
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the USENIX Annual Technical Conference
Monterey, California, USA, June 6-11, 1999

Extending File Systems Using Stackable Templates
_

Erez Zadok, Ion Badulescu, and Alex Shender
Columbia University

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



Extending File Systems Using Stackable Templates

Erez Zadok, Ion Badulescu, and Alex Shender
Computer Science Department, Columbia University

{ezk,ion,alex }@cs.columbia.edu

Abstract
Extending file system functionality is not a new idea,

but a desirable one nonetheless[6, 14, 18]. In the several
years since stackable file systems were first proposed, only
a handful are in use[12, 19]. Impediments to writing new
file systems include the complexity of operating systems,
the difficulty of writing kernel-based code, the lack of a
true stackable vnode interface[14], and the challenges of
porting one file system to another operating system.

We advocate writing new stackable file systems as ker-
nel modules. As a starting point, we propose a portable,
stackable template file system we call Wrapfs (wrapper file
system). Wrapfs is a canonical, minimal stackable file sys-
tem that can be used as a pattern across a wide range of
operating systems and file systems. Given Wrapfs, devel-
opers can add or modify only that which is necessary to
achieve the desired functionality. Wrapfs takes care of the
rest, and frees developers from the details of operating sys-
tems. Wrapfs templates exist for several common operat-
ing systems (Solaris, Linux, and FreeBSD), thus alleviating
portability concerns. Wrapfs can be ported to any operating
system with a vnode interface that provides a private data
pointer for each data structure used in the interface. The
overhead imposed by Wrapfs is only 5–7%.

This paper describes the design and implementation of
Wrapfs, explores portability issues, and shows how the im-
plementation was achieved without changing client file sys-
tems or operating systems. We discuss several examples of
file systems written using Wrapfs.

1 Introduction

Adding functionality to existing file systems in an easy
manner has always been desirable. Several ideas have been
proposed and some prototypes implemented[6, 14, 18].
None of the proposals for a new extensible file system in-
terface has made it to commonly used Unix operating sys-
tems. The main reasons are the significant changes that
overhauling the file system interface would require, and the
impact it would have on performance.

Kernel-resident native file systems are those that inter-
act directly with lower level media such as disks[9] and
networks[11, 16]. Writing such file systems is difficult
because it requires deep understanding of specific operat-
ing system internals, especially the interaction with device
drivers and the virtual memory system. Once such a file
system is written, porting it to another operating system
is just as difficult as the initial implementation, because
specifics of different operating systems vary significantly.

Others have resorted to writing file systems at the user
level. These file systems work similarly to the Amd
automounter[13] and are based on an NFS server. While
it is easier to develop user-level file servers, they suffer
from poor performance due to the high number of context
switches they incur. This limits the usefulness of such file
systems. Later works, such as Autofs[3], attempt to solve
this problem by moving critical parts of the automounter
into the kernel.

We propose a compromise solution to these problems:
writing kernel resident file systems that use existing native
file systems, exposing to the user a vnode interface that
is similar even across different operating systems. Doing
so results in performance similar to that of kernel-resident
systems, with development effort on par with user level
file systems. Specifically, we provide a templateWrapper
File Systemcalled Wrapfs. Wrapfs canwrap (mount) itself
on top of one or more existing directories, and act as an
intermediary between the user accessing the mount point
and the lower level file system it is mounted on. Wrapfs
can transparently change the behavior of the file system,
while keeping the underlying media unaware of the upper-
level changes. The Wrapfs template takes care of many file
system internals and operating system bookkeeping, and it
provides the developer with simple hooks to manipulate the
data and attributes of the lower file system’s objects.

1.1 The Stackable Vnode Interface

Wrapfs is implemented as a stackable vnode interface. A
Virtual Nodeor vnodeis a data structure used within Unix-



based operating systems to represent an open file, directory,
or other entities that can appear in the file system name-
space. A vnode does not expose what type of physical file
system it implements. Thevnode interfaceallows higher
level operating system modules to perform operations on
vnodes uniformly. Thevirtual file system(VFS) contains
the common file system code of the vnode interface.

One improvement to the vnode concept isvnode
stacking[6, 14, 18], a technique for modularizing file sys-
tem functions by allowing one vnode interface implementa-
tion to call another. Before stacking existed, there was only
one vnode interface implementation; higher level operating
system code called the vnode interface which in turn called
code for a specific file system. With vnode stacking, sev-
eral implementations may exist and may call each other in
sequence: the code for a certain operation at stack levelN
typically calls the corresponding operation at levelN − 1,
and so on.

VNODE LAYER

User Process

UFS

ufs_read()

disk_dev_read()

VOP_READ()

read()

K
er

n
el

U
se

r

VOP_READ()
WRAPFS

Local Disk

wrapfs_read()

Figure 1: A Vnode Stackable File System

Figure 1 shows the structure for a simple, single-level
stackable wrapper file system. System calls are translated
into VFS calls, which in turn invoke their Wrapfs equiva-
lents. Wrapfs again invokes generic VFS operations, and
the latter call their respectivelower levelfile system op-
erations. Wrapfs calls the lower level file system without
knowing who or what type it is.

The rest of this paper is organized as follows. Section 2
discusses the design of Wrapfs. Section 3 details Wrapfs’s
implementation, and issues relating to its portability to var-
ious platforms. Section 4 describes four example file sys-
tems written using Wrapfs; Section 5 evaluates their perfor-
mance and portability. We survey related works in Section
6 and conclude in Section 7.

2 Design

Our main design considerations for Wrapfs were:

1. What developers want to change in a file system.
2. What API should Wrapfs offer these users that would

free them from operating system internals.
3. How to allow advanced users the flexibility to control

and manipulate all aspects of the file system.

4. Interaction of caches among different layers.
5. What user level mounting-related issues are there.
6. Performance overhead of Wrapfs.

The first five points are discussed below. Performance is
addressed in detail in Section 5.

2.1 What to Change in a File System

As shown in Figure 1, Wrapfs is independent of the host
system’s vnode interface. Since most UNIX-like systems
(including those that currently support Wrapfs) have static
vnode interfaces, this means that Wrapfs cannot introduce
fundamentally new vnode operations.1 (Limited new func-
tionality can be added using newioctl(2) calls.) Our
stackable file system architecture can, however, manipulate
data, names, and attributes of files. We let Wrapfs users
manipulate any of these.

The most obvious manipulation Wrapfs users want to do
is of file data; that is useful for many applications, for ex-
ample in encryption file systems. The next most likely item
to manipulate is the file name. For example, an encryption
file system can encrypt file names as well as data. A file
system that translates between Unix and MS-DOS style file
names can uniquely map long mixed-case Unix file names
to 8.3-format upper-case names.

Finally, there are file attributes that users might want to
change. For example, a file system can ensure that all files
within it are world readable, regardless of the individual
umask used by the users creating them. This is useful in
directories where all files must be world-readable (such as
html files served by most Web servers). Another file system
might prevent anyone from setting the uid bit on executa-
bles, as a simple form of intrusion avoidance.

The aforementioned list of examples is not exhaustive,
but only a hint of what can be accomplished with level of
flexibility that Wrapfs offers. Wrapfs’s developer API is
summarized in Table 1 and is described below.

2.1.1 File Data API

The system call interface offers two methods for reading
and writing file data. The first is by using theread and
write system calls. The second is via the MMAP in-
terface. The former allows users to manipulate arbitrary
amounts of file data. In contrast, the MMAP interface op-
erates on a file in units of the native page size. To accom-
modate the MMAP interface, we decided to require file sys-
tem developers using Wrapfs to also manipulate file data on
whole pages. Another reason for manipulating only whole
pages was that some file data changes may require it. Some
encryption algorithms work on fixed size data blocks and
bytes within the block depend on preceding bytes.

1The UCLA stackable file system replaced the static UNIX vnode in-
terface with a dynamic interface that allowed file system developers to
introduce new operations[6].



Call Input Argument Output Argument
encodedata buffer from user space encoded (same size) buffer to be written
decodedata buffer read from lower level file system decoded (same size) buffer to pass to user space
encodefilename file name passed from user system call encoded (and allocated) file name of any length

to use in lower level file system
decodefilename file name read from the lower level file systemdecoded (and allocated) file name of any length

to pass back to a user process
other Inspect or modify file attributes in vnode functions, right before or after calling lower level file system

Table 1: Wrapfs Developer API

All vnode calls that write file data call a function
encode data before writing the data to the lower level
file system. Similarly, all vnode calls that read file data
call a functiondecode data after reading the data from
the lower level file system. These two functions take two
buffers of the same size: one as input, and another as out-
put. The size of the buffer can be defined by the Wrapfs
developer, but it must be an even multiple of the sys-
tem’s page size, to simplify handling of MMAP functions.
Wrapfs passes other auxiliary data to the encode and de-
code functions, including the file’s attributes and the user’s
credentials. These are useful when determining the proper
action to take. The encode and decode functions return the
number of bytes manipulated, or a negative error code.

All vnode functions that manipulate file data, including
the MMAP ones, call either the encode or decode functions
at the right place. Wrapfs developers who want to modify
file data need not worry about the interaction between the
MMAP, read, and write functions, about file or page locks,
reference counts, caches, status flags, and other bookkeep-
ing details; developers need only to fill in the encode and
decode functions appropriately.

2.1.2 File Names API

Wrapfs provides two file name manipulating functions:
encode filename and decode filename . They
take in a single file name component, and ask the Wrapfs
developer to fill in a new encoded or decoded file name of
any length. The two functions return the number of bytes in
the newly created string, or a negative error code. Wrapfs
also passes to these functions the file’s vnode and the user’s
credentials, allowing the function to use them to determine
how to encode or decode the file name. Wrapfs imposes
only one restriction on these file name manipulating func-
tions. They must not return new file names that contain
characters illegal in Unix file names, such as a null or a
“ / ”.

The user of Wrapfs who wishes to manipulate file names
need not worry about which vnode functions use file
names, or how directory reading (readdir ) is being ac-
complished. The file system developer need only fill in the
file name encoding and decoding functions. Wrapfs takes
care of all other operating system internals.

2.1.3 File Attributes

For the first prototype of Wrapfs, we decided not to force a
specific API call for accessing or modifying file attributes.
There are only one or two places in Wrapfs where attributes
are handled, but these places are called often (i.e., lookup).
We felt that forcing an API call might hurt performance
too much. Instead, we let developers inspect or modify file
attributes directly in Wrapfs’s source.

2.2 User Level Issues

There are two important issues relating to the extension of
the Wrapfs API to user-level: mount points and ioctl calls.

Wrapfs can be mounted as a regular mount or an overlay
mount. The choice of mount style is left to the Wrapfs de-
veloper. Figure 2 shows an original file system and the two
types of mounts, and draws the boundary between Wrapfs
and the original file system after a successful mount.

In a regular mount, Wrapfs receives two pathnames: one
for the mount point (/mnt ), and one for the directory to
stack on (the mounted directory/usr ). After executing,
for example,mount -t wrapfs /mnt /usr , there
are two ways to access the mounted-on file system. Ac-
cess via the mounted-on directory (/usr/ucb ) yields the
lower level files without going through Wrapfs. Access
via the mount point (/mnt/ucb ), however, goes through
Wrapfs first. This mount style exposes the mounted direc-
tory to user processes; it is useful for debugging purposes
and for applications (e.g., backups) that do not need the
functionality Wrapfs implements. For example, in an en-
cryption file system, a backup utility can backup files faster
and safer if it uses the lower file system’s files (ciphertext),
rather than the ones through the mount point (cleartext).

In an overlay mount, accomplished usingmount -t
wrapfs -O /usr , Wrapfs is mounted directly on top
of /usr . Access to files such as/usr/ucb go though
Wrapfs. There is no way to get to the original file sys-
tem’s files under/usr without passing through Wrapfs
first. This mount style has the advantage of hiding the lower
level file system from user processes, but may make back-
ups and debugging harder.

The second important user-level issue relates to the
ioctl(2) system call. Ioctls are often used to extend file



/

binetcusr

ucblocal

3 4

65

2

1

Original File System

/

binetc

usr

ucblocal

usr

3 42

1

65

2 Original F/S

Wrapfs

Overlay Mount

/

binetc

usr

ucblocal

4

1

65

2

mnt

32 2

Original F/S

Wrapfs

Regular Mount

Figure 2: Wrapfs Mount Styles

system functionality. Wrapfs allows its user to define new
ioctl codes and implement their associated actions. Two
ioctls are already defined: one to set a debugging level and
one to query it. Wrapfs comes with lots of debugging traces
that can be turned on or off at run time by a root user. File
systems can implement other ioctls. An encryption file sys-
tem, for example, can use an ioctl to set encryption keys.

2.3 Interaction Between Caches

When Wrapfs is used on top of a disk-based file system,
both layers cache their pages. Cache incoherency could re-
sult if pages at different layers are modified independently.
A mechanism for keeping caches synchronized through a
centralized cache manager was proposed by Heidemann[5].
Unfortunately, that solution involved modifying the rest of
the operating system and other file systems.

Wrapfs performs its own caching, and does not explic-
itly touch the caches of lower layers. This keeps Wrapfs
simpler and more independent of other file systems. Also,
since pages can be served off of their respective layers, per-
formance is improved. We decided that the higher a layer
is, the more authoritative it is: when writing to disk, cached
pages for the same file in Wrapfs overwrite their UFS coun-
terparts. This policy correlates with the most common case
of cache access, through the uppermost layer. Finally, note
that a user process can access cached pages of a lower level
file system only if it was mounted as a regular mount (Fig-
ure 2). If Wrapfs is overlay mounted, user processes could
not access lower level files directly, and cache incoherency
for those files is less likely to occur.

3 Implementation

This section details the more difficult parts of the imple-
mentation and unexpected problems we encountered. Our
first implementation concentrated on the Solaris 2.5.1 op-
erating system because Solaris has a standard vnode inter-
face and we had access to kernel sources. Our next two
implementations were for the Linux 2.0 and the FreeBSD

3.0 operating systems. We chose these two because they
are popular, are sufficiently different, and they also come
with kernel sources. In addition, all three platforms sup-
port loadable kernel modules, which made debugging eas-
ier. Together, the platforms we chose cover a large portion
of the Unix market.

The discussion in the rest of this section concentrates
mostly on Solaris, unless otherwise noted. In Section
3.5 we discuss the differences in implementation between
Linux and Solaris. Section 3.6 discusses the differences for
the FreeBSD port.

3.1 Stacking

Wrapfs was initially similar to the Solaris loopback file
system (lofs)[19]. Lofs passes all Vnode/VFS operations
to the lower layer, but it only stacks on directory vnodes.
Wrapfs stacks on every vnode, and makes identical copies
of data blocks, pages, and file names in its own layer, so
they can be changed independently of the lower level file
system. Wrapfs does not explicitly manipulate objects in
other layers. It appears to the upper VFS as a lower-level
file system; concurrently, Wrapfs appears to lower-level file
systems as an upper-layer. This allows us to stack multiple
instances of Wrapfs on top of each other.

