
1

…the embedded database company tm

Gizmo Databases

Margo Seltzer

Sleepycat Software and Harvard University

June 10, 1999

2

What Is a Gizmo Database?

• Gizmo:
– A device, not a general-purpose computer

– Application oriented

– Examples: toaster, telephone, lightswitch

– Also: an LDAP server, messaging servers,
DHCP servers

• A gizmo database is a database for a gizmo.



2

3

Why Do Gizmos Have
Databases?

• Gizmos have computers.

• Once there is a computer, people can't help
but collect data.

These are not your normal Enterprise
databases.

4

Outline

• A summary of the 1999 SIGMOD panel on
"small" databases.

• Working definition of an embedded
database.

• Challenges in embedded databases.

• Berkeley DB as an embedded database.

• Conclusions.



3

5

The SIGMOD Panel
on Gizmo Databases

• Honey, I shrunk the database.
– Emphasis on mobility more than embedded.

• Panelists
– CTO: Cloudscape

– VP of mobile and embedded systems: Sybase

– Founder of Omniscience: built ORDBMS that
was sold to Oracle as Oracle Lite

– Me

6

Caveats

• You are getting my (biased) interpretation
of the panel.

• You are also getting my (biased) definition
of what embedded database systems are.

• You are getting my (biased) definition of
what is important.

The SIGMOD Panel



4

7

What Is the Domain?

• Different points of view:
– Mobility is the key.

– Embedded is the key.

• These lead to very different perspectives.

The SIGMOD Panel

8

Cloudscape

• They sell a persistent cache.

• If there is no backing database, a persistent
cache is a database.

• Key features:
– ability to run anywhere

– ability to synchronize with main database

– rich schema

The SIGMOD Panel



5

9

Sybase

• Three products:
– SQL Anywhere: dialect of SQL for use on

small platforms.

– UltraLite: allows you to construct a application-
specific server for a particular database
application

– MobiLink: allows automatic synchronization
with an enterprise database

The SIGMOD Panel

10

Sybase, continued

• Key features:
– ability to synchronize with a main database

– full SQL support

The SIGMOD Panel



6

11

Oracle/Omniscience

• Developed with small footprint in mind.

• (Omniscience) Goal was robustness, not
mobile or embedded support.

• Oracle target is mobile applications.

The SIGMOD Panel

12

Oracle/Omniscience, continued

• Key features:
– small footprint

– Object-relational model

– Java support

– database synchronization

The SIGMOD Panel



7

13

Sleepycat

• Target is embedded applications, not
mobile.

• "Users" are other programs, not people.

• General-purpose query interface not
important.

The SIGMOD Panel

14

Sleepycat, continued

• Key features:
– transparency (can't tell you exist)

– small footprint

– high performance

– not necessarily related to any enterprise
application

The SIGMOD Panel



8

15

Major Points of Agreement

• Footprint matters.

• Implementation language does not matter.

• Wireless networking does not change the
landscape much.

The SIGMOD Panel

16

Major Points of Disagreement

• Does SQL matter?

• What is the application domain?

The SIGMOD Panel



9

17

Outline

• A summary of the 1999 SIGMOD panel on
"small" databases.

• Working definition of an embedded
database.

• Challenges in embedded databases.

• Berkeley DB as an embedded database.

• Conclusions.

18

Embedded Databases:
A Working Definition

• Embedded in an application.

• End-user transparency.

• Instant recovery required.

• Database administration is managed by
application (not DBA).

Not necessarily the same as mobile
applications.

Working Definition



10

19

Outline

• A summary of the 1999 SIGMOD panel on
"small" databases.

• Working definition of an embedded
database.

• Challenges in embedded databases.

• Berkeley DB as an embedded database.

• Conclusions.

20

Challenges in
Embedded Databases

• Hands-off administration.

• Simplicity and robustness.

• Low latency performance.

• Small footprint.



