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Abstract

Compressed caching uses part of the available RAM to
hold pages in compressed form, effectively adding a new
level to the virtual memory hierarchy. This level attempts
to bridge the huge performance gap between normal (un-
compressed) RAM and disk.

Unfortunately, previous studies did not show a consis-
tent benefit from the use of compressed virtual memory.
In this study, we show that technology trends favor com-
pressed virtual memory—it is attractive now, offering re-
duction of paging costs of several tens of percent, and
it will be increasingly attractive as CPU speeds increase
faster than disk speeds.

Two of the elements of our approach are innova-
tive. First, we introduce novel compression algorithms
suited to compressing in-memory data representations.
These algorithms are competitive with more mature Ziv-
Lempel compressors, and complement them. Second, we
adaptively determine how much memory (if at all) should
be compressed by keeping track of recent program be-
havior. This solves the problem of different programs,
or phases within the same program, performing best for
different amounts of compressed memory.

1 Introduction

For decades, CPU speeds have continued to double ev-
ery 18 months to two years, but disk latencies have im-
proved only very slowly. Disk latencies are five to six
orders of magnitude greater than main memory access
latencies, while other adjacent levels in the memory hi-
erarchy typically differ by less than one order of mag-
nitude. Programs that run entirely in RAM benefit from
improvements in CPU speeds, but the runtime of pro-
grams that page is likely to be dominated by disk seeks,
and may run many times more slowly than CPU-bound
programs.

In [Wil90, Wil91b] we proposed compressed caching
for virtual memory—storing pages in compressed form
in a main memory compression cache to reduce disk pag-
ing. Appel also promoted this idea [AL91], and it was
evaluated empirically by Douglis [Dou93] and by Russi-
novich and Cogswell [RC96]. Unfortunately Douglis’s
experiments with Sprite showed speedups for some pro-
grams, but no speedup or some slowdown for others.
Russinovich and Cogswell’s data for a mixed PC work-
load showed only a slight potential benefit. There is a
widespread belief that compressed virtual memory is at-
tractive only for machines without a fast local disk, such
as diskless handheld computers or network computers,
and laptops with slow disks. As we and Douglis pointed
out, however, compressed virtual memory is more attrac-
tive as CPUs continue to get faster. This crucial point
seems to have been generally overlooked, and no operat-
ing system designers have adopted compressed caching.

In this paper, we make a case for the value of com-
pressed caching in modern systems. We aim to show
that the discouraging results of former studies were pri-
marily due to the use of machines that were quite slow
by current standards. For current, fast, disk-based ma-
chines, compressed virtual memory offers substantial
performance improvements, and its advantages only in-
crease as processors get faster. We also study future
trends in memory and disk bandwidths. As we show,
compressed caching will be increasingly attractive, re-
gardless of other OS improvements (like sophisticated
prefetching policies, which reduce the average cost of
disk seeks, and log-structured file systems, which reduce
the cost of writes to disk).

We will also show that the use of better compression
algorithms can provide a significant further improvement
in the performance of compressed caching. Better Ziv-
Lempel variants are now available, and we introduce here
a new family of compression algorithms designed for in-
memory data representations rather than file data.



The concrete points in our analysis come from simula-
tions of programs covering a variety of memory require-
ments and locality characteristics. At this stage of our
experiments, simulation was our chosen method of eval-
uation because it allowed us to easily try many ideas in
a controlled environment. It should be noted that all our
simulation parameters are either relatively conservative
or perfectly realistic. For instance, we assume a quite
fast disk in our experiments. At the same time, the costs
of compressions and decompressions used in our simu-
lations are the actual runtime costs for the exact pages
whose compression or decompression is being simulated
at any time.

The main value of our simulation results, however,
is not in estimating the exact benefit of compressed
caching (even though it is clearly substantial). Instead,
we demonstrate that it is possible to detect reliably how
much memory should be compressed during a phase of
program execution. The result is a compressed virtual
memory policy that adapts to program behavior. The
exact amount of compressed memory crucially affects
program performance: compressing too much memory
when it is not needed can be detrimental, as is compress-
ing too little memory when slightly more would pre-
vent many memory faults. Unlike any fixed fraction of
compressed memory, our adaptive compressed caching
scheme yields uniformly high benefits for all test pro-
grams and a wide range of memory sizes.

