heidemann. Improving restart
of idle TCP connections. Technical Report 97-661, ISI,
Marina del Ray, California, November 1997.

[32] T. von Eicken, D. Culler, S. Goldstein, and
K. Schauser. Active messages: A mechanism for in-
tegrated communication and computation. In Proceed-
ings of the 19th Annual International Symposium on
Computer Architecture, pages 256–267, Gold Coast,
Australia, May 1992. ACM Press.

[33] D. Wallach, D. Engler, and M. F. Kaashoek. ASHs:
application-specific handlers for high-performance
messaging. Computer Communications Review,
26(4):40–52, October 1996.