11

21

The User Perspective

• Traditionally, database administrators
perform:
– backup and restoration

– log archival and reclamation

– data compaction and reorganization

– recovery

Challenges

22

The User Perspective, continued

• In an embedded application, the application
must be able to perform these tasks:
– automatically

– transparently

• Challenges are similar to the fault tolerant
market, except
– smaller, cheaper systems

– no redundant hardware

Challenges



12

23

Backup on Big Gizmos

• Fairly traditional meaning
– Create a consistent snapshot of the database

– Snapshots taken hourly, daily, weekly, etc.

• Special requirements
– Hot backups

– Restoration on a different system

Challenges: The User Perspective

24

Backup on Small Gizmos

• This is not your standard tape backup!

• Opportunistic synchronization.

• Explicit synchronization.

• Backup to a remote repository.

Challenges: The User Perspective



13

25

Log Archival and Reclamation

• Probably only necessary on big gizmos.

• Users do not manage logs (they don't want
to know they exist).

• Logs cannot take up excessive space.

• Must be able to backup and remove logs
easily.

• Intimately tied to backup.

Challenges: The User Perspective

26

Data Compaction and
Reorganization

• Important for big gizmos.

• No down time.

• No user (DBA) input.
– When and what to reorganize

– How to reorganize
• Simple dump and restore

• Change underlying storage type

• Add/Drop indices

Challenges: The User Perspective



14

27

Recovery

• Instantaneous (especially for small gizmos).

• Automatically triggered.

• Cannot ask the end-user any questions.

• Must support reinitialization as well as
recovery.

Challenges: The User Perspective

28

The Developer’s Perspective

• Small footprint.

• Short code-path.

• Programmatic interfaces.

• Configurability.

Challenges



15

29

Small Footprint

• Small gizmos are resource constrained.

• Large gizmos are (probably) running a
complex application
– The database is only a small part of it

• Small gizmos compete on price:
– He who runs in the smallest memory wins.

Challenges: The Developer’s Perspective

30

Short Code Path

• Read: Fast

• Big gizmos compete on performance:
– The right speed matters (not TPC-X).

• Most gizmos do not need general-purpose
queries.

• Queries are either hard-coded or restricted.

Challenges: The Developer’s Perspective



16

31

Programmatic Interfaces

• Small footprint + short code-path =
programmatic interface.

• ODBC and SQL add overhead:
– size

– complexity

– performance

Challenges: The Developer’s Perspective

32

Programmatic Interfaces,
continued

• Note that Sybase UltraLite + SQL
Anywhere creates custom server capable of
executing only a few specific queries.
– So why support SQL?

• “Programmatic” can imply multiple
languages.

Challenges: The Developer’s Perspective



17

33

Configurability

• Gizmos come in all different shapes and
sizes.
– May not have a file system.

– May be all non-volatile memory.

– May not have user-level.

– May not have threads.

• Data manager must be happy under all
conditions.

Challenges: The Developer’s Perspective

34

Outline

• A summary of the 1999 SIGMOD panel on
"small" databases.

• Working definition of an embedded
database.

• Challenges in embedded databases.

• Berkeley DB as an embedded database.

• Conclusions.



18

35

Berkeley DB

• What is Berkeley DB?

• Core Functionality

• Extensions for embedded systems

• Size

36

What Is Berkeley DB?

• Database functionality + UNIX tool-based
philosophy.

• Descendant of the 4.4 BSD hash and btree
access methods.

• Full blown, concurrent, recoverable
database management.

• Open Source licensing.

Berkeley DB



19

37

Using Berkeley DB

• Multiple APIs
– C

– C++

– Java

– Tcl

– Perl

Berkeley DB

38

Data Model

• There is none.

• Schema is application-defined.

• Benefit: no unnecessary overhead.
– Write structures to the database.

• Cost: application does more work.
– Manual joins.

Berkeley DB



20

39

Core Functionality

• Access methods

• Locking

• Logging

• Shared buffer management

• Transactions

• Utilities

Berkeley DB

40

Access Methods

• B+ Trees: in-order optimizations.

• Dynamic Linear Hashing.

• Fixed & Variable Length Records.

• High concurrency queues.