2 Compression Algorithms

In [WLM91] we explained how a compressor with a
knowledge of a programming language implementation
could exploit that knowledge to achieve high compres-
sion ratios for data used by programs. In particular, we
explained how pointer data contain very little informa-
tion on average, and that pointers can often be com-
pressed down to a single bit.

Here we describe algorithms that make much weaker
assumptions, primarily exploiting data regularities im-
posed by hardware architectures and common program-
ming and language-implementation strategies. These al-
gorithms are fast and fairly symmetrical—compression is
not much slower than decompression. This makes them
especially suitable for compressed virtual memory ap-
plications, where pages are compressed about as often as
they’re decompressed. 1

1A variant of one of our algorithms has been used successfully for
several years in the virtual memory system of the Apple Newton, a
personal digital assistant with no disk [SW91] (Walter Smith, personal
communication 1994, 1997). While we have not previously published
this algorithm, we sketched it for Smith and he used it in the New-
ton, with good results—it achieved slightly less compression than a

As we explain below, the results for these algo-
rithms are quite encouraging. A straightforward imple-
mentation in C is competitive with the best assembly-
coded Ziv-Lempel compressor we could find, and su-
perior to the LZRW1 algorithm (written in C by Ross
Williams)[Wil91a] used in previous studies of com-
pressed virtual memory and compressed file caching.

As we will explain, we believe that our results are sig-
nificant not only because our algorithms are competitive
and often superior to advanced Ziv-Lempel algorithms,
but because they are different. Despite their immaturity,
they work well, and they complement other techniques.
They also suggest areas for research into significantly
more effective algorithms for in-memory data.

(Our algorithms are also interesting in that they could
be implemented in a very small amount of hardware, in-
cluding only a tiny amount of space for dictionaries, pro-
viding extraordinarily fast and cheap compression with a
small amount of hardware support.)

2.1 Background: Compression

To understand our algorithms and their relationship to
other algorithms, it is necessary to understand a few basic
ideas about data compression. (We will focus on lossless
compression, which allows exact reconstruction of the
original data, because lossy compression would gener-
ally be a disaster for compressed VM.)

All data compression algorithms are in a deep sense
ad hoc—they must exploit expected regularities in data
to achieve any compression at all. All compression al-
gorithms embody expectations about the kinds of regu-
larities that will be encountered in the data being com-
pressed. Depending on the kind of data being com-
pressed, the expectations may be appropriate or inappro-
priate and compression may work better or worse. The
main key to good compression is having the right kinds
of expectations for the data at hand.

Compression can be thought of as consisting of two
phases, which are typically interleaved in practice: mod-
eling and encoding [BCW90, Nel95]. Modeling is the
process of detecting regularities that allow a more con-
cise representation of the information. Encoding is the
construction of that more concise representation.

Ziv-Lempel compression. Most compression algo-
rithms, including the overwhelmingly popular Ziv-
Lempel family, are based on detection of exact repeti-
tions of strings of atomic tokens. The token size is usu-
ally one byte, for speed reasons and because much data

Ziv-Lempel algorithm Apple had used previously, but was much faster.
Unfortunately, we do not have any detailed performance comparisons.



is in some sense byte-oriented (e.g., characters in a text
file) or multiple-byte oriented (e.g., some kinds of image
data, Intel Architecture machine code, unicode).

A Ziv-Lempel compressor models by reading through
the input data token by token, constructing a dictionary
of observed sequences, and looking for repetitions as it
goes. It encodes by writing strings to its output the first
time they are observed, but writing special codes when
a repetition is encountered (e.g., the number of the dic-
tionary entry). The output thus consists of appropriately
labeled “new” data and references to “old” data (repeti-
tions).

The corresponding LZ decompressor reads through
this data much like an interpreter, reconstructing the dic-
tionary created during compression. When it sees a new
string, it adds it to the dictionary just as the compressor
did, as well as sending it to its (uncompressed) output.
When it sees a code for a repetition of a dictionary item,
it copies that item to its output. In this way, its dictio-
nary always matches the dictionary that the compressor
had at the same point in the data stream, and its output
replicates the original input by expanding the repetition
codes into the strings they represent.