The key point that enables stacking is that each of the
major data structures used in the file system (struct
vnode andstruct vfs ) contain a field into which we
can store file system specific data. Wrapfs uses that pri-
vate field to store several pieces of information, especially a
pointer to the corresponding lower level file system’s vnode
and VFS. When a vnode operation in Wrapfs is called, it
finds the lower level’s vnode from the current vnode, and
repeats the same operation on the lower level vnode.

3.2 Paged Reading and Writing

We perform reading and writing on whole blocks of size
matching the native page size. Whenever a read for a range
of bytes is requested, we compute the extended range of



bytes up to the next page boundary, and apply the operation
to the lower file system using the extended range. Upon
successful completion, the exact number of bytes requested
are returned to the caller of the vnode operation.

Writing a range of bytes is more complicated than read-
ing. Within one page, bytes may depend on previous bytes
(e.g., encryption), so we have to read and decode parts of
pages before writing other parts of them.

Throughout the rest of this section we will refer to the
upper (wrapping) vnode asV , and to the lower (wrapped)
vnode asV ′; P andP ′ refer to memory mapped pages at
these two levels, respectively. The example2 depicted in
Figure 3 shows what happens when a process asks to write
bytes of an existing file from byte 9000 until byte 25000.
Let us assume that the file in question has a total of 4 pages
(32768) worth of bytes in it.

0 8K 16K 24K 32K

Page 0 Page 1 Page 2 Page 3

Read 1 and decode

9000 25000

Original bytes to write

Read 2 and decode

Bytes read, decoded, and discarded

Final pages to encode

Actual bytes to write

Figure 3: Writing Bytes in Wrapfs

1. Compute the extended page boundary for the write
range as 8192–32767 and allocate three empty pages.
(Page 0 ofV is untouched.)

2. Read bytes 8192–8999 (page 1) fromV ′, decode
them, and place them in the first allocated page. We
do not need to read or decode the bytes from 9000 on-
wards in page 1 because they will be overwritten by
the data we wish to write anyway.

3. Skip intermediate data pages that will be overwritten
by the overall write operation (page 2).

4. Read bytes 24576–32767 (page 3) fromV ′, decode
them, and place them in the third allocated page. This
time we read and decode the whole page because we
need the last 32767−25000=7767 bytes and these
bytes depend on the first 8192−7767=426 bytes of
that page.

5. Copy the bytes that were passed to us into the appro-
priate offset in the three allocated pages.

6. Finally, we encode the three data pages and call the
write operation onV ′ for the same starting offset
(9000). This time we write the bytes all the way to
the last byte of the last page processed (byte 32767),
to ensure validity of the data past file offset 25000.

2The example is simplified because it does not take into account sparse
files, and appending to files.

3.2.1 Appending to Files

When files are opened for appending only, the VFS does
not provide the vnodewrite function the real size of the
file and where writing begins. If the size of the file before
an append is not an exact multiple of the page size, data
corruption may occur, since we will not begin a new en-
coding sequence on a page boundary.

We solve this problem by detecting when a file is opened
with an append flag on, turn off that flag before the open
operation is passed on toV ′, and replace it with flags that
indicate toV ′ that the file was opened for normal reading
and writing. We save the initial flags of the opened file, so
that other operations onV could tell that the file was orig-
inally opened for appending. Whenever we write bytes to
a file that was opened in append-only mode, we first find
its size, and add that to the file offsets of the write request.
In essence we convert append requests to regular write re-
quests starting at the end of the file.

3.3 File Names and Directory Reading

Readdir is implemented in the kernel as a restartable func-
tion. A user process calls the readdir C library call, which
is translated into repeated calls to thegetdents(2) sys-
tem call, passing it a buffer of a given size. The kernel fills
the buffer with as many directory entries as will fit in the
caller’s buffer. If the directory was not read completely, the
kernel sets a special EOF flag to false. As long as the flag
is false, the C library function callsgetdents(2) again.

The important issue with respect to directory reading is
how to continue reading the directory from the offset where
the previous read finished. This is accomplished by record-
ing the last position and ensuring that it is returned to us
upon the next invocation. We implementedreaddir as
follows:

1. A readdir vnode operation is called onV for N bytes
worth of directory data.

2. Call the same vnode operation onV ′ and read backN
bytes.

3. Create a new temporary buffer of a size that is as large
asN .

4. Loop over the bytes read fromV ′, breaking them into
individual records representing one directory entry at
a time (struct dirent ). For each such, we call
decode filename to find the original file name.
We construct a new directory entry record containing
the decoded file name and add the new record to the
allocated temporary buffer.

5. We record the offset to read from on the next call to
readdir ; this is the position past the last file name
we just read and decoded. This offset is stored in
one of the fields of thestruct uio (representing
data movement between user and kernel space) that
is returned to the caller. A new structure is passed to



us upon the next invocation of readdir with the offset
field untouched. This is how we are able to restart the
call from the correct offset.

6. The temporary buffer is returned to the caller of the
vnode operation. If there is more data to read from
V ′, then we set the EOF flag to false before returning
from this function.

The caller ofreaddir asks to read at mostN bytes.
When we decode or encode file names, the result can be a
longer or shorter file name. We ensure that we fill in the
user buffer with no morestruct dirent entries than
could fit (but fewer is acceptable). Regardless of how many
directory entries were read and processed, we set the file
offset of the directory being read such that the next invoca-
tion of thereaddir vnode operation will resume reading
file names from exactly where it left off the last time.

3.4 Memory Mapping

To support MMAP operations and execute binaries we im-
plemented memory-mapping vnode functions. As per Sec-
tion 2.3, Wrapfs maintains its own cached decoded pages,
while the lower file system keeps cached encoded pages.

When a page fault occurs, the kernel calls the vnode op-
erationgetpage . This function retrieves one or more
pages from a file. For simplicity, we implemented it as
repeatedly calling a function that retrieves a single page—
getapage . We implementedgetapage as follows:

1. Check if the page is cached; if so, return it.

2. If the page is not cached, create a new pageP .

3. FindV ′ from V and call thegetpage operation on
V ′, making sure it would return only one pageP ′.

4. Copy the (encoded) data fromP ′ toP .

5. Map P into kernel virtual memory and decode the
bytes by callingwrapfs decode .

6. UnmapP from kernel VM, insert it intoV ’s cache,
and return it.

The implementation ofputpage was similar to
getpage . In practice we also had to carefully handle
two additional details, to avoid deadlocks and data corrup-
tion. First, pages contain several types of locks, and these
locks must be held and released in the right order and at the
right time. Secondly, the MMU keeps mode bits indicating
status of pages in hardware, especially the referenced and
modified bits. We had to update and synchronize the hard-
ware version of these bits with their software version kept
in the pages’ flags. For a file system to have to know and
handle all of these low-level details blurs the distinction be-
tween the file system and the VM system.

3.5 Linux

When we began the Solaris work we referred to the imple-
mentation of other file systems such as lofs. Linux 2.0 did
not have one as part of standard distributions, but we were
able to locate and use a prototype3. Also, the Linux Vn-
ode/VFS interface contains a different set of functions and
data structures than Solaris, but it operates similarly.

In Linux, much of the common file system code was ex-
tracted and moved to a generic (higher) level. Many generic
file system functions exist that can be used by default if the
file system does not define its own version. This leaves the
file system developer to deal with only the core issues of
the file system. For example, Solaris User I/O (uio ) struc-
tures contain various fields that must be updated carefully
and consistently. Linux simplifies data movement by pass-
ing I/O related vnode functions a simple allocated (char
* ) buffer and an integer describing how many bytes to pro-
cess in the buffer passed.

Memory-mapped operations are also easier in Linux.
The vnode interface in Solaris includes functions that must
be able to manipulate one or more pages. In Linux, a file
system handles one page at a time, leaving page clustering
and multiple-page operations to the higher VFS.

Directory reading was simpler in Linux. In Solaris, we
read a number of raw bytes from the lower level file sys-
tem, and parse them into chunks ofsizeof(struct
dirent) , set the proper fields in this structure, and ap-
pend the file name bytes to the end of the structure (out
of band). In Linux, we provide the kernel with a callback
function for iterating over directory entries. This function
is called by higher level code and ask us to simply process
one file name at a time.

There were only two caveats to the portability of the
Linux code. First, Linux keeps a list of exported ker-
nel symbols (inkernel/ksyms.c ) available to load-
able modules. To make Wrapfs a loadable module, we
had to export additional symbols to the rest of the ker-
nel, for functions mostly related to memory mapping. Sec-
ond, most of the structures used in the file system (inode ,
super block , and file ) include a private field into
which stacking specific data could be placed. We had to
add a private field to only one structure that was miss-
ing it, the vm area struct , which represents custom
per-process virtual memory manager page-fault handlers.
Since Wrapfs is the first fully stackable file system for
Linux, we feel that these changes are small and acceptable,
given that more stackable file systems are likely to be de-
veloped.4

3http://www.kvack.org/˜blah/lofs/
4We submitted our small changes and expect that they will be included

in a future version of Linux.



3.6 FreeBSD

FreeBSD 3.0 is based on BSD-4.4Lite. We chose it as
the third port because it represents another major section
of Unix operating systems. FreeBSD’s vnode interface
is similar to Solaris’s and the port was straightforward.
FreeBSD’s version of the loopback file system is called
nullfs[12], a template for writing stackable file systems.
Unfortunately, ever since the merging of the VM and Buffer
Cache in FreeBSD 3.0, stackable file systems stopped
working because of the inability of the VFS to correctly
map data pages of stackable file systems to their on-disk
locations. We worked around two deficiencies in nullfs.
First, writing large files resulted in some data pages get-
ting zero-filled on disk; this forced us to perform all writes
synchronously. Second, memory mapping through nullfs
paniced the kernel, so we implemented MMAP functions
ourselves. We implementedgetpages andputpages
usingread andwrite , respectively, because calling the
lower-level’s page functions resulted in a UFS pager error.

4 Examples

This section details the design and implementation of four
sample file systems we wrote based on Wrapfs. The exam-
ples range from simple to complex:

1. Snoopfs: detects and warns of attempted access to
users’ files by other non-root users.

2. Lb2fs: is a read-only file system that trivially balances
the load between two replicas of the same file system.

3. Usenetfs: breaks large flat article directories (often
found in very active news spools) into deeper direc-
tory hierarchies, improving file access times.

4. Cryptfs : is an encryption file system.

These examples are experimental and intended to illus-
trate the kinds of file systems that can be written using
Wrapfs. We do not consider them to be complete solutions.
Whenever possible, we illustrate potential enhancements to
our examples. We hope to convince readers of the flexibil-
ity and simplicity of writing new file systems using Wrapfs.

4.1 Snoopfs

Users’ home directory files are often considered private and
personal. Normally, these files are read by their owner or by
the root user (e.g., during backups). Other sanctioned file
access includes files shared via a common Unix group. Any
other access attempt may be considered a break-in attempt.
For example, a manager might want to know if a subordi-
nate tried tocd to the manager’s̃/private directory;
an instructor might wish to be informed when anyone tries
to read files containing homework solutions.

The one place in a file system where files are initially
searched is the vnodelookup routine. To detect access

problems, we first perform the lookup on the lower file
system, and then check the resulting status. If the status
was one of the error codes “permission denied” or “file not
found,” we know that someone was trying to read a file
they do not have access to, or they were trying to guess file
names. If we detect one of these two error codes, we also
check if the current process belongs to the super-user or the
file’s owner by inspecting user credentials. If it was a root
user or the owner, we do nothing. Otherwise we print a
warning using the in-kernel log facility. The warning con-
tains the file name to which access was denied and the user
ID of the process that tried to access it.

We completed the implementation of Snoopfs in less
than one hour (on all three platforms). The total number
of lines of C code added to Wrapfs was less than 10.

Snoopfs can serve as a prototype for a more elaborate
intrusion detection file system. Such a file system can pro-
hibit or limit the creation or execution of setuid/setgid pro-
grams; it can also disallow overwriting certain executables
that rarely change (such as/bin/login ) to prevent at-
tackers from replacing them with trojans.

4.2 Lb2fs

Lb2fs is a trivial file system that multiplexes file access be-
tween two identical replicas of a file system, thus balancing
the load between them. To avoid concurrency and consis-
tency problems associated with writable replicas, Lb2fs is
a read-only file system: vnode operations that can mod-
ify the state of the lower file system are disallowed. The
implementation was simple; operations such aswrite ,
mkdir , unlink , andsymlink just return the error code
“read-only file system.” We made a simplifying assump-
tion that the two replicas provide service of identical qual-
ity, and that the two remote servers are always available,
thus avoiding fail-over and reliability issues.

The one place where new vnodes are created is in the
lookup function. It takes a directory vnode and a path-
name and it returns a new vnode for the file represented
by the pathname within that directory. Directory vnodes
in Lb2fs store not one, but two vnodes of the lower level
file systems—one for each replica; this facilitates load-
balancing lookups in directories. Only non-directories
stack on top of one vnode, the one randomly picked.
Lb2fs’s lookup was implemented as follows:

1. An operationlookup is called on directory vnode
DV and file nameX .

2. Get fromDV the two lower vnodesDV ′1 andDV ′2 .

3. Pick one of the two lower vnodes at random, and re-
peat the lookup operation on it usingX .

4. If the lookup operation forX was successful, then
check the resulting vnode. If the resulting vnode was
not a directory vnode, store it in the private data of
DV and return.



5. If the resulting vnode was a directory vnode, then re-
peat the lookup operation on theother lower vnode;
store the two resulting directory vnodes (representing
X on the two replicas) in the private data ofDV .

The implications of this design and implementation are
twofold. First, once a vnode is created, all file operations
using it go to the file server that was randomly picked for it.
A lookup followed by an open, read, and close of a file, will
all use the same file server. In other words, the granularity
of our load balancing is on a per-file basis.

Second, since lookups happen on directory vnodes, we
keep the two lower directory vnodes, one per replica. This
is so we can randomly pick one of them to lookup a file.
This design implies that every open directory vnode is
opened on both replicas, and only file vnodes are truly ran-
domly picked and load-balanced. The overall number of
lookups performed by Lb2fs is twice for directory vnodes
and only once for file vnodes. Since the average number
of files on a file system is much larger than the number of
directories, and directory names and vnodes are cached by
the VFS, we expect the performance impact of this design
to be small.

In less than one day we designed, implemented, tested,
and ported Lb2fs. Many possible extensions to Lb2fs ex-
ist. It can be extended to handle three or a variable number
of replicas. Several additional load-balancing algorithms
can be implemented: round-robin, LRU, the most respon-
sive/available replica first, etc. A test for downed servers
can be included so that the load-balancing algorithm can
avoid using servers that recently returned an I/O error or
timed out (fail-over). Servers that were down can be added
once again to the available pool after another timeout pe-
riod.