Berkeley DB



21

41

Locking

• Concurrent Access
– Low-concurrency

mode

– Lock at the interface

– Allow multiple readers
OR single writer in DB

– Deadlock-free

• Page-oriented 2PL
– Multiple concurrent

readers and writers

– Locks acquired on pages
(except for queues)

– Updates can deadlock

– In presence of deadlocks,
must use transactions

Both can be used outside of the access methods to provide
stand-alone lock management.

Berkeley DB

42

Logging

• Standard write-ahead logging.

• Customized for use with Berkeley DB.

• Extensible: can add application-specific log
records.

Berkeley DB



22

43

Shared Buffer Management
(mpool)

• Useful outside of DB.

• Manages a collection of caches pages.

• Read-only databases simply mmapped in.

• Normally, double-buffers with operating
system (unfortunately).

Berkeley DB

44

Transactions

• Uses two-phase locking with write-ahead
logging.

• Recoverability from crash or catastrophic
failure.

• Nested transactions allow partial rollback.

Berkeley DB



23

45

Utilities

• Dump/load

• Deadlock detector

• Checkpoint daemon

• Recovery agent

• Statistics reporting

Berkeley DB

46

Core Configurability

• Application specified limits:
– mpool size

– number of locks

– number of transactions

– etc.

• Architecture: utilities implemented in
library.

Berkeley DB



24

47

Configuring the Access Methods

• Btrees:
– sort order: application-specified functions.

– compression: application-specified functions.

• Hash:
– application-specified hash functions.

– pre-allocate buckets if size is specified.

Berkeley DB

48

Configuring OS Interaction

• File system
– explicitly locate log files

– explicitly locate data files

– control over page sizes

– etc.

• Shared memory
– specify shared memory architecture (mmap,

shmget, malloc).

Berkeley DB



25

49

Extensions for
Embedded Systems

• So far, everything we've discussed exists.

• The rest of this talk is R & D.
– Areas we have identified and are working on

especially for embedded applications.

Berkeley DB

50

Automatic Compression and
Encryption

• Mpool manages all
reading/writing from
disk, byte-swapping of
data.

• Library or application-
specified functions can
also be called on page
read/write.

• Using these hooks, we
can provide:
– page-based, application-

specific compression

– page-based, application-
specific encryption

– Encrypted key lookup

Berkeley DB: Futures



26

51

In-Memory Logging and
Transactions

• Transactions provide consistency as well as
durability.

• This can be useful in the absence of a disk.

• Provide full transactional capabilities
without disk.

Berkeley DB: Futures

52

Remote Logs

• Connected gizmos might want remote
logging.

• Example:
– Set top box may not have disk, but is connected

to somewhere that does

– Enables automatic backups, snapshots,
recoverability

Berkeley DB: Futures



27

53

Application Shared Pointers

• Typically we copy data from mpool to the
application.
– This means pages do not remain pinned at the

discretion of the application.

• In an embedded system, we can trust the
application.

• Sharing pointers saves copies; improves
performance.

Berkeley DB: Futures

54

Adaptive Synchronization

• Shared memory regions must be synchronized.

• Normally, a single lock protects each region.

• In high-contention environments, these locks can
become bottleneck.

• Locking subsystem already supports fine-grain
synchronization.

• Challenge is correctly adapting between the two
modes.

Berkeley DB: Futures



28

55

Size Statistics

Berkeley DB

Lines
Text Data BSS of Code

Access methods (total) 108,697 52 0 22,000
Locking 12,533 0 0 2,500
Logging 37,367 0 0 8,000
Transactions/Recovery 26,948 8 4 5,000
Include 15,000
Total 185,545 60 4 52,500

Object Size in Bytes

56

Outline

• A summary of the 1999 SIGMOD panel on
"small" databases.

• Working definition of an embedded
database.

• Challenges in embedded databases.

• Berkeley DB as an embedded database.

• Conclusions.



29

57

Conclusions

• Embedded applications market is bursting.

• Data management is an integral part.

• This is a fundamentally different market from the
enterprise database market, and requires a
fundamentally different solution.

• Lots of challenges facing embedded market.

• Winners will make the right trade-off between
functionality and size/complexity.

…the embedded database company tm

Come visit us in Booth #401!
Margo Seltzer

Sleepycat Software

margo@sleepycat.com

http://www.sleepycat.com