The main assumption embodied by this kind of com-
pressor is that literal repetitions of multi-token strings
will occur in the input—e.g., you’ll often see several
bytes in a row that are exactly the same bytes in the same
order as something you saw before. This is a natural as-
sumption in text, and reasonable in some other kinds of
data, but often wrong for in-memory data.

2.2 In-Memory Data Representations

It is commonly thought that LZ-style compression is
“general purpose,” and that in-memory data are fairly
arbitrary—different programs operate on different kinds
of data in different ways, so there’s not much hope for
a better algorithm than LZ for compressing in-memory
data. The first assumption is basically false,2 and the
second is hasty, so the conclusion is dubious.

While different programs do different things, there are
some common regularities, which is all a compression
algorithm needs to work well on average. Rather than
consisting of byte strings, the data in memory are often

2It is worth stressing this again, because there is widespread confu-
sion about the “optimality” of some compression algorithms. In gen-
eral, an encoding scheme (such as Huffman coding or arithmetic cod-
ing) can be provably optimal within some small factor, but a compres-
sor cannot, unless the regularities in the data are known in advance and
in detail. Sometimes compression algorithms are proven optimal based
on the simplifying assumption that the source is a stochastic (random-
ized, typically Markov) source, but real data sources in programs are
generally not stochastic[WJNB95], so the proof does not hold for real
data.

best viewed as records and data structures—the overall
array of memory words is typically used to store records,
whose fields are mostly one or two words. Note that
fields of records are usually word-aligned and that the
data in those words are frequently numbers or pointers.
Pointers can be usefully viewed as numbers—they are
integer indices into the array of memory itself.

Integer and pointer data often have certain strong regu-
larities. Integer values are usually numerically small (so
that only their low-order bytes have significant informa-
tion content), or else similar to other integers very nearby
in memory.

Likewise, pointers are likely to point to other ob-
jects nearby in memory, or be similar to other nearby
pointers—that is, they may point to another area of mem-
ory, but other pointers nearby may point to the same area.
These regularities are quite common and strong. One
reason is that heap data are often well-clustered; com-
mon memory allocators tend to allocate mostly within a
small area of memory most of the time; data structures
constructed during a particular phase of program execu-
tion are often well-clustered and consist of one or a few
types of similar objects [WJNB95].

Other kinds of data often show similar regularities.
Examples include the hidden headers many allocators
put on heap objects, virtual function table pointers in
C++ objects, booleans, etc.

These regularities are strong largely because in-
memory data representations are designed primarily for
speed, not space, and because real programs do not usu-
ally use random data or do random things with data.
(Even randomized data can be very regular in this way;
consider an array of random integers less than 1000—all
of them will have zeroes in their upper 22 bits.)

2.3 Exploiting In-Memory Data Regularities

Our goal in this section is to convey the basic flavor
of our algorithms (which we call WK algorithms); the
actual code is available from our web site and is well-
commented for those who wish to explore it or experi-
ment with it.

We note that these algorithms were designed several
years ago, when CPU’s were much slower than today—
they therefore stress simplicity and speed over achieving
high compression. We believe that better algorithms can
be designed by refining the basic modeling technique,
perhaps in combination with more traditional sequence-
oriented modeling, and by using more sophisticated en-
coding strategies. Given their simplicity, however, they
are strikingly effective in our experiments.



Our compression algorithms exploit in-memory data
regularities by scanning through the input data a 32-bit
word at a time, and looking for data that are numerically
similar—specifically, repetitions of the high-order 22-bit
pattern of a word, even if the low-order 10 bits are differ-
ent.3 They therefore perform partial matching of whole-
word bit patterns.

To detect repetitions, the encoder maintains a dictio-
nary of just 16 recently-seen words. (One of our algo-
rithms manages this dictionary as a direct mapped cache,
and another as a 4x4 set-associative cache, with LRU
used as the replacement algorithm for each set. These
are simple software caching schemes, and could be triv-
ially implemented in very fast hardware. Due to lack of
space and because the exact algorithm did not matter for
compressed caching performance, we will only discuss
the direct-mapped algorithm in this paper.)

For these compression algorithms to work as well as
they do, the regularities must be very strong. Where a
typical LZ-style compressor uses a dictionary of many
kilobytes (e.g., 64 KB), our compressors use only 64
bytes and achieve similar compression ratios for in-
memory data.