4.3 Usenetfs

One cause of high loads on news servers in recent years
has been the need to process many articles in very large flat
directories representing newsgroups such ascontrol.cancel
andmisc.jobs.offered. Significant resources are spent on
processing articles in these few newsgroups. Most Unix
directories are organized as a linear unsorted sequence of
entries. Large newsgroups can have hundreds of thousands
of articles in one directory, resulting in delays processing
any single article.

When the operating system wants to lookup an entry in a
directory withN entries, it may have to search allN entries
to find the file in question. Table 2 shows the frequency of
all file system operations that use a pathname on our news
spool over a period of 24 hours.

It shows that the bulk of all operations are for looking
up files, so these should run very fast regardless of the di-
rectory size. Operations that usually run synchronously
(unlink and create ) account for about 10% of news

Operation Frequency % Total
Lookup 7068838 88.41
Unlink 432269 5.41
Create 345647 4.32
Readdir 38371 0.48
All other 110473 1.38
Total 7995598 100.00

Table 2: Frequency of File System Operations on a News
Spool

spool activity and should also perform well on large news-
groups.

Usenetfs is a file system that rearranges the directory
structure from being flat to one with small directories
containing fewer articles. By breaking the structure into
smaller directories, it improves the performance of looking
up, creating, or deleting files, since these operations occur
on smaller directories. The following sections summarize
the design and implementation of Usenetfs. More detailed
information is available in a separate report[23].

4.3.1 Design of Usenetfs

We had three design goals for Usenetfs. First, Usenetfs
should not require changing existing news servers, oper-
ating systems, or file systems. Second, it should improve
performance of these large directories enough to justify its
overhead and complexity. Third, it should selectively man-
age large directories with little penalty to smaller ones.

The main idea for improving performance for large flat
directories is to break them into smaller ones. Since
article names are composed of sequential numbers, we
take advantage of that. We create a hierarchy consist-
ing of one thousand directories as depicted in Figure 4.
We distribute articles across 1000 directories named 000

345 999

cancel

control

123456

. . .. . .001000

Figure 4: A Usenetfs Managed Newsgroup

through 999. Since article numbers are sequential, we
maximize the distribution by computing the final directory
into which the article will go based on three of the four
least significant digits. For example, the article named
control/cancel/123456 is placed into the direc-
tory control/cancel/345/ . We picked the directory
based on the second, third, and fourth digits of the article
number to allow for some amount of clustering. By not us-
ing the least significant digit we cluster 10 consecutive arti-



cles together: the articles 123450–123459 are placed in the
same directory. This increases the chance of kernel cache
hits due to the likelihood of sequential access of these ar-
ticles. In general, every article numbered X..XYYYZ is
placed in a directory named YYY. For reading a whole di-
rectory (readdir ), we iterate over the subdirectories from
000 to 999, and return the entries within.

Usenetfs needs to determine if a directory is managed or
not. We co-opted a seldom used mode bit for directories,
the setuid bit, to flag a directory as managed by Usenetfs.
Using this bit lets news administrators control which direc-
tories are managed, using a simplechmod command.

The last issue was how to convert an unmanaged direc-
tory to be managed by Usenetfs: creating some of the 000–
999 subdirectories and moving existing articles to their des-
ignated locations. Experimentally, we found that the num-
ber of truly large newsgroups is small, and that they rarely
shrunk. Given that, and for simplicity, we made the process
of turning directory management on/off an off-line process
triggered by the news administrator with a provided script.

4.3.2 Implementation of Usenetfs

Usenetfs is the first non-trivial file system we designed and
implemented using Wrapfs. By “non-trivial” we mean that
it took us more than a few hours to achieve a working
prototype from the Wrapfs template. It took us one day
to write the first implementation, and several more days
to test it and alternate restructuring algorithms (discussed
elsewhere[23]).

We accomplished most of the work in the functions
encode filename and decode filename . They
check the setuid bit of the directory to see if it is managed
by Usenetfs; if so, they convert the filename to its managed
representation and back.

4.4 Cryptfs

Cryptfs is the most involved file system we designed and
implemented based on Wrapfs. This section summarizes
its design and implementation. More detailed information
is available elsewhere[24].

We used the Blowfish[17] encryption algorithm—a 64
bit block cipher designed to be fast, compact, and simple.
Blowfish is suitable in applications where the keys seldom
change such as in automatic file decryptors. It can use vari-
able length keys as long as 448 bits. We used 128 bit keys.

We picked the Cipher Block Chaining (CBC) encryp-
tion mode because it allows us to encrypt byte sequences
of any length—suitable for encrypting file names. We de-
cided to use CBC only within each encrypted block. This
way ciphertext blocks (of 4–8KB) do not depend on previ-
ous ones, allowing us to decrypt each block independently.
Moreover, since Wrapfs lets us manipulate file data in units
of page size, encrypting them promised to be simple.

To provide stronger security, we encrypt file names as
well. We do not encrypt “.” and “..” to keep the lower
level Unix file system intact. Furthermore, since encrypt-
ing file names may result in characters that are illegal in file
names (nulls and “/”), we uuencode the resulting encrypted
strings. This eliminates unwanted characters and guaran-
tees that all file names consist of printable valid characters.

4.4.1 Key Management

Only the root user is allowed to mount an instance of
Cryptfs, but can not automatically encrypt or decrypt files.
To thwart an attacker who gains access to a user’s ac-
count or to root privileges, Cryptfs maintains keys in an in-
memory data structure that associates keys not with UIDs
alone but with the combination of UID and session ID. To
acquire or change a user’s key, attackers would not only
have to break into an account, but also arrange for their
processes to have the same session ID as the process that
originally received the user’s passphrase. This is a more
difficult attack, requiring session and terminal hijacking or
kernel-memory manipulations.

Using session IDs to further restrict key access does not
burden users during authentication. Login shells and dae-
mons usesetsid(2) to set their session ID and detach
from the controlling terminal. Forked processes inherit the
session ID from their parent. Users would normally have to
authorize themselves only once in a shell. From this shell
they could run most other programs that would work trans-
parently and safely with the same encryption key.

We designed a user tool that prompts users for
passphrases that are at least 16 characters long. The tool
hashes the passphrases using MD5 and passes them to
Cryptfs using a specialioctl(2) . The tool can also in-
struct Cryptfs to delete or reset keys.

Our design decouples key possession from file owner-
ship. For example, a group of users who wish to edit a
single file would normally do so by having the file group-
owned by one Unix group and add each user to that group.
Unix systems often limit the number of groups a user can
be a member of to 8 or 16. Worse, there are often many sub-
sets of users who are all members of one group and wish to
share certain files, but are unable to guarantee the security
of their shared files because there are other users who are
members of the same group; e.g., many sites put all of their
staff members in a group called “staff,” students in the “stu-
dent” group, guests in another, and so on. With our design,
users can further restrict access to shared files only to those
users who were given the decryption key.

One disadvantage of this design is reduced scalability
with respect to the number of files being encrypted and
shared. Users who have many files encrypted with different
keys have to switch their effective key before attempting to
access files that were encrypted with a different one. We do
not perceive this to be a serious problem for two reasons.
First, the amount of Unix file sharing of restricted files is



limited. Most shared files are generally world-readable and
thus do not require encryption. Second, with the prolifer-
ation of windowing systems, users can associate different
keys with different windows.

Cryptfs uses one Initialization Vector (IV) per mount,
used to jump-start a sequence of encryption. If not speci-
fied, a predefined IV is used. A superuser mounting Cryptfs
can choose a different IV, but that will make all previ-
ously encrypted files undecipherable with the new IV. Files
that use the same IV and key produce identical cipher-
text blocks that are subject to analysis of identical blocks.
CFS[2] is a user level NFS-based encryption file system.
By default, CFS uses a fixed IV, and we also felt that using
a fixed one produces sufficiently strong security.

One possible extension to Cryptfs might be to use differ-
ent IVs for different files, based on the file’s inode number
and perhaps in combination with the page number. Other
more obvious extensions to Cryptfs include the use of dif-
ferent encryption algorithms, perhaps different ones per
user, directory, or file.

5 Performance

When evaluating the performance of the file systems we
built, we concentrated on Wrapfs and the more complex
file systems derived from Wrapfs: Cryptfs and Usenetfs.
Since our file systems are based on several others, our mea-
surements were aimed at identifying the overhead that each
layer adds. The main goal was to prove that the overhead
imposed by stacking is acceptably small and comparable to
other stacking work[6, 18].

5.1 Wrapfs

We include comparisons to a native disk-based file sys-
tem because disk hardware performance can be a signif-
icant factor. This number is the base to which other file
systems compare to. We include figures for Wrapfs (our
full-fledged stackable file system) and for lofs (the low-
overhead simpler one), to be used as a base for evaluat-
ing the cost of stacking. When using lofs or Wrapfs, we
mounted them over a local disk based file system.

To test Wrapfs, we used as our performance measure a
full build of Am-utils[22], a new version of the Berkeley
Amd automounter. The test auto-configures the package
and then builds it. Only the sources for Am-utils and the bi-
naries they create used the test file system; compiler tools
were left outside. The configuration runs close to seven
hundred small tests, many of which are small compilations
and executions. The build phase compiles about 50,000
lines of C code in several dozen files and links eight bi-
naries. The procedure contains both CPU and I/O bound
operations as well as a variety of file system operations.

For each file system measured, we ran 12 successive
builds on a quiet system, measured the elapsed times of

each run, removed the first measure (cold cache) and av-
eraged the remaining 11 measures. The results are sum-
marized in Table 3.5 The standard deviation for the results
reported in this section did not exceed 0.8% of the mean.
Finally, there is no native lofs for FreeBSD, and the nullfs
available is not fully functional (see Section 3.6).

File SPARC 5 Intel P5/90
System Solaris Linux Solaris Linux FreeBSD

2.5.1 2.0.34 2.5.1 2.0.34 3.0
ext2/ufs/ffs 1242.3 1097.0 1070.3 524.2 551.2
lofs 1251.2 1110.1 1081.8 530.6 n/a
wrapfs 1310.6 1148.4 1138.8 559.8 667.6
cryptfs 1608.0 1258.0 1362.2 628.1 729.2
crypt-wrap 22.7% 9.5% 19.6% 12.2% 9.2%

nfs 1490.8 1440.1 1374.4 772.3 689.0
cfs 2168.6 1486.1 1946.8 839.8 827.3
cfs-nfs 45.5% 3.2% 41.6% 8.7% 20.1%
crypt-cfs 34.9% 18.1% 42.9% 33.7% 13.5%

Table 3: Time (in seconds) to build a large package on var-
ious file systems and platforms. The percentage lines show
the overhead difference between some file systems

First we evaluate the performance impact of stacking
a file system. Lofs is 0.7–1.2% slower than the native
disk based file system. Wrapfs adds an overhead of 4.7–
6.8% for Solaris and Linux systems, but that is compara-
ble to the 3–10% degradation previously reported for null-
layer stackable file systems[6, 18]. On FreeBSD, how-
ever, Wrapfs adds an overhead of 21.1% compared to FFS:
to overcome limitations in nullfs, we used synchronous
writes. Wrapfs is more costly than lofs because it stacks
over every vnode and keeps its own copies of data, while
lofs stacks only on directory vnodes, and passes all other
vnode operations to the lower level verbatim.

5.2 Cryptfs

Using the same tests we did for Wrapfs, we measured the
performance of Cryptfs and CFS[2]. CFS is a user level
NFS-based encryption file system. The results are also
summarized in Table 3, for which the standard deviation
did not exceed 0.8% of the mean.

Wrapfs is the baseline for evaluating the performance
impact of the encryption algorithm. The only difference
between Wrapfs and Cryptfs is that the latter encrypts and
decrypts data and file names. The line marked as “crypt-
wrap” in Table 3 shows that percentage difference between
Cryptfs and Wrapfs for each platform. Cryptfs adds an
overhead of 9.2–22.7% over Wrapfs. That significant over-
head is unavoidable. It is the cost of the Blowfish cipher,
which, while designed to be fast, is still CPU intensive.

5All machines used in these tests had 32MB RAM.



Measuring the encryption overhead of CFS was more
difficult. CFS is implemented as a user-level NFS file
server, and we also ran it using Blowfish. We expected
CFS to run slower due to the number of additional context
switches that it incurs and due to NFS v.2 protocol over-
heads such as synchronous writes. CFS doesnot use the
NFS server code of the given operating system; it serves
user requests directly to the kernel. Since NFS server code
is implemented in general inside the kernel, it means that
the difference between CFS and NFS is not just due to
encryption, but also due to context switches. The NFS
server in Linux 2.0 is implemented at user-level, and is thus
also affected by context switching overheads. If we ignore
the implementation differences between CFS and Linux’s
NFS, and just compare their performance, we see that CFS
is 3.2–8.7% slower than NFS on Linux. This is likely to
be the overhead of the encryption in CFS. That overhead is
somewhat smaller than the encryption overhead of Cryptfs
because CFS is more optimized than our Cryptfs prototype:
CFS precomputes large stream ciphers for its encrypted di-
rectories.

We performed microbenchmarks on the file systems
listed in Table 3 (reading and writing small and large files).
These tests isolate the performance differences for specific
file system operations. They show that Cryptfs is anywhere
from 43% to an order of magnitude faster than CFS. Since
the encryption overhead is roughly 3.2–22.7%, we can as-
sume that rest of the difference comes from the reduction
in number of context switches. Details of these additional
measurements are available elsewhere[24].

5.3 Usenetfs

We configured a News server consisting of a Pentium-II
333Mhz, with 64MB of RAM, and a 4GB fast SCSI disk
for the news spool. The machine ran Linux 2.0.34 with
our Usenetfs. We created directories with exponentially in-
creasing numbers of files in each: 1, 2, 4, etc. The largest
directory had 524288 (219) files numbered starting with 1.
Each file was 2048 bytes long. This size is the most com-
mon article size on our production news server. We created
two hierarchies with increasing numbers of articles in dif-
ferent directories: one flat and one managed by Usenetfs.

We designed our next tests to match the two actions most
commonly undertaken by a news server (see Table 2). First,
a news server looks up and reads articles, mostly in re-
sponse to users reading news and when processing outgo-
ing feeds. The more users there are, the more random the
article numbers read tend to be. While users read articles
in a mostly sequential order, the use of threaded newsread-
ers results in more random reading. The (log-log) plot of
Figure 5 shows the performance of 1000 random lookups
in both flat and Usenetfs-managed directories. The times
reported are in milliseconds spent by the process and the
operating system on its behalf. For random lookups on
directories with fewer than 1000–2000 articles, Usenetfs

• • • • • • • •
•

•
•

•
•

•
•

•
•

•
•

•

Number of Directory Entries (random lookups)

Ti
m

e 
(m

s)

1 10 100 1000 10000 100000

10

100

1000

10000

100000

• • • • • • • • • • • • • • • • • • • •

Usenetfs

ext2fs

Figure 5: Cost for 1000 Random Article Lookups

adds overhead and slows performance. We expected this
because the bushier directory structure Usenetfs maintains
has over 1000 subdirectories. As directory sizes increase,
lookups on flat directories become linearly more expensive
while taking an almost constant time on Usenetfs-managed
directories. The difference exceeds an order of magnitude
for directories with over 10,000 articles.