The compressor scans through a page, reading each
word, probing its cache (dictionary) for a matching pat-
tern, and emitting a two-bit code classifying the word. A
word may

� not match a dictionary entry, or

� match only in the upper 22 bits, or

� match a whole 32-bit pattern.

As a special case, we check first to see if the word is all
zeroes, i.e., matches a full-word zero, in which case we
use the fourth two-bit pattern.

For the all-zeroes case, only the two-bit tag is writ-
ten to the compressed output page. For the other three
cases, additional information must be emitted as well. In
the no-match case, the entire 32-bit pattern that did not
match anything is written to the output. For a full (32-bit)
match, the dictionary index is written, indicating which
dictionary word was repeated. For the partial (22-bit)
match case, the dictionary index and the (differing) low
10 bits are written.

The corresponding decompressor reads through the
compressed output, examining one two-bit tag at a time

3The 22/10 split was arrived at experimentally, using an early data
set that partially overlaps the one used in this study. The effectiveness
of the algorithm is not very sensitive to this parameter, however, and
varying the split by 2 bits does not seem to make much difference—
using more high bits means that matches are encoded more compactly,
but somewhat fewer things match.

and taking the appropriate action. As with more conven-
tional compression schemes, a tag indicating no-match
directs it to read an item (one word) from the compressed
input, insert it in the dictionary, and echo it to the output.
A tag indicating all-zeroes directs it to write a word of
zeroes to its output. A tag indicating a full-word match
directs it to copy a dictionary item to the output, either
whole (in the full match case) or with its low bits re-
placed by bits consumed from the input (for a partial
match).

The encoding can then be performed quickly. Rather
than actually writing the result of compressing a word
directly to the output, the algorithm writes each kind of
information into a different intermediate array as it reads
through the input data, and then a separate postprocess-
ing pass “packs” that information into the output page,
using a fast packing routine. (The output page is seg-
mented, with each segment containing one kind of data:
tags, dictionary indices, low bits, and full words.) For ex-
ample, the two-bit tags are actually written as bytes into
a byte array, and a special routine packs four consecutive
words (holding 16 tags) into a single word of output by
shifting and XORing them together. During decompres-
sion, a prepass unpacks these segments before the main
pass reconstructs the original data.

3 Adaptively Adjusting the Compression
Cache Size

To perform well, a compressed caching system should
adapt to the working set sizes of the programs it caches
for. If a program’s working set fits comfortably in RAM,
few pages (or no pages) should be kept compressed, so
that the overwhelming majority of pages can be kept in
uncompressed form and accessed with no penalty. If a
program’s working set is larger than the available RAM,
and compressing pages would allow it to be kept in
RAM, more pages should be compressed until the work-
ing set is “captured”. In this case, the reduction in disk
faults may greatly outweigh the increase in compression
cache accesses, because disk faults are many times more
expensive than compression cache faults.

Douglis observed in his experiments that different pro-
grams needed compressed caches of different sizes. He
implemented an adaptive cache-sizing scheme, which
varied the split between uncompressed and compressed
RAM dynamically. Even with this adaptive caching sys-
tem, however, his results were inconsistent; some pro-
grams ran faster, but others ran slower. We believe that
Douglis’s adaptive caching strategy may have been partly
at fault. Douglis used a fairly simple scheme in which
the two caches competed for RAM on the basis of how



recently their pages were accessed, rather like a normal
global replacement policy arbitrating between the needs
of multiple processes, keeping the most recently-touched
pages in RAM. Given that the uncompressed cache al-
ways holds more recently-touched pages than the com-
pressed cache, this scheme requires a bias to ensure that
the compressed cache has any memory at all. We believe
that this biased recency-based caching can be maladap-
tive, and that a robust adaptive cache-sizing policy can-
not be based solely on the LRU ordering of pages within
the caches.

3.1 Online Cost/Benefit Analysis

Our own adaptive cache-sizing mechanism addresses
the issue of adaptation by performing an online
cost/benefit analysis, based on recent program behav-
ior statistics. Assuming that behavior in the relatively
near future will resemble behavior in the relatively re-
cent past, our mechanism actually keeps track of aspects
of program behavior that bear directly on the perfor-
mance of compressed caching for different cache sizes,
and compresses more or fewer pages to improve perfor-
mance.

This system uses the kind of recency information kept
by normal replacement policies, i.e., it maintains an ap-
proximate ordering of the pages by how recently they
have been touched. Our system extends this by retaining
the same information for pages which have been recently
evicted. This information is discarded by most replace-
ment policies, but can be retained and used to tell how
well a replacement policy is working, compared to what
a different replacement policy would do.

We therefore maintain an LRU (or recency) ordering
of the pages in memory and a comparable number of
recently-evicted pages. This ordering is not used primar-
ily to model what is in the cache, but rather to model
what the program is doing.

A Simplified Example. To understand how our system
works, consider a very simple version which manages a
pool of 100 page frames, and only chooses between two
compressed cache sizes: 50 frames, and 0 frames. With a
compression cache of 50 frames and a compression ratio
of 2:1, we can hold the 50 most-recently-accessed pages
in uncompressed form in the uncompressed cache, and
the next 100 in compressed form. This effectively in-
creases the size of our memory by 50% in terms of its
effect on the disk fault rate.

The task of our adaptation mechanism is to decide
whether doing this is preferable to keeping 100 pages in
uncompressed form and zero in compressed form. (We
generally assume that pages are compressed before being

evicted to disk, whether or not the compression cache is
of significant size. Our experiments show that this cost
is very small.)

memory size

misses
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Figure 1: Cost/benefit computation using the miss-rate
histogram.

Figure 1 shows an example miss rate histogram deco-
rated with some significant data points. (This is not real
data, and not to scale because the actual curve is typically
very high on the far left, but the data points chosen are
reasonable).

The benefit of this 50/50 configuration is the reduction
in disk faults in going from a memory of size 100 to a
memory of size 150. We can measure this benefit simply
by counting the number of times we fault on pages that
are between the 101st and 150th positions in the LRU
ordering (30,000 in Figure 1), and multiplying that count
by the cost of disk service.

The cost of this 50/50 configuration is the cost of com-
pressing and decompressing all pages outside the uncom-
pressed cache region. These are exactly the touches to
the pages beyond the 51st position in the LRU ordering
(200,000 touches). Thus, in the example of Figure 1,
compressed caching is beneficial if compressing and de-
compressing 200,000 pages is faster than fetching 30,000
pages from disk.

In general, our recency information allows us to es-
timate the cost and benefit of a compression cache of a
given size, regardless of what the current size of the com-
pression cache actually is, and which pages are currently
in memory. That is, we can do a “what if analysis” to
find out if the current split of memory between caches
is a good one, and what might be a better one. We can
simply count the number of touches to pages in differ-
ent regions of the LRU ordering, and interpret those as
hits or misses relative to different sizes of uncompressed
cache and corresponding sizes of compressed cache and
overall effective memory size.



Multiple target sizes. We generalize the above scheme
by using several different “target” compression cache
sizes, interpreting touches to different ranges of the LRU
ordering appropriately for each size. The adaptive com-
ponent of our system computes the costs and benefits
of each of the target sizes, based on recent counts of
touches to regions of the LRU ordering, and chooses the
target size with the lowest cost. Then the compressed
cache size is adjusted in a demand-driven way: memory
is compressed or uncompressed only when an access to a
compressed page (either in compressed RAM or on disk)
occurs.

Actually, our system chooses a target uncompressed
cache size, and the corresponding overall effective cache
size is computed based on the number of page frames
left for the compressed cache, multiplied by an esti-
mate of the compression ratio for recently compressed
pages. This means that the statistics kept by our adaptiv-
ity mechanism are not exact (our past information may
contain hits that are in a different recency region than that
indicated by the current compressibility estimate). Nev-
ertheless, this does not seem to matter much in our sim-
ulations; approximate statistics about which pages have
been touched how recently are quite sufficient. This indi-
cates that our system will not be sensitive to the details of
the replacement policy used for the uncompressed cache;
any normal LRU approximation should work fine. (E.g.,
a clock algorithm using reference bits, a FIFO-LRU seg-
mented queue using kernel page traps, or a RANDOM-
LRU segmented queue using TLB miss handlers.)

The overheads of updating the statistics, performing
the cost/benefit analyses, and adaptively choosing a tar-
get split are low—just a few hundred instructions per un-
compressed cache miss, if the LRU list is implemented
as a tree with an auxiliary table (a hash table or sparse
page-table like structure).