• • • • • • • • • •
•

•
•

•
•

•

•
•

•
•

Number of Directory Entries

Ti
m

e 
(s

ec
)

1 10 100 1000 10000 100000

0.5
1.0

5.0
10.0

50.0
100.0

500.0

• • • • • • • • • • • • • • • • • •
• •Usenetfs

ext2fs

Figure 6: Cost for 1000 Article Additions and Deletions

The second common action a news server performs is
creating new articles and deleting expired ones. New ar-
ticles are created with monotonically increasing numbers.
Expired articles are likely to have the smallest numbers so
we made that assumption for the purpose of testing. Fig-
ure 6 (also log-log) shows the time it took to add 1000 new
articles and then remove the 1000 oldest articles for suc-
cessively increasing directory sizes. The results are more
striking here: Usenetfs times are almost constant through-
out, while adding and deleting files in flat directories took
linearly increasing times.

Creating over 1000 additional directories adds overhead
to file system operations that need to read whole directo-
ries, especially the readdir call. The last Usenetfs test takes
into account all of the above factors, and was performed
on our departmental production news server. A simple yet
realistic measure of the overall performance of the system
is to test how much reserve capacity was left in the server.
We tested that by running a repeated set of compilations
of a large package (Am-utils), timing how long it took to
complete each build. We measured the compile times of
Am-utils, once when the news server was running with-



out Usenetfs management, and then when Usenetfs man-
aged the top 6 newsgroups. The results are depicted in
Figure 7. The average compile time was reduced by 22%
from 243 seconds to 200 seconds. The largest savings ap-
peared during busy times when our server transferred out-
going articles to our upstream feeds, and especially dur-
ing the four daily expiration periods. During these expi-
ration peaks, performance improved by a factor of 2–3.
The overall effect of Usenetfs had been to keep the perfor-

Hour of the Day

C
om

pi
le

 T
im

e 
(s

ec
)

6 8 10 12 14

200

400

600

800
ext2fs
Usenetfs

Figure 7: Compile Times on a Production News Server

mance of the news server more flat, removing those load
surges. The standard deviation for the compiles was re-
duced from 82 seconds (34% of the mean) to 61 seconds
(29% of the mean). Additional performance analysis is pro-
vided elsewhere[23].

5.4 Lb2fs

Lb2fs’s performance is less than 5% slower than Wrapfs.
The two main differences between Wrapfs and Lb2fs are
the random selection algorithm and looking up directory
vnodes on both replicas. The impact of the random selec-
tion algorithm is negligible, as it picks the least-significant
bit of an internal system clock. The impact of looking up
directory vnodes twice is bound by the ratio of directories
to non-directories in common shared file systems. We per-
formed tests at our department and found that the number
of directories in such file systems to be 2–5% of the over-
all number of files. That explains the small degradation in
performance of Lb2fs compared to Wrapfs.

5.5 Portability

We first developed Wrapfs and Cryptfs on Solaris 2.5.1.
As seen in Table 4, it took us almost a year to fully develop
Wrapfs and Cryptfs together for Solaris, during which time
we had to overcome our lack of experience with Solaris
kernel internals and the principles of stackable file systems.
As we gained experience, the time to port the same file sys-
tem to a new operating system grew significantly shorter.
Developing these file systems for Linux 2.0 was a matter
of days to a couple of weeks. This port would have been
faster had it not been for Linux’s different vnode interface.

File Solaris Linux FreeBSD Linux
System 2.x 2.0 3.0 2.1
wrapfs 9 months 2 weeks 5 days 1 week
snoopfs 1 hour 1 hour 1 hour 1 hour
lb2fs 2 hours 2 hours 2 hours 2 hours
usenetfs 4 days 1 day
cryptfs 3 months 1 week 2 days 1 day

Table 4: Time to Develop and Port File Systems

The FreeBSD 3.0 port was even faster. This was due to
many similarities between the vnode interfaces of Solaris
and FreeBSD. We recently also completed these ports to
the Linux 2.1 kernel. The Linux 2.1 vnode interface made
significant changes to the 2.0 kernel, which is why we list
it as another porting effort. We held off on this port until
the kernel became more stable (only recently).

Another metric of the effort involved in porting Wrapfs
is the size of the code. Table 5 shows the total number of
source lines for Wrapfs, and breaks it down to three cat-
egories: common code that needs no porting, code that is
easy to port by simple inspection of system headers, and
code that is difficult to port. The hard-to-port code accounts
for more than two-thirds of the total and is the one involv-
ing the implementation of each Vnode/VFS operation (op-
erating system specific).

Porting Solaris Linux FreeBSD Linux
Difficulty 2.x 2.0 3.0 2.1
Hard 80% 88% 69% 79%
Easy 15% 7% 26% 10%
None 5% 3% 5% 11%
Total Lines 3431 2157 2882 3279

Table 5: Wrapfs Code Size and Porting Difficulty

The difficulty of porting file systems written using
Wrapfs depends on several factors. If plain C code is used
in the Wrapfs API routines, the porting effort is minimal or
none. Wrapfs, however, does not restrict the user from call-
ing any in-kernel operating system specific function. Call-
ing such functions complicates portability.

6 Related Work

Vnode stacking was first implemented by Rosenthal (in
SunOS 4.1) around 1990[15]. A few other works followed
Rosenthal, such as further prototypes for extensible file sys-
tems in SunOS[18], and the Ficus layered file system[4, 7]
at UCLA. Webber implemented file system interface exten-
sions that allow user level file servers[20]. Unfortunately
this work required modifications to existing file systems
and could not perform as well as in-kernel file systems.

Several newer operating systems offer a stackable file
system interface. They have the potential of easy devel-
opment of file systems offering a wide range of services.



Their main disadvantages are that they are not portable
enough, not sufficiently developed or stable, or they are not
available for common use. Also, new operating systems
with new file system interfaces are not likely to perform as
well as ones that are several years older.

TheHerd of Unix-Replacing Daemons(HURD) from the
Free Software Foundation (FSF) is a set of servers running
on the Mach 3.0 microkernel[1] that collectively provide
a Unix-like environment. HURD file systems run at user
level. HURD introduced the concept of a translator, a pro-
gram that can be attached to a pathname and perform spe-
cialized services when that pathname is accessed. Writing
a new translator is a matter of implementing a well defined
file access interface and filling in such operations as open-
ing files, looking up file names, creating directories, etc.

Spring is an object-oriented research operating system
built by Sun Microsystems Laboratories[10]. It was de-
signed as a set of cooperating servers on top of a microker-
nel. Spring provides several generic modules which offer
services useful for a file system: caching, coherency, I/O,
memory mapping, object naming, and security. Writing a
file system for Spring entails defining the operations to be
applied on the objects. Operations not defined are inher-
ited from their parent object. One work that resulted from
Spring is the Solaris MC (Multi-Computer) File System[8].
It borrowed the object-oriented interfaces from Spring and
integrated them with the existing Solaris vnode interface
to provide a distributed file system infrastructure through
a specialProxy File System. Solaris MC provides all of
the benefits that come with Spring, while requiring little or
no change to existing file systems; those can be gradually
ported over time. Solaris MC was designed to perform well
in a closely coupled cluster environment (not a general net-
work) and requires high performance networks and nodes.

7 Conclusions

Wrapfs and the examples here prove that useful, non-trivial
vnode stackable file systems can be implemented on mod-
ern operating systems without having to change the rest of
the system. We achieve better performance by running the
file systems in the kernel instead of at user-level. File sys-
tems built from Wrapfs are more portable than other kernel-
based file systems because they interact directly with a
(mostly) standard vnode interface.

Most complications discovered while developing
Wrapfs stemmed from two problems. First, the vnode
interface is not self-contained; the VM system, for exam-
ple, offers memory mapped files, but to properly handle
them we had to manipulate lower level file systems and
MMU/TLB hardware. Second, several vnode calls (such
asreaddir ) are poorly designed.

Estimating the complexity of software is a difficult task.
Kernel development in particular is slow and costly because
of the hostile development environment. Furthermore, per-

sonal experience of the developers figure heavily in the cost
of development and testing of file systems. Nevertheless, it
is our assertion that once Wrapfs is ported to a new operat-
ing system, other non-trivial file systems built from it can
be prototyped in a matter of hours or days. We estimate that
Wrapfs can be ported to any operating system in less than
one month, as long as it has a vnode interface that provides
a private opaque field for each of the major data structures
of the file system. In comparison, traditional file system
development often takes a few months to several years.

Wrapfs saves developers from dealing with kernel inter-
nals, and allows them to concentrate on the specifics of the
file system they are developing. We hope that with Wrapfs,
other developers could prototype new file systems to try
new ideas, develop fully working ones, and port them to
various operating systems—bringing the complexity of file
system development down to the level of common user-
level software.

We believe that a truly stackable file system inter-
face could significantly improve portability, especially
if adopted by the main Unix vendors. We think that
Spring[10] has a very suitable interface. If that interface be-
comes popular, it might result in the development of many
practical file systems.

7.1 Future

We would like to add to Wrapfs an API for manipulating
file attributes. We did not deem it important for the initial
implementation because we were able to manipulate the at-
tributes needed in one place anyway.

Wrapfs cannot properly handle file systems that change
the size of the file data, such as with compression, because
these change file offsets. Such a file system may have to
arbitrarily shift data bytes making it difficult to manipulate
the file in fixed data chunks. We considered several de-
signs, but did not implement any, because they would have
complicated Wrapfs’s code too much, and would mostly
benefit compression.

8 Acknowledgments

The authors thank the anonymous reviewers and especially
Keith Smith, whose comments improved this paper signifi-
cantly. We would also like to thank Fred Korz, Seth Robert-
son, Jerry Altzman, and especially Dan Duchamp for their
help in reviewing this paper and offering concrete sugges-
tions. This work was partially made possible by NSF in-
frastructure grants numbers CDA-90-24735 and CDA-96-
25374.



References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach: A New
Kernel Foundation for UNIX Development.USENIX
Conf. Proc., pages 93–112, Summer 1986.

[2] M. Blaze. A Cryptographic File System for Unix.
Proc. of the first ACM Conf. on Computer and Com-
munications Security, November 1993.

[3] B. Callaghan and S. Singh. The Autofs Automounter.
USENIX Conf. Proc., pages 59–68, Summer 1993.

[4] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page Jr.,
G. J. Popek, and D. Rothmeier. Implementation of
the Ficus replicated file system.USENIX Conf. Proc.,
pages 63–71, June 1990.

[5] J. Heidemann and G. Popek. Performance of cache
coherence in stackable filing.Fifteenth ACM Sym-
posium on Operating Systems Principles, December
1995.

[6] J. S. Heidemann and G. J. Popek. File System Devel-
opment with Stackable Layers.ACM Transactions on
Computing Systems, 12(1):58–89, February 1994.

[7] J. S. Heidemann and G. J. Popek. A layered ap-
proach to file system development. Technical report
CSD-910007. University of California, Los Angeles,
March 1991.

[8] V. Matena, Y. A. Khalidi, and K. Shirriff. Solaris MC
File System Framework. Technical Report TR-96-57.
Sun Labs, October 1996.

[9] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. A fast file system for UNIX.ACM Trans-
actions on Computer Systems, 2(3):181–97, August
1984.

[10] J. G. Mitchel, J. J. Giobbons, G. Hamilton, P. B.
Kessler, Y. A. Khalidi, P. Kougiouris, P. W. Madany,
M. N. Nelson, M. L. Powell, and S. R. Radia. An
Overview of the Spring System.CompCon Conf.
Proc., 1994.

[11] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS Version 3 Design and
Implementation.USENIX Conf. Proc., pages 137–52,
June 1994.

[12] J. S. Pendry and M. K. McKusick. Union mounts
in 4.4BSD-Lite. USENIX Conf. Proc., pages 25–33,
January 1995.

[13] J. S. Pendry and N. Williams. Amd – The 4.4 BSD
Automounter. User Manual, edition 5.3 alpha. March
1991.

[14] D. S. H. Rosenthal. Requirements for a “Stacking”
Vnode/VFS Interface. Unix International document
SD-01-02-N014. 1992.

[15] D. S. H. Rosenthal. Evolving the Vnode Interface.
USENIX Conf. Proc., pages 107–18, Summer 1990.

[16] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun Net-
work Filesystem.USENIX Conf. Proc., pages 119–
30, June 1985.

[17] B. Schneier. Blowfish. InApplied Cryptography, Sec-
ond Edition, pages 336–9. John Wiley & Sons, 1996.

[18] G. C. Skinner and T. K. Wong. “Stacking” Vnodes: A
Progress Report.USENIX Conf. Proc., pages 161–74,
Summer 1993.

[19] SMCC. lofs – loopback virtual file system. SunOS
5.5.1 Reference Manual, Section 7. March 1992.

[20] N. Webber. Operating System Support for Portable
Filesystem Extensions.USENIX Conf. Proc., pages
219–25, Winter 1993.

[21] E. Zadok.FiST: A File System Component Compiler.
PhD thesis, published as Technical Report CUCS-
033-97. Computer Science Department, Columbia
University, April 1997.

[22] E. Zadok. Am-utils (4.4BSD Automounter Utilities).
Am-utils version 6.0a16 User Manual. April 1998.
Available http://www.cs.columbia.edu/˜ezk/am-utils/.

[23] E. Zadok and I. Badulescu. Usenetfs: A Stackable
File System for Large Article Directories. Techni-
cal Report CUCS-022-98. Computer Science Depart-
ment, Columbia University, June 1998.

[24] E. Zadok, I. Badulescu, and A. Shender. Cryptfs:
A Stackable Vnode Level Encryption File System.
Technical Report CUCS-021-98. Computer Science
Department, Columbia University, July 1998.

9 Author Information

Erez Zadok is an Ph.D. candidate in the Computer Science
Department at Columbia University. He received his B.S.
in Comp. Sci. in 1991, and his M.S. degree in 1994, both
from Columbia University. His primary interests include
file systems, operating systems, networking, and security.
The work described in this paper was first mentioned in his
Ph.D. thesis proposal[21].

Ion Badulescuholds a B.A. from Columbia University.
His primary interests include operating systems, network-
ing, compilers, and languages.

Alex Shender is the manager of the computer facilities
at Columbia University’s Computer Science Department.
His primary interests include operating systems, networks,
and system administration. In May 1998 he received his
B.S. in Comp. Sci. from Columbia’s School of Engineering
and Applied Science.

For access to sources for the file
systems described in this paper see
http://www.cs.columbia.edu/˜ezk/research/software/.



Extending File Systems Using Stackable Templates

Erez Zadok, Ion Badulescu, and Alex Shender
Computer Science Department, Columbia University

{ezk,ion,alex }@cs.columbia.edu

Abstract
Extending file system functionality is not a new idea,

but a desirable one nonetheless[6, 14, 18]. In the several
years since stackable file systems were first proposed, only
a handful are in use[12, 19]. Impediments to writing new
file systems include the complexity of operating systems,
the difficulty of writing kernel-based code, the lack of a
true stackable vnode interface[14], and the challenges of
porting one file system to another operating system.

We advocate writing new stackable file systems as ker-
nel modules. As a starting point, we propose a portable,
stackable template file system we call Wrapfs (wrapper file
system). Wrapfs is a canonical, minimal stackable file sys-
tem that can be used as a pattern across a wide range of
operating systems and file systems. Given Wrapfs, devel-
opers can add or modify only that which is necessary to
achieve the desired functionality. Wrapfs takes care of the
rest, and frees developers from the details of operating sys-
tems. Wrapfs templates exist for several common operat-
ing systems (Solaris, Linux, and FreeBSD), thus alleviating
portability concerns. Wrapfs can be ported to any operating
system with a vnode interface that provides a private data
pointer for each data structure used in the interface. The
overhead imposed by Wrapfs is only 5–7%.

This paper describes the design and implementation of
Wrapfs, explores portability issues, and shows how the im-
plementation was achieved without changing client file sys-
tems or operating systems. We discuss several examples of
file systems written using Wrapfs.

1 Introduction

Adding functionality to existing file systems in an easy
manner has always been desirable. Several ideas have been
proposed and some prototypes implemented[6, 14, 18].
None of the proposals for a new extensible file system in-
terface has made it to commonly used Unix operating sys-
tems. The main reasons are the significant changes that
overhauling the file system interface would require, and the
impact it would have on performance.

Kernel-resident native file systems are those that inter-
act directly with lower level media such as disks[9] and
networks[11, 16]. Writing such file systems is difficult
because it requires deep understanding of specific operat-
ing system internals, especially the interaction with device
drivers and the virtual memory system. Once such a file
system is written, porting it to another operating system
is just as difficult as the initial implementation, because
specifics of different operating systems vary significantly.

Others have resorted to writing file systems at the user
level. These file systems work similarly to the Amd
automounter[13] and are based on an NFS server. While
it is easier to develop user-level file servers, they suffer
from poor performance due to the high number of context
switches they incur. This limits the usefulness of such file
systems. Later works, such as Autofs[3], attempt to solve
this problem by moving critical parts of the automounter
into the kernel.

We propose a compromise solution to these problems:
writing kernel resident file systems that use existing native
file systems, exposing to the user a vnode interface that
is similar even across different operating systems. Doing
so results in performance similar to that of kernel-resident
systems, with development effort on par with user level
file systems. Specifically, we provide a templateWrapper
File Systemcalled Wrapfs. Wrapfs canwrap (mount) itself
on top of one or more existing directories, and act as an
intermediary between the user accessing the mount point
and the lower level file system it is mounted on. Wrapfs
can transparently change the behavior of the file system,
while keeping the underlying media unaware of the upper-
level changes. The Wrapfs template takes care of many file
system internals and operating system bookkeeping, and it
provides the developer with simple hooks to manipulate the
data and attributes of the lower file system’s objects.

1.1 The Stackable Vnode Interface

Wrapfs is implemented as a stackable vnode interface. A
Virtual Nodeor vnodeis a data structure used within Unix-



based operating systems to represent an open file, directory,
or other entities that can appear in the file system name-
space. A vnode does not expose what type of physical file
system it implements. Thevnode interfaceallows higher
level operating system modules to perform operations on
vnodes uniformly. Thevirtual file system(VFS) contains
the common file system code of the vnode interface.

One improvement to the vnode concept isvnode
stacking[6, 14, 18], a technique for modularizing file sys-
tem functions by allowing one vnode interface implementa-
tion to call another. Before stacking existed, there was only
one vnode interface implementation; higher level operating
system code called the vnode interface which in turn called
code for a specific file system. With vnode stacking, sev-
eral implementations may exist and may call each other in
sequence: the code for a certain operation at stack levelN
typically calls the corresponding operation at levelN − 1,
and so on.

VNODE LAYER

User Process

UFS

ufs_read()

disk_dev_read()

VOP_READ()

read()

K
er

n
el

U
se

r

VOP_READ()
WRAPFS

Local Disk

wrapfs_read()

Figure 1: A Vnode Stackable File System

Figure 1 shows the structure for a simple, single-level
stackable wrapper file system. System calls are translated
into VFS calls, which in turn invoke their Wrapfs equiva-
lents. Wrapfs again invokes generic VFS operations, and
the latter call their respectivelower levelfile system op-
erations. Wrapfs calls the lower level file system without
knowing who or what type it is.

The rest of this paper is organized as follows. Section 2
discusses the design of Wrapfs. Section 3 details Wrapfs’s
implementation, and issues relating to its portability to var-
ious platforms. Section 4 describes four example file sys-
tems written using Wrapfs; Section 5 evaluates their perfor-
mance and portability. We survey related works in Section
6 and conclude in Section 7.

2 Design

Our main design considerations for Wrapfs were:

1. What developers want to change in a file system.
2. What API should Wrapfs offer these users that would

free them from operating system internals.
3. How to allow advanced users the flexibility to control

and manipulate all aspects of the file system.

4. Interaction of caches among different layers.
5. What user level mounting-related issues are there.
6. Performance overhead of Wrapfs.

The first five points are discussed below. Performance is
addressed in detail in Section 5.

2.1 What to Change in a File System

As shown in Figure 1, Wrapfs is independent of the host
system’s vnode interface. Since most UNIX-like systems
(including those that currently support Wrapfs) have static
vnode interfaces, this means that Wrapfs cannot introduce
fundamentally new vnode operations.1 (Limited new func-
tionality can be added using newioctl(2) calls.) Our
stackable file system architecture can, however, manipulate
data, names, and attributes of files. We let Wrapfs users
manipulate any of these.

The most obvious manipulation Wrapfs users want to do
is of file data; that is useful for many applications, for ex-
ample in encryption file systems. The next most likely item
to manipulate is the file name. For example, an encryption
file system can encrypt file names as well as data. A file
system that translates between Unix and MS-DOS style file
names can uniquely map long mixed-case Unix file names
to 8.3-format upper-case names.

Finally, there are file attributes that users might want to
change. For example, a file system can ensure that all files
within it are world readable, regardless of the individual
umask used by the users creating them. This is useful in
directories where all files must be world-readable (such as
html files served by most Web servers). Another file system
might prevent anyone from setting the uid bit on executa-
bles, as a simple form of intrusion avoidance.

The aforementioned list of examples is not exhaustive,
but only a hint of what can be accomplished with level of
flexibility that Wrapfs offers. Wrapfs’s developer API is
summarized in Table 1 and is described below.

2.1.1 File Data API

The system call interface offers two methods for reading
and writing file data. The first is by using theread and
write system calls. The second is via the MMAP in-
terface. The former allows users to manipulate arbitrary
amounts of file data. In contrast, the MMAP interface op-
erates on a file in units of the native page size. To accom-
modate the MMAP interface, we decided to require file sys-
tem developers using Wrapfs to also manipulate file data on
whole pages. Another reason for manipulating only whole
pages was that some file data changes may require it. Some
encryption algorithms work on fixed size data blocks and
bytes within the block depend on preceding bytes.

1The UCLA stackable file system replaced the static UNIX vnode in-
terface with a dynamic interface that allowed file system developers to
introduce new operations[6].



Call Input Argument Output Argument
encodedata buffer from user space encoded (same size) buffer to be written
decodedata buffer read from lower level file system decoded (same size) buffer to pass to user space
encodefilename file name passed from user system call encoded (and allocated) file name of any length

to use in lower level file system
decodefilename file name read from the lower level file systemdecoded (and allocated) file name of any length

to pass back to a user process
other Inspect or modify file attributes in vnode functions, right before or after calling lower level file system

Table 1: Wrapfs Developer API

All vnode calls that write file data call a function
encode data before writing the data to the lower level
file system. Similarly, all vnode calls that read file data
call a functiondecode data after reading the data from
the lower level file system. These two functions take two
buffers of the same size: one as input, and another as out-
put. The size of the buffer can be defined by the Wrapfs
developer, but it must be an even multiple of the sys-
tem’s page size, to simplify handling of MMAP functions.
Wrapfs passes other auxiliary data to the encode and de-
code functions, including the file’s attributes and the user’s
credentials. These are useful when determining the proper
action to take. The encode and decode functions return the
number of bytes manipulated, or a negative error code.

All vnode functions that manipulate file data, including
the MMAP ones, call either the encode or decode functions
at the right place. Wrapfs developers who want to modify
file data need not worry about the interaction between the
MMAP, read, and write functions, about file or page locks,
reference counts, caches, status flags, and other bookkeep-
ing details; developers need only to fill in the encode and
decode functions appropriately.

2.1.2 File Names API

Wrapfs provides two file name manipulating functions:
encode filename and decode filename . They
take in a single file name component, and ask the Wrapfs
developer to fill in a new encoded or decoded file name of
any length. The two functions return the number of bytes in
the newly created string, or a negative error code. Wrapfs
also passes to these functions the file’s vnode and the user’s
credentials, allowing the function to use them to determine
how to encode or decode the file name. Wrapfs imposes
only one restriction on these file name manipulating func-
tions. They must not return new file names that contain
characters illegal in Unix file names, such as a null or a
“ / ”.

The user of Wrapfs who wishes to manipulate file names
need not worry about which vnode functions use file
names, or how directory reading (readdir ) is being ac-
complished. The file system developer need only fill in the
file name encoding and decoding functions. Wrapfs takes
care of all other operating system internals.

2.1.3 File Attributes

For the first prototype of Wrapfs, we decided not to force a
specific API call for accessing or modifying file attributes.
There are only one or two places in Wrapfs where attributes
are handled, but these places are called often (i.e., lookup).
We felt that forcing an API call might hurt performance
too much. Instead, we let developers inspect or modify file
attributes directly in Wrapfs’s source.

2.2 User Level Issues

There are two important issues relating to the extension of
the Wrapfs API to user-level: mount points and ioctl calls.

Wrapfs can be mounted as a regular mount or an overlay
mount. The choice of mount style is left to the Wrapfs de-
veloper. Figure 2 shows an original file system and the two
types of mounts, and draws the boundary between Wrapfs
and the original file system after a successful mount.

In a regular mount, Wrapfs receives two pathnames: one
for the mount point (/mnt ), and one for the directory to
stack on (the mounted directory/usr ). After executing,
for example,mount -t wrapfs /mnt /usr , there
are two ways to access the mounted-on file system. Ac-
cess via the mounted-on directory (/usr/ucb ) yields the
lower level files without going through Wrapfs. Access
via the mount point (/mnt/ucb ), however, goes through
Wrapfs first. This mount style exposes the mounted direc-
tory to user processes; it is useful for debugging purposes
and for applications (e.g., backups) that do not need the
functionality Wrapfs implements. For example, in an en-
cryption file system, a backup utility can backup files faster
and safer if it uses the lower file system’s files (ciphertext),
rather than the ones through the mount point (cleartext).

In an overlay mount, accomplished usingmount -t
wrapfs -O /usr , Wrapfs is mounted directly on top
of /usr . Access to files such as/usr/ucb go though
Wrapfs. There is no way to get to the original file sys-
tem’s files under/usr without passing through Wrapfs
first. This mount style has the advantage of hiding the lower
level file system from user processes, but may make back-
ups and debugging harder.

The second important user-level issue relates to the
ioctl(2) system call. Ioctls are often used to extend file



/

binetcusr

ucblocal

3 4

65

2

1

Original File System

/

binetc

usr

ucblocal

usr

3 42

1

65

2 Original F/S

Wrapfs

Overlay Mount

/

binetc

usr

ucblocal

4

1

65

2

mnt

32 2

Original F/S

Wrapfs

Regular Mount

Figure 2: Wrapfs Mount Styles

system functionality. Wrapfs allows its user to define new
ioctl codes and implement their associated actions. Two
ioctls are already defined: one to set a debugging level and
one to query it. Wrapfs comes with lots of debugging traces
that can be turned on or off at run time by a root user. File
systems can implement other ioctls. An encryption file sys-
tem, for example, can use an ioctl to set encryption keys.

2.3 Interaction Between Caches

When Wrapfs is used on top of a disk-based file system,
both layers cache their pages. Cache incoherency could re-
sult if pages at different layers are modified independently.
A mechanism for keeping caches synchronized through a
centralized cache manager was proposed by Heidemann[5].
Unfortunately, that solution involved modifying the rest of
the operating system and other file systems.

Wrapfs performs its own caching, and does not explic-
itly touch the caches of lower layers. This keeps Wrapfs
simpler and more independent of other file systems. Also,
since pages can be served off of their respective layers, per-
formance is improved. We decided that the higher a layer
is, the more authoritative it is: when writing to disk, cached
pages for the same file in Wrapfs overwrite their UFS coun-
terparts. This policy correlates with the most common case
of cache access, through the uppermost layer. Finally, note
that a user process can access cached pages of a lower level
file system only if it was mounted as a regular mount (Fig-
ure 2). If Wrapfs is overlay mounted, user processes could
not access lower level files directly, and cache incoherency
for those files is less likely to occur.

3 Implementation

This section details the more difficult parts of the imple-
mentation and unexpected problems we encountered. Our
first implementation concentrated on the Solaris 2.5.1 op-
erating system because Solaris has a standard vnode inter-
face and we had access to kernel sources. Our next two
implementations were for the Linux 2.0 and the FreeBSD

3.0 operating systems. We chose these two because they
are popular, are sufficiently different, and they also come
with kernel sources. In addition, all three platforms sup-
port loadable kernel modules, which made debugging eas-
ier. Together, the platforms we chose cover a large portion
of the Unix market.

The discussion in the rest of this section concentrates
mostly on Solaris, unless otherwise noted. In Section
3.5 we discuss the differences in implementation between
Linux and Solaris. Section 3.6 discusses the differences for
the FreeBSD port.

3.1 Stacking

Wrapfs was initially similar to the Solaris loopback file
system (lofs)[19]. Lofs passes all Vnode/VFS operations
to the lower layer, but it only stacks on directory vnodes.
Wrapfs stacks on every vnode, and makes identical copies
of data blocks, pages, and file names in its own layer, so
they can be changed independently of the lower level file
system. Wrapfs does not explicitly manipulate objects in
other layers. It appears to the upper VFS as a lower-level
file system; concurrently, Wrapfs appears to lower-level file
systems as an upper-layer. This allows us to stack multiple
instances of Wrapfs on top of each other.