3.2 Adapting to Recent Behavior

To adapt to recent program behavior our statistics are
decayed exponentially with time. Time, however, is de-
fined as the number of interesting events elapsed. Events
that our system considers “interesting” are page touches
that could affect our cost benefit analysis (i.e., would
have been hits if we had compressed as much memory as
any of our target compression sizes currently suggests).
Defining time this way has the benefit that touches to
very recently used pages are ignored, thus filtering out
high-frequency events.

Additionally, the decay factor used is inversely pro-
portional to the size of memory (total number of page
frames), so that time typically advances more slowly for
larger memories than for small ones—small memories

usually have a shorter replacement cycle, and need to de-
cay their statistics at a faster rate than larger ones.

If the decay rate were not inversely proportional to the
memory size, time would advance inappropriately slowly
for small memories and inappropriately quickly for large
ones. The small cache would wait too long to respond
to changes, and the large one would twitchily “jump” at
brief changes in program behavior, which are likely not
to persist long enough to be worth adapting toward.

Extensive simulation results show that this strategy
works as intended: our adaptivity ensures that for any
memory size, the cache responds to changes in the re-
cent behavior of a program relatively quickly, so that it
can benefit from relatively persistent program behavior,
but not so quickly that it is continually “distracted” by
short duration behaviors.

A single setting of the decay factor (relativized auto-
matically to the memory size) works well across a variety
of programs, and across a wide ranges of memory sizes.

4 Detailed Simulations

In this section, we describe the methodology and re-
sults of detailed simulations of compressed caching. We
captured page image traces, recording the pages touched
and their contents, for six varied UNIX programs, and
used these to simulate compressed caching in detail.

(The code for our applications, tracing and filtering
tools, and compressors and simulator are all available
from our web site for detailed study and further re-
search.)

Note that our traces do not contain references to exe-
cutable code pages. We focus on data pages, because our
main interest is in compressing in-memory data. As we
will explain in Section 5, compressing code equally well
is an extra complication but can certainly be done. Sev-
eral techniques complementary to ours have been pro-
posed for compressing code and the data from [RC96]
indicate that references to code pages exhibit the same
locality properties as references to data pages.

4.1 Methodology

Test suite. For these simulations, we traced six pro-
grams on an Intel x86 architecture under the Linux oper-
ating system with a page size of 4KB (we will study the
effect of larger page sizes in Section 4.3). The behavior
of most of these programs is described in more detail in
[WJNB95]. Here is a brief description of each:

� gnuplot: A plotting program with a large input pro-
ducing a scatter plot.



� rscheme: A bytecode-based interpreter for a
garbage-collected language. Its performance is
dominated by the runtime of a generational garbage
collector.

� espresso: A circuit simulator.

� gcc: The component of the GNU C compiler that
actually performs C compilation.

� ghostscript: A PostScript formatting engine.

� p2c: A Pascal to C translator.

These programs constitute a good test selection for
locality experiments (as we try to test the adaptivity of
our compressed caching policy relative to locality pat-
terns at various memory sizes). Their data footprints
vary widely: gnuplot and rscheme are large programs
(with over 14,000 and 2,000 pages, respectively), gcc and
ghostscript are medium-sized (around 550 pages), while
espresso and p2c are small (around 100 pages).

We used the following three processors:

1. Pentium Pro at 180 MHz: This processor approx-
imately represents an average desktop computer at
this time. Compressed caching is not only for fast
machines.

2. UltraSPARC-10 300 Mhz: While one of the fastest
processors available now, it will be an average pro-
cessor two years from now. Compressed caching
works even better on a faster processor.

3. UltraSPARC-2 168 MHz: A slower SPARC ma-
chine which provides an interesting comparison to
the Pentium Pro, due to its different architecture
(e.g., faster memory subsystem).

We used three different compression algorithms in our
experiments:

1. WKdm: A recency based compressor that oper-
ates on machine words and uses a direct-mapped,
16 word dictionary and a fast encoding implemen-
tation.