The key point that enables stacking is that each of the
major data structures used in the file system (struct
vnode andstruct vfs ) contain a field into which we
can store file system specific data. Wrapfs uses that pri-
vate field to store several pieces of information, especially a
pointer to the corresponding lower level file system’s vnode
and VFS. When a vnode operation in Wrapfs is called, it
finds the lower level’s vnode from the current vnode, and
repeats the same operation on the lower level vnode.

3.2 Paged Reading and Writing

We perform reading and writing on whole blocks of size
matching the native page size. Whenever a read for a range
of bytes is requested, we compute the extended range of



bytes up to the next page boundary, and apply the operation
to the lower file system using the extended range. Upon
successful completion, the exact number of bytes requested
are returned to the caller of the vnode operation.

Writing a range of bytes is more complicated than read-
ing. Within one page, bytes may depend on previous bytes
(e.g., encryption), so we have to read and decode parts of
pages before writing other parts of them.

Throughout the rest of this section we will refer to the
upper (wrapping) vnode asV , and to the lower (wrapped)
vnode asV ′; P andP ′ refer to memory mapped pages at
these two levels, respectively. The example2 depicted in
Figure 3 shows what happens when a process asks to write
bytes of an existing file from byte 9000 until byte 25000.
Let us assume that the file in question has a total of 4 pages
(32768) worth of bytes in it.

0 8K 16K 24K 32K

Page 0 Page 1 Page 2 Page 3

Read 1 and decode

9000 25000

Original bytes to write

Read 2 and decode

Bytes read, decoded, and discarded

Final pages to encode

Actual bytes to write

Figure 3: Writing Bytes in Wrapfs

1. Compute the extended page boundary for the write
range as 8192–32767 and allocate three empty pages.
(Page 0 ofV is untouched.)

2. Read bytes 8192–8999 (page 1) fromV ′, decode
them, and place them in the first allocated page. We
do not need to read or decode the bytes from 9000 on-
wards in page 1 because they will be overwritten by
the data we wish to write anyway.

3. Skip intermediate data pages that will be overwritten
by the overall write operation (page 2).

4. Read bytes 24576–32767 (page 3) fromV ′, decode
them, and place them in the third allocated page. This
time we read and decode the whole page because we
need the last 32767−25000=7767 bytes and these
bytes depend on the first 8192−7767=426 bytes of
that page.

5. Copy the bytes that were passed to us into the appro-
priate offset in the three allocated pages.

6. Finally, we encode the three data pages and call the
write operation onV ′ for the same starting offset
(9000). This time we write the bytes all the way to
the last byte of the last page processed (byte 32767),
to ensure validity of the data past file offset 25000.

2The example is simplified because it does not take into account sparse
files, and appending to files.

3.2.1 Appending to Files

When files are opened for appending only, the VFS does
not provide the vnodewrite function the real size of the
file and where writing begins. If the size of the file before
an append is not an exact multiple of the page size, data
corruption may occur, since we will not begin a new en-
coding sequence on a page boundary.

We solve this problem by detecting when a file is opened
with an append flag on, turn off that flag before the open
operation is passed on toV ′, and replace it with flags that
indicate toV ′ that the file was opened for normal reading
and writing. We save the initial flags of the opened file, so
that other operations onV could tell that the file was orig-
inally opened for appending. Whenever we write bytes to
a file that was opened in append-only mode, we first find
its size, and add that to the file offsets of the write request.
In essence we convert append requests to regular write re-
quests starting at the end of the file.

3.3 File Names and Directory Reading

Readdir is implemented in the kernel as a restartable func-
tion. A user process calls the readdir C library call, which
is translated into repeated calls to thegetdents(2) sys-
tem call, passing it a buffer of a given size. The kernel fills
the buffer with as many directory entries as will fit in the
caller’s buffer. If the directory was not read completely, the
kernel sets a special EOF flag to false. As long as the flag
is false, the C library function callsgetdents(2) again.

The important issue with respect to directory reading is
how to continue reading the directory from the offset where
the previous read finished. This is accomplished by record-
ing the last position and ensuring that it is returned to us
upon the next invocation. We implementedreaddir as
follows:

1. A readdir vnode operation is called onV for N bytes
worth of directory data.

2. Call the same vnode operation onV ′ and read backN
bytes.

3. Create a new temporary buffer of a size that is as large
asN .

4. Loop over the bytes read fromV ′, breaking them into
individual records representing one directory entry at
a time (struct dirent ). For each such, we call
decode filename to find the original file name.
We construct a new directory entry record containing
the decoded file name and add the new record to the
allocated temporary buffer.

5. We record the offset to read from on the next call to
readdir ; this is the position past the last file name
we just read and decoded. This offset is stored in
one of the fields of thestruct uio (representing
data movement between user and kernel space) that
is returned to the caller. A new structure is passed to



us upon the next invocation of readdir with the offset
field untouched. This is how we are able to restart the
call from the correct offset.

6. The temporary buffer is returned to the caller of the
vnode operation. If there is more data to read from
V ′, then we set the EOF flag to false before returning
from this function.

The caller ofreaddir asks to read at mostN bytes.
When we decode or encode file names, the result can be a
longer or shorter file name. We ensure that we fill in the
user buffer with no morestruct dirent entries than
could fit (but fewer is acceptable). Regardless of how many
directory entries were read and processed, we set the file
offset of the directory being read such that the next invoca-
tion of thereaddir vnode operation will resume reading
file names from exactly where it left off the last time.

3.4 Memory Mapping

To support MMAP operations and execute binaries we im-
plemented memory-mapping vnode functions. As per Sec-
tion 2.3, Wrapfs maintains its own cached decoded pages,
while the lower file system keeps cached encoded pages.

When a page fault occurs, the kernel calls the vnode op-
erationgetpage . This function retrieves one or more
pages from a file. For simplicity, we implemented it as
repeatedly calling a function that retrieves a single page—
getapage . We implementedgetapage as follows:

1. Check if the page is cached; if so, return it.

2. If the page is not cached, create a new pageP .

3. FindV ′ from V and call thegetpage operation on
V ′, making sure it would return only one pageP ′.

4. Copy the (encoded) data fromP ′ toP .

5. Map P into kernel virtual memory and decode the
bytes by callingwrapfs decode .

6. UnmapP from kernel VM, insert it intoV ’s cache,
and return it.

The implementation ofputpage was similar to
getpage . In practice we also had to carefully handle
two additional details, to avoid deadlocks and data corrup-
tion. First, pages contain several types of locks, and these
locks must be held and released in the right order and at the
right time. Secondly, the MMU keeps mode bits indicating
status of pages in hardware, especially the referenced and
modified bits. We had to update and synchronize the hard-
ware version of these bits with their software version kept
in the pages’ flags. For a file system to have to know and
handle all of these low-level details blurs the distinction be-
tween the file system and the VM system.

3.5 Linux

When we began the Solaris work we referred to the imple-
mentation of other file systems such as lofs. Linux 2.0 did
not have one as part of standard distributions, but we were
able to locate and use a prototype3. Also, the Linux Vn-
ode/VFS interface contains a different set of functions and
data structures than Solaris, but it operates similarly.

In Linux, much of the common file system code was ex-
tracted and moved to a generic (higher) level. Many generic
file system functions exist that can be used by default if the
file system does not define its own version. This leaves the
file system developer to deal with only the core issues of
the file system. For example, Solaris User I/O (uio ) struc-
tures contain various fields that must be updated carefully
and consistently. Linux simplifies data movement by pass-
ing I/O related vnode functions a simple allocated (char
* ) buffer and an integer describing how many bytes to pro-
cess in the buffer passed.

Memory-mapped operations are also easier in Linux.
The vnode interface in Solaris includes functions that must
be able to manipulate one or more pages. In Linux, a file
system handles one page at a time, leaving page clustering
and multiple-page operations to the higher VFS.

Directory reading was simpler in Linux. In Solaris, we
read a number of raw bytes from the lower level file sys-
tem, and parse them into chunks ofsizeof(struct
dirent) , set the proper fields in this structure, and ap-
pend the file name bytes to the end of the structure (out
of band). In Linux, we provide the kernel with a callback
function for iterating over directory entries. This function
is called by higher level code and ask us to simply process
one file name at a time.

There were only two caveats to the portability of the
Linux code. First, Linux keeps a list of exported ker-
nel symbols (inkernel/ksyms.c ) available to load-
able modules. To make Wrapfs a loadable module, we
had to export additional symbols to the rest of the ker-
nel, for functions mostly related to memory mapping. Sec-
ond, most of the structures used in the file system (inode ,
super block , and file ) include a private field into
which stacking specific data could be placed. We had to
add a private field to only one structure that was miss-
ing it, the vm area struct , which represents custom
per-process virtual memory manager page-fault handlers.
Since Wrapfs is the first fully stackable file system for
Linux, we feel that these changes are small and acceptable,
given that more stackable file systems are likely to be de-
veloped.4

3http://www.kvack.org/˜blah/lofs/
4We submitted our small changes and expect that they will be included

in a future version of Linux.



3.6 FreeBSD

FreeBSD 3.0 is based on BSD-4.4Lite. We chose it as
the third port because it represents another major section
of Unix operating systems. FreeBSD’s vnode interface
is similar to Solaris’s and the port was straightforward.
FreeBSD’s version of the loopback file system is called
nullfs[12], a template for writing stackable file systems.
Unfortunately, ever since the merging of the VM and Buffer
Cache in FreeBSD 3.0, stackable file systems stopped
working because of the inability of the VFS to correctly
map data pages of stackable file systems to their on-disk
locations. We worked around two deficiencies in nullfs.
First, writing large files resulted in some data pages get-
ting zero-filled on disk; this forced us to perform all writes
synchronously. Second, memory mapping through nullfs
paniced the kernel, so we implemented MMAP functions
ourselves. We implementedgetpages andputpages
usingread andwrite , respectively, because calling the
lower-level’s page functions resulted in a UFS pager error.

4 Examples

This section details the design and implementation of four
sample file systems we wrote based on Wrapfs. The exam-
ples range from simple to complex:

1. Snoopfs: detects and warns of attempted access to
users’ files by other non-root users.

2. Lb2fs: is a read-only file system that trivially balances
the load between two replicas of the same file system.

3. Usenetfs: breaks large flat article directories (often
found in very active news spools) into deeper direc-
tory hierarchies, improving file access times.

4. Cryptfs : is an encryption file system.

These examples are experimental and intended to illus-
trate the kinds of file systems that can be written using
Wrapfs. We do not consider them to be complete solutions.
Whenever possible, we illustrate potential enhancements to
our examples. We hope to convince readers of the flexibil-
ity and simplicity of writing new file systems using Wrapfs.

4.1 Snoopfs

Users’ home directory files are often considered private and
personal. Normally, these files are read by their owner or by
the root user (e.g., during backups). Other sanctioned file
access includes files shared via a common Unix group. Any
other access attempt may be considered a break-in attempt.
For example, a manager might want to know if a subordi-
nate tried tocd to the manager’s̃/private directory;
an instructor might wish to be informed when anyone tries
to read files containing homework solutions.

The one place in a file system where files are initially
searched is the vnodelookup routine. To detect access

problems, we first perform the lookup on the lower file
system, and then check the resulting status. If the status
was one of the error codes “permission denied” or “file not
found,” we know that someone was trying to read a file
they do not have access to, or they were trying to guess file
names. If we detect one of these two error codes, we also
check if the current process belongs to the super-user or the
file’s owner by inspecting user credentials. If it was a root
user or the owner, we do nothing. Otherwise we print a
warning using the in-kernel log facility. The warning con-
tains the file name to which access was denied and the user
ID of the process that tried to access it.

We completed the implementation of Snoopfs in less
than one hour (on all three platforms). The total number
of lines of C code added to Wrapfs was less than 10.

Snoopfs can serve as a prototype for a more elaborate
intrusion detection file system. Such a file system can pro-
hibit or limit the creation or execution of setuid/setgid pro-
grams; it can also disallow overwriting certain executables
that rarely change (such as/bin/login ) to prevent at-
tackers from replacing them with trojans.

4.2 Lb2fs

Lb2fs is a trivial file system that multiplexes file access be-
tween two identical replicas of a file system, thus balancing
the load between them. To avoid concurrency and consis-
tency problems associated with writable replicas, Lb2fs is
a read-only file system: vnode operations that can mod-
ify the state of the lower file system are disallowed. The
implementation was simple; operations such aswrite ,
mkdir , unlink , andsymlink just return the error code
“read-only file system.” We made a simplifying assump-
tion that the two replicas provide service of identical qual-
ity, and that the two remote servers are always available,
thus avoiding fail-over and reliability issues.

The one place where new vnodes are created is in the
lookup function. It takes a directory vnode and a path-
name and it returns a new vnode for the file represented
by the pathname within that directory. Directory vnodes
in Lb2fs store not one, but two vnodes of the lower level
file systems—one for each replica; this facilitates load-
balancing lookups in directories. Only non-directories
stack on top of one vnode, the one randomly picked.
Lb2fs’s lookup was implemented as follows:

1. An operationlookup is called on directory vnode
DV and file nameX .

2. Get fromDV the two lower vnodesDV ′1 andDV ′2 .

3. Pick one of the two lower vnodes at random, and re-
peat the lookup operation on it usingX .

4. If the lookup operation forX was successful, then
check the resulting vnode. If the resulting vnode was
not a directory vnode, store it in the private data of
DV and return.



5. If the resulting vnode was a directory vnode, then re-
peat the lookup operation on theother lower vnode;
store the two resulting directory vnodes (representing
X on the two replicas) in the private data ofDV .

The implications of this design and implementation are
twofold. First, once a vnode is created, all file operations
using it go to the file server that was randomly picked for it.
A lookup followed by an open, read, and close of a file, will
all use the same file server. In other words, the granularity
of our load balancing is on a per-file basis.

Second, since lookups happen on directory vnodes, we
keep the two lower directory vnodes, one per replica. This
is so we can randomly pick one of them to lookup a file.
This design implies that every open directory vnode is
opened on both replicas, and only file vnodes are truly ran-
domly picked and load-balanced. The overall number of
lookups performed by Lb2fs is twice for directory vnodes
and only once for file vnodes. Since the average number
of files on a file system is much larger than the number of
directories, and directory names and vnodes are cached by
the VFS, we expect the performance impact of this design
to be small.

In less than one day we designed, implemented, tested,
and ported Lb2fs. Many possible extensions to Lb2fs ex-
ist. It can be extended to handle three or a variable number
of replicas. Several additional load-balancing algorithms
can be implemented: round-robin, LRU, the most respon-
sive/available replica first, etc. A test for downed servers
can be included so that the load-balancing algorithm can
avoid using servers that recently returned an I/O error or
timed out (fail-over). Servers that were down can be added
once again to the available pool after another timeout pe-
riod.

4.3 Usenetfs

One cause of high loads on news servers in recent years
has been the need to process many articles in very large flat
directories representing newsgroups such ascontrol.cancel
andmisc.jobs.offered. Significant resources are spent on
processing articles in these few newsgroups. Most Unix
directories are organized as a linear unsorted sequence of
entries. Large newsgroups can have hundreds of thousands
of articles in one directory, resulting in delays processing
any single article.

When the operating system wants to lookup an entry in a
directory withN entries, it may have to search allN entries
to find the file in question. Table 2 shows the frequency of
all file system operations that use a pathname on our news
spool over a period of 24 hours.

It shows that the bulk of all operations are for looking
up files, so these should run very fast regardless of the di-
rectory size. Operations that usually run synchronously
(unlink and create ) account for about 10% of news

Operation Frequency % Total
Lookup 7068838 88.41
Unlink 432269 5.41
Create 345647 4.32
Readdir 38371 0.48
All other 110473 1.38
Total 7995598 100.00

Table 2: Frequency of File System Operations on a News
Spool

spool activity and should also perform well on large news-
groups.

Usenetfs is a file system that rearranges the directory
structure from being flat to one with small directories
containing fewer articles. By breaking the structure into
smaller directories, it improves the performance of looking
up, creating, or deleting files, since these operations occur
on smaller directories. The following sections summarize
the design and implementation of Usenetfs. More detailed
information is available in a separate report[23].

4.3.1 Design of Usenetfs

We had three design goals for Usenetfs. First, Usenetfs
should not require changing existing news servers, oper-
ating systems, or file systems. Second, it should improve
performance of these large directories enough to justify its
overhead and complexity. Third, it should selectively man-
age large directories with little penalty to smaller ones.

The main idea for improving performance for large flat
directories is to break them into smaller ones. Since
article names are composed of sequential numbers, we
take advantage of that. We create a hierarchy consist-
ing of one thousand directories as depicted in Figure 4.
We distribute articles across 1000 directories named 000

345 999

cancel

control

123456

. . .. . .001000

Figure 4: A Usenetfs Managed Newsgroup

through 999. Since article numbers are sequential, we
maximize the distribution by computing the final directory
into which the article will go based on three of the four
least significant digits. For example, the article named
control/cancel/123456 is placed into the direc-
tory control/cancel/345/ . We picked the directory
based on the second, third, and fourth digits of the article
number to allow for some amount of clustering. By not us-
ing the least significant digit we cluster 10 consecutive arti-



cles together: the articles 123450–123459 are placed in the
same directory. This increases the chance of kernel cache
hits due to the likelihood of sequential access of these ar-
ticles. In general, every article numbered X..XYYYZ is
placed in a directory named YYY. For reading a whole di-
rectory (readdir ), we iterate over the subdirectories from
000 to 999, and return the entries within.

Usenetfs needs to determine if a directory is managed or
not. We co-opted a seldom used mode bit for directories,
the setuid bit, to flag a directory as managed by Usenetfs.
Using this bit lets news administrators control which direc-
tories are managed, using a simplechmod command.

The last issue was how to convert an unmanaged direc-
tory to be managed by Usenetfs: creating some of the 000–
999 subdirectories and moving existing articles to their des-
ignated locations. Experimentally, we found that the num-
ber of truly large newsgroups is small, and that they rarely
shrunk. Given that, and for simplicity, we made the process
of turning directory management on/off an off-line process
triggered by the news administrator with a provided script.

4.3.2 Implementation of Usenetfs

Usenetfs is the first non-trivial file system we designed and
implemented using Wrapfs. By “non-trivial” we mean that
it took us more than a few hours to achieve a working
prototype from the Wrapfs template. It took us one day
to write the first implementation, and several more days
to test it and alternate restructuring algorithms (discussed
elsewhere[23]).

We accomplished most of the work in the functions
encode filename and decode filename . They
check the setuid bit of the directory to see if it is managed
by Usenetfs; if so, they convert the filename to its managed
representation and back.

4.4 Cryptfs

Cryptfs is the most involved file system we designed and
implemented based on Wrapfs. This section summarizes
its design and implementation. More detailed information
is available elsewhere[24].

We used the Blowfish[17] encryption algorithm—a 64
bit block cipher designed to be fast, compact, and simple.
Blowfish is suitable in applications where the keys seldom
change such as in automatic file decryptors. It can use vari-
able length keys as long as 448 bits. We used 128 bit keys.

We picked the Cipher Block Chaining (CBC) encryp-
tion mode because it allows us to encrypt byte sequences
of any length—suitable for encrypting file names. We de-
cided to use CBC only within each encrypted block. This
way ciphertext blocks (of 4–8KB) do not depend on previ-
ous ones, allowing us to decrypt each block independently.
Moreover, since Wrapfs lets us manipulate file data in units
of page size, encrypting them promised to be simple.

To provide stronger security, we encrypt file names as
well. We do not encrypt “.” and “..” to keep the lower
level Unix file system intact. Furthermore, since encrypt-
ing file names may result in characters that are illegal in file
names (nulls and “/”), we uuencode the resulting encrypted
strings. This eliminates unwanted characters and guaran-
tees that all file names consist of printable valid characters.

4.4.1 Key Management

Only the root user is allowed to mount an instance of
Cryptfs, but can not automatically encrypt or decrypt files.
To thwart an attacker who gains access to a user’s ac-
count or to root privileges, Cryptfs maintains keys in an in-
memory data structure that associates keys not with UIDs
alone but with the combination of UID and session ID. To
acquire or change a user’s key, attackers would not only
have to break into an account, but also arrange for their
processes to have the same session ID as the process that
originally received the user’s passphrase. This is a more
difficult attack, requiring session and terminal hijacking or
kernel-memory manipulations.

Using session IDs to further restrict key access does not
burden users during authentication. Login shells and dae-
mons usesetsid(2) to set their session ID and detach
from the controlling terminal. Forked processes inherit the
session ID from their parent. Users would normally have to
authorize themselves only once in a shell. From this shell
they could run most other programs that would work trans-
parently and safely with the same encryption key.

We designed a user tool that prompts users for
passphrases that are at least 16 characters long. The tool
hashes the passphrases using MD5 and passes them to
Cryptfs using a specialioctl(2) . The tool can also in-
struct Cryptfs to delete or reset keys.

Our design decouples key possession from file owner-
ship. For example, a group of users who wish to edit a
single file would normally do so by having the file group-
owned by one Unix group and add each user to that group.
Unix systems often limit the number of groups a user can
be a member of to 8 or 16. Worse, there are often many sub-
sets of users who are all members of one group and wish to
share certain files, but are unable to guarantee the security
of their shared files because there are other users who are
members of the same group; e.g., many sites put all of their
staff members in a group called “staff,” students in the “stu-
dent” group, guests in another, and so on. With our design,
users can further restrict access to shared files only to those
users who were given the decryption key.

One disadvantage of this design is reduced scalability
with respect to the number of files being encrypted and
shared. Users who have many files encrypted with different
keys have to switch their effective key before attempting to
access files that were encrypted with a different one. We do
not perceive this to be a serious problem for two reasons.
First, the amount of Unix file sharing of restricted files is



limited. Most shared files are generally world-readable and
thus do not require encryption. Second, with the prolifer-
ation of windowing systems, users can associate different
keys with different windows.

Cryptfs uses one Initialization Vector (IV) per mount,
used to jump-start a sequence of encryption. If not speci-
fied, a predefined IV is used. A superuser mounting Cryptfs
can choose a different IV, but that will make all previ-
ously encrypted files undecipherable with the new IV. Files
that use the same IV and key produce identical cipher-
text blocks that are subject to analysis of identical blocks.
CFS[2] is a user level NFS-based encryption file system.
By default, CFS uses a fixed IV, and we also felt that using
a fixed one produces sufficiently strong security.

One possible extension to Cryptfs might be to use differ-
ent IVs for different files, based on the file’s inode number
and perhaps in combination with the page number. Other
more obvious extensions to Cryptfs include the use of dif-
ferent encryption algorithms, perhaps different ones per
user, directory, or file.

5 Performance

When evaluating the performance of the file systems we
built, we concentrated on Wrapfs and the more complex
file systems derived from Wrapfs: Cryptfs and Usenetfs.
Since our file systems are based on several others, our mea-
surements were aimed at identifying the overhead that each
layer adds. The main goal was to prove that the overhead
imposed by stacking is acceptably small and comparable to
other stacking work[6, 18].

5.1 Wrapfs

We include comparisons to a native disk-based file sys-
tem because disk hardware performance can be a signif-
icant factor. This number is the base to which other file
systems compare to. We include figures for Wrapfs (our
full-fledged stackable file system) and for lofs (the low-
overhead simpler one), to be used as a base for evaluat-
ing the cost of stacking. When using lofs or Wrapfs, we
mounted them over a local disk based file system.

To test Wrapfs, we used as our performance measure a
full build of Am-utils[22], a new version of the Berkeley
Amd automounter. The test auto-configures the package
and then builds it. Only the sources for Am-utils and the bi-
naries they create used the test file system; compiler tools
were left outside. The configuration runs close to seven
hundred small tests, many of which are small compilations
and executions. The build phase compiles about 50,000
lines of C code in several dozen files and links eight bi-
naries. The procedure contains both CPU and I/O bound
operations as well as a variety of file system operations.

For each file system measured, we ran 12 successive
builds on a quiet system, measured the elapsed times of

each run, removed the first measure (cold cache) and av-
eraged the remaining 11 measures. The results are sum-
marized in Table 3.5 The standard deviation for the results
reported in this section did not exceed 0.8% of the mean.
Finally, there is no native lofs for FreeBSD, and the nullfs
available is not fully functional (see Section 3.6).

File SPARC 5 Intel P5/90
System Solaris Linux Solaris Linux FreeBSD

2.5.1 2.0.34 2.5.1 2.0.34 3.0
ext2/ufs/ffs 1242.3 1097.0 1070.3 524.2 551.2
lofs 1251.2 1110.1 1081.8 530.6 n/a
wrapfs 1310.6 1148.4 1138.8 559.8 667.6
cryptfs 1608.0 1258.0 1362.2 628.1 729.2
crypt-wrap 22.7% 9.5% 19.6% 12.2% 9.2%

nfs 1490.8 1440.1 1374.4 772.3 689.0
cfs 2168.6 1486.1 1946.8 839.8 827.3
cfs-nfs 45.5% 3.2% 41.6% 8.7% 20.1%
crypt-cfs 34.9% 18.1% 42.9% 33.7% 13.5%

Table 3: Time (in seconds) to build a large package on var-
ious file systems and platforms. The percentage lines show
the overhead difference between some file systems

First we evaluate the performance impact of stacking
a file system. Lofs is 0.7–1.2% slower than the native
disk based file system. Wrapfs adds an overhead of 4.7–
6.8% for Solaris and Linux systems, but that is compara-
ble to the 3–10% degradation previously reported for null-
layer stackable file systems[6, 18]. On FreeBSD, how-
ever, Wrapfs adds an overhead of 21.1% compared to FFS:
to overcome limitations in nullfs, we used synchronous
writes. Wrapfs is more costly than lofs because it stacks
over every vnode and keeps its own copies of data, while
lofs stacks only on directory vnodes, and passes all other
vnode operations to the lower level verbatim.

5.2 Cryptfs

Using the same tests we did for Wrapfs, we measured the
performance of Cryptfs and CFS[2]. CFS is a user level
NFS-based encryption file system. The results are also
summarized in Table 3, for which the standard deviation
did not exceed 0.8% of the mean.

Wrapfs is the baseline for evaluating the performance
impact of the encryption algorithm. The only difference
between Wrapfs and Cryptfs is that the latter encrypts and
decrypts data and file names. The line marked as “crypt-
wrap” in Table 3 shows that percentage difference between
Cryptfs and Wrapfs for each platform. Cryptfs adds an
overhead of 9.2–22.7% over Wrapfs. That significant over-
head is unavoidable. It is the cost of the Blowfish cipher,
which, while designed to be fast, is still CPU intensive.

5All machines used in these tests had 32MB RAM.



Measuring the encryption overhead of CFS was more
difficult. CFS is implemented as a user-level NFS file
server, and we also ran it using Blowfish. We expected
CFS to run slower due to the number of additional context
switches that it incurs and due to NFS v.2 protocol over-
heads such as synchronous writes. CFS doesnot use the
NFS server code of the given operating system; it serves
user requests directly to the kernel. Since NFS server code
is implemented in general inside the kernel, it means that
the difference between CFS and NFS is not just due to
encryption, but also due to context switches. The NFS
server in Linux 2.0 is implemented at user-level, and is thus
also affected by context switching overheads. If we ignore
the implementation differences between CFS and Linux’s
NFS, and just compare their performance, we see that CFS
is 3.2–8.7% slower than NFS on Linux. This is likely to
be the overhead of the encryption in CFS. That overhead is
somewhat smaller than the encryption overhead of Cryptfs
because CFS is more optimized than our Cryptfs prototype:
CFS precomputes large stream ciphers for its encrypted di-
rectories.

We performed microbenchmarks on the file systems
listed in Table 3 (reading and writing small and large files).
These tests isolate the performance differences for specific
file system operations. They show that Cryptfs is anywhere
from 43% to an order of magnitude faster than CFS. Since
the encryption overhead is roughly 3.2–22.7%, we can as-
sume that rest of the difference comes from the reduction
in number of context switches. Details of these additional
measurements are available elsewhere[24].

5.3 Usenetfs

We configured a News server consisting of a Pentium-II
333Mhz, with 64MB of RAM, and a 4GB fast SCSI disk
for the news spool. The machine ran Linux 2.0.34 with
our Usenetfs. We created directories with exponentially in-
creasing numbers of files in each: 1, 2, 4, etc. The largest
directory had 524288 (219) files numbered starting with 1.
Each file was 2048 bytes long. This size is the most com-
mon article size on our production news server. We created
two hierarchies with increasing numbers of articles in dif-
ferent directories: one flat and one managed by Usenetfs.

We designed our next tests to match the two actions most
commonly undertaken by a news server (see Table 2). First,
a news server looks up and reads articles, mostly in re-
sponse to users reading news and when processing outgo-
ing feeds. The more users there are, the more random the
article numbers read tend to be. While users read articles
in a mostly sequential order, the use of threaded newsread-
ers results in more random reading. The (log-log) plot of
Figure 5 shows the performance of 1000 random lookups
in both flat and Usenetfs-managed directories. The times
reported are in milliseconds spent by the process and the
operating system on its behalf. For random lookups on
directories with fewer than 1000–2000 articles, Usenetfs

• • • • • • • •
•

•
•

•
•

•
•

•
•

•
•

•

Number of Directory Entries (random lookups)

Ti
m

e 
(m

s)

1 10 100 1000 10000 100000

10

100

1000

10000

100000

• • • • • • • • • • • • • • • • • • • •

Usenetfs

ext2fs

Figure 5: Cost for 1000 Random Article Lookups

adds overhead and slows performance. We expected this
because the bushier directory structure Usenetfs maintains
has over 1000 subdirectories. As directory sizes increase,
lookups on flat directories become linearly more expensive
while taking an almost constant time on Usenetfs-managed
directories. The difference exceeds an order of magnitude
for directories with over 10,000 articles.

• • • • • • • • • •
•

•
•

•
•

•

•
•

•
•

Number of Directory Entries

Ti
m

e 
(s

ec
)

1 10 100 1000 10000 100000

0.5
1.0

5.0
10.0

50.0
100.0

500.0

• • • • • • • • • • • • • • • • • •
• •Usenetfs

ext2fs

Figure 6: Cost for 1000 Article Additions and Deletions

The second common action a news server performs is
creating new articles and deleting expired ones. New ar-
ticles are created with monotonically increasing numbers.
Expired articles are likely to have the smallest numbers so
we made that assumption for the purpose of testing. Fig-
ure 6 (also log-log) shows the time it took to add 1000 new
articles and then remove the 1000 oldest articles for suc-
cessively increasing directory sizes. The results are more
striking here: Usenetfs times are almost constant through-
out, while adding and deleting files in flat directories took
linearly increasing times.

Creating over 1000 additional directories adds overhead
to file system operations that need to read whole directo-
ries, especially the readdir call. The last Usenetfs test takes
into account all of the above factors, and was performed
on our departmental production news server. A simple yet
realistic measure of the overall performance of the system
is to test how much reserve capacity was left in the server.
We tested that by running a repeated set of compilations
of a large package (Am-utils), timing how long it took to
complete each build. We measured the compile times of
Am-utils, once when the news server was running with-



out Usenetfs management, and then when Usenetfs man-
aged the top 6 newsgroups. The results are depicted in
Figure 7. The average compile time was reduced by 22%
from 243 seconds to 200 seconds. The largest savings ap-
peared during busy times when our server transferred out-
going articles to our upstream feeds, and especially dur-
ing the four daily expiration periods. During these expi-
ration peaks, performance improved by a factor of 2–3.
The overall effect of Usenetfs had been to keep the perfor-

Hour of the Day

C
om

pi
le

 T
im

e 
(s

ec
)

6 8 10 12 14

200

400

600

800
ext2fs
Usenetfs

Figure 7: Compile Times on a Production News Server

mance of the news server more flat, removing those load
surges. The standard deviation for the compiles was re-
duced from 82 seconds (34% of the mean) to 61 seconds
(29% of the mean). Additional performance analysis is pro-
vided elsewhere[23].

5.4 Lb2fs

Lb2fs’s performance is less than 5% slower than Wrapfs.
The two main differences between Wrapfs and Lb2fs are
the random selection algorithm and looking up directory
vnodes on both replicas. The impact of the random selec-
tion algorithm is negligible, as it picks the least-significant
bit of an internal system clock. The impact of looking up
directory vnodes twice is bound by the ratio of directories
to non-directories in common shared file systems. We per-
formed tests at our department and found that the number
of directories in such file systems to be 2–5% of the over-
all number of files. That explains the small degradation in
performance of Lb2fs compared to Wrapfs.

5.5 Portability

We first developed Wrapfs and Cryptfs on Solaris 2.5.1.
As seen in Table 4, it took us almost a year to fully develop
Wrapfs and Cryptfs together for Solaris, during which time
we had to overcome our lack of experience with Solaris
kernel internals and the principles of stackable file systems.
As we gained experience, the time to port the same file sys-
tem to a new operating system grew significantly shorter.
Developing these file systems for Linux 2.0 was a matter
of days to a couple of weeks. This port would have been
faster had it not been for Linux’s different vnode interface.

File Solaris Linux FreeBSD Linux
System 2.x 2.0 3.0 2.1
wrapfs 9 months 2 weeks 5 days 1 week
snoopfs 1 hour 1 hour 1 hour 1 hour
lb2fs 2 hours 2 hours 2 hours 2 hours
usenetfs 4 days 1 day
cryptfs 3 months 1 week 2 days 1 day

Table 4: Time to Develop and Port File Systems

The FreeBSD 3.0 port was even faster. This was due to
many similarities between the vnode interfaces of Solaris
and FreeBSD. We recently also completed these ports to
the Linux 2.1 kernel. The Linux 2.1 vnode interface made
significant changes to the 2.0 kernel, which is why we list
it as another porting effort. We held off on this port until
the kernel became more stable (only recently).

Another metric of the effort involved in porting Wrapfs
is the size of the code. Table 5 shows the total number of
source lines for Wrapfs, and breaks it down to three cat-
egories: common code that needs no porting, code that is
easy to port by simple inspection of system headers, and
code that is difficult to port. The hard-to-port code accounts
for more than two-thirds of the total and is the one involv-
ing the implementation of each Vnode/VFS operation (op-
erating system specific).

Porting Solaris Linux FreeBSD Linux
Difficulty 2.x 2.0 3.0 2.1
Hard 80% 88% 69% 79%
Easy 15% 7% 26% 10%
None 5% 3% 5% 11%
Total Lines 3431 2157 2882 3279

Table 5: Wrapfs Code Size and Porting Difficulty

The difficulty of porting file systems written using
Wrapfs depends on several factors. If plain C code is used
in the Wrapfs API routines, the porting effort is minimal or
none. Wrapfs, however, does not restrict the user from call-
ing any in-kernel operating system specific function. Call-
ing such functions complicates portability.

6 Related Work

Vnode stacking was first implemented by Rosenthal (in
SunOS 4.1) around 1990[15]. A few other works followed
Rosenthal, such as further prototypes for extensible file sys-
tems in SunOS[18], and the Ficus layered file system[4, 7]
at UCLA. Webber implemented file system interface exten-
sions that allow user level file servers[20]. Unfortunately
this work required modifications to existing file systems
and could not perform as well as in-kernel file systems.

Several newer operating systems offer a stackable file
system interface. They have the potential of easy devel-
opment of file systems offering a wide range of services.



Their main disadvantages are that they are not portable
enough, not sufficiently developed or stable, or they are not
available for common use. Also, new operating systems
with new file system interfaces are not likely to perform as
well as ones that are several years older.

TheHerd of Unix-Replacing Daemons(HURD) from the
Free Software Foundation (FSF) is a set of servers running
on the Mach 3.0 microkernel[1] that collectively provide
a Unix-like environment. HURD file systems run at user
level. HURD introduced the concept of a translator, a pro-
gram that can be attached to a pathname and perform spe-
cialized services when that pathname is accessed. Writing
a new translator is a matter of implementing a well defined
file access interface and filling in such operations as open-
ing files, looking up file names, creating directories, etc.

Spring is an object-oriented research operating system
built by Sun Microsystems Laboratories[10]. It was de-
signed as a set of cooperating servers on top of a microker-
nel. Spring provides several generic modules which offer
services useful for a file system: caching, coherency, I/O,
memory mapping, object naming, and security. Writing a
file system for Spring entails defining the operations to be
applied on the objects. Operations not defined are inher-
ited from their parent object. One work that resulted from
Spring is the Solaris MC (Multi-Computer) File System[8].
It borrowed the object-oriented interfaces from Spring and
integrated them with the existing Solaris vnode interface
to provide a distributed file system infrastructure through
a specialProxy File System. Solaris MC provides all of
the benefits that come with Spring, while requiring little or
no change to existing file systems; those can be gradually
ported over time. Solaris MC was designed to perform well
in a closely coupled cluster environment (not a general net-
work) and requires high performance networks and nodes.

7 Conclusions

Wrapfs and the examples here prove that useful, non-trivial
vnode stackable file systems can be implemented on mod-
ern operating systems without having to change the rest of
the system. We achieve better performance by running the
file systems in the kernel instead of at user-level. File sys-
tems built from Wrapfs are more portable than other kernel-
based file systems because they interact directly with a
(mostly) standard vnode interface.

Most complications discovered while developing
Wrapfs stemmed from two problems. First, the vnode
interface is not self-contained; the VM system, for exam-
ple, offers memory mapped files, but to properly handle
them we had to manipulate lower level file systems and
MMU/TLB hardware. Second, several vnode calls (such
asreaddir ) are poorly designed.

Estimating the complexity of software is a difficult task.
Kernel development in particular is slow and costly because
of the hostile development environment. Furthermore, per-

sonal experience of the developers figure heavily in the cost
of development and testing of file systems. Nevertheless, it
is our assertion that once Wrapfs is ported to a new operat-
ing system, other non-trivial file systems built from it can
be prototyped in a matter of hours or days. We estimate that
Wrapfs can be ported to any operating system in less than
one month, as long as it has a vnode interface that provides
a private opaque field for each of the major data structures
of the file system. In comparison, traditional file system
development often takes a few months to several years.

Wrapfs saves developers from dealing with kernel inter-
nals, and allows them to concentrate on the specifics of the
file system they are developing. We hope that with Wrapfs,
other developers could prototype new file systems to try
new ideas, develop fully working ones, and port them to
various operating systems—bringing the complexity of file
system development down to the level of common user-
level software.

We believe that a truly stackable file system inter-
face could significantly improve portability, especially
if adopted by the main Unix vendors. We think that
Spring[10] has a very suitable interface. If that interface be-
comes popular, it might result in the development of many
practical file systems.

7.1 Future

We would like to add to Wrapfs an API for manipulating
file attributes. We did not deem it important for the initial
implementation because we were able to manipulate the at-
tributes needed in one place anyway.

Wrapfs cannot properly handle file systems that change
the size of the file data, such as with compression, because
these change file offsets. Such a file system may have to
arbitrarily shift data bytes making it difficult to manipulate
the file in fixed data chunks. We considered several de-
signs, but did not implement any, because they would have
complicated Wrapfs’s code too much, and would mostly
benefit compression.

8 Acknowledgments

The authors thank the anonymous reviewers and especially
Keith Smith, whose comments improved this paper signifi-
cantly. We would also like to thank Fred Korz, Seth Robert-
son, Jerry Altzman, and especially Dan Duchamp for their
help in reviewing this paper and offering concrete sugges-
tions. This work was partially made possible by NSF in-
frastructure grants numbers CDA-90-24735 and CDA-96-
25374.



References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach: A New
Kernel Foundation for UNIX Development.USENIX
Conf. Proc., pages 93–112, Summer 1986.

[2] M. Blaze. A Cryptographic File System for Unix.
Proc. of the first ACM Conf. on Computer and Com-
munications Security, November 1993.

[3] B. Callaghan and S. Singh. The Autofs Automounter.
USENIX Conf. Proc., pages 59–68, Summer 1993.

[4] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page Jr.,
G. J. Popek, and D. Rothmeier. Implementation of
the Ficus replicated file system.USENIX Conf. Proc.,
pages 63–71, June 1990.

[5] J. Heidemann and G. Popek. Performance of cache
coherence in stackable filing.Fifteenth ACM Sym-
posium on Operating Systems Principles, December
1995.

[6] J. S. Heidemann and G. J. Popek. File System Devel-
opment with Stackable Layers.ACM Transactions on
Computing Systems, 12(1):58–89, February 1994.

[7] J. S. Heidemann and G. J. Popek. A layered ap-
proach to file system development. Technical report
CSD-910007. University of California, Los Angeles,
March 1991.

[8] V. Matena, Y. A. Khalidi, and K. Shirriff. Solaris MC
File System Framework. Technical Report TR-96-57.
Sun Labs, October 1996.

[9] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. A fast file system for UNIX.ACM Trans-
actions on Computer Systems, 2(3):181–97, August
1984.

[10] J. G. Mitchel, J. J. Giobbons, G. Hamilton, P. B.
Kessler, Y. A. Khalidi, P. Kougiouris, P. W. Madany,
M. N. Nelson, M. L. Powell, and S. R. Radia. An
Overview of the Spring System.CompCon Conf.
Proc., 1994.

[11] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS Version 3 Design and
Implementation.USENIX Conf. Proc., pages 137–52,
June 1994.

[12] J. S. Pendry and M. K. McKusick. Union mounts
in 4.4BSD-Lite. USENIX Conf. Proc., pages 25–33,
January 1995.

[13] J. S. Pendry and N. Williams. Amd – The 4.4 BSD
Automounter. User Manual, edition 5.3 alpha. March
1991.

[14] D. S. H. Rosenthal. Requirements for a “Stacking”
Vnode/VFS Interface. Unix International document
SD-01-02-N014. 1992.

[15] D. S. H. Rosenthal. Evolving the Vnode Interface.
USENIX Conf. Proc., pages 107–18, Summer 1990.

[16] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun Net-
work Filesystem.USENIX Conf. Proc., pages 119–
30, June 1985.

[17] B. Schneier. Blowfish. InApplied Cryptography, Sec-
ond Edition, pages 336–9. John Wiley & Sons, 1996.

[18] G. C. Skinner and T. K. Wong. “Stacking” Vnodes: A
Progress Report.USENIX Conf. Proc., pages 161–74,
Summer 1993.

[19] SMCC. lofs – loopback virtual file system. SunOS
5.5.1 Reference Manual, Section 7. March 1992.

[20] N. Webber. Operating System Support for Portable
Filesystem Extensions.USENIX Conf. Proc., pages
219–25, Winter 1993.

[21] E. Zadok.FiST: A File System Component Compiler.
PhD thesis, published as Technical Report CUCS-
033-97. Computer Science Department, Columbia
University, April 1997.

[22] E. Zadok. Am-utils (4.4BSD Automounter Utilities).
Am-utils version 6.0a16 User Manual. April 1998.
Available http://www.cs.columbia.edu/˜ezk/am-utils/.

[23] E. Zadok and I. Badulescu. Usenetfs: A Stackable
File System for Large Article Directories. Techni-
cal Report CUCS-022-98. Computer Science Depart-
ment, Columbia University, June 1998.

[24] E. Zadok, I. Badulescu, and A. Shender. Cryptfs:
A Stackable Vnode Level Encryption File System.
Technical Report CUCS-021-98. Computer Science
Department, Columbia University, July 1998.

9 Author Information

Erez Zadok is an Ph.D. candidate in the Computer Science
Department at Columbia University. He received his B.S.
in Comp. Sci. in 1991, and his M.S. degree in 1994, both
from Columbia University. His primary interests include
file systems, operating systems, networking, and security.
The work described in this paper was first mentioned in his
Ph.D. thesis proposal[21].

Ion Badulescuholds a B.A. from Columbia University.
His primary interests include operating systems, network-
ing, compilers, and languages.

Alex Shender is the manager of the computer facilities
at Columbia University’s Computer Science Department.
His primary interests include operating systems, networks,
and system administration. In May 1998 he received his
B.S. in Comp. Sci. from Columbia’s School of Engineering
and Applied Science.

For access to sources for the file
systems described in this paper see
http://www.cs.columbia.edu/˜ezk/research/software/.