2. LZO: Specifically, LZO1F, is a carefully coded
Lempel-Ziv implementation designed to be fast,
particularly on decompression tasks. It is well
suited to compressing small blocks of data, using
small codes when the dictionary is small. While all
compressors we study are written in C, this one also
has a speed-optimized implementation (in Intel x86
assembly) for the Pentium Pro.

3. LZRW1: Another fast Lempel-Ziv implementa-
tion. This algorithm was used by Douglis in
[Dou93]. While it does not perform as well as LZO,
we wanted to demonstrate that even this algorithm
would allow for an effective compressed cache on
today’s hardware.

The runtimes of the test suite. Our results are pre-
sented in terms of time spent paging, but it is helpful to
know the processing time required to execute each pro-
gram in the test suite. Figure 2 shows the time required
to execute each of our six programs on each of the three
processors, when no paging occurs. These times can
be added with paging time information to obtain total
turnaround time for a given architecture, memory size,
and virtual memory configuration.

Program P-Pro SPARC SPARC
name 180MHz 168MHz 300MHz
gnuplot 46.89 32.99 20.61
rscheme 8.26 11.77 7.59
espresso 10.07 12.35 7.41
gcc 9.89 14.66 9.41
ghostscript 18.95 26.89 16.84
p2c 2.38 2.91 2.08

Figure 2: The processing times for each program in the
test suite on each processor used in this study. If enough
memory is available such that no paging occurs, these
times will be the turnaround times.

A brief note on compressor performance. All of our
compression algorithms achieve roughly a factor of two
in compression on average for all six programs. All can
compress and decompress a page in well under half a
millisecond on all processors. The WKdm algorithm is
the fastest, compressing a page in about 0.25 millisec-
onds and decompressing in about 0.15 milliseconds on
the Pentium Pro, faster on the SPARC 168 MHz, and
over twice as fast on the SPARC 300 MHz. (This is over
20 MB compressed and uncompressed per second, about
the bandwidth of a quite fast disk.) LZO is about 20%
slower, and LZRW1 about 20% slower still.

Tracing. Our simulator takes as input a trace of the
pages a program touches, augmented with information
about the compressibility and cost of compression of
each touched page for a particular compression algo-
rithm. To create such a trace and keep the trace size
manageable, we used several steps and several tracing
and filtering tools.

We traced each program using the portable tracing tool
VMTrace [WKB]. We added a module to VMTrace that



made it emit a complete copy of each page as it was ref-
erenced. We refer to such traces as page image traces.

Creating compression traces. To record the actual ef-
fectiveness and time cost of compressing each page im-
age, we created a set of compression traces. For each
combination of compression algorithm and CPU, we cre-
ated a trace recording how expensive and how effective
compression is for each page image in the reduced page
image trace. Since we have 6 test programs, 3 compres-
sion algorithms, and 3 CPU’s, this resulted in 54 com-
pression traces.

The tool that creates compression traces is linked with
a compressor and decompressor, and consumes a (re-
duced) page image trace. For each trace record in the
page image trace, it compresses and decompresses the
page image and outputs a trace record. This record con-
tains the page number, the times for compressing and de-
compressing the page’s contents at that moment, and the
resulting compressed size of the page. Each page image
is compressed and decompressed several times, and the
median times are reported. Timing is very precise, using
the Solaris high-resolution timer (all of our compression
timings were done under the Solaris operating system).
To avoid favorable (hardware) caching effects, the caches
are filled with unrelated data before each compression or
uncompression. (This is conservative, in that burstiness
of page faults will usually mean that some of the relevant
memory is still cached in the second-level cache in a real
system.)

Simulation parameters. We used four different target
compression sizes with values equal to 10%, 23%, 37%,
and 50% of the simulated memory size. Thus, during
persistent phases of program behavior (i.e., when the sys-
tem has enough time to adapt) either none, or 10%, or
23%, or 37%, or 50% of our memory pages are holding
compressed data. Limiting the number of target com-
pression sizes to four guarantees that our cost/benefit
analysis incurs a low overhead. The decay factor used is
such that the M-th most recent event (with M being the
size of memory) has a weight equal to 20% of the most
recent event. Our results were not particularly sensitive
to the exact value of the decay factor.

Estimates used. During simulation we had to estimate
the costs for reading a page from disk or writing it to
disk. We conservatively assumed that writing “dirty”
pages to disk incurs no cost at all, to compensate for file
systems that keep low the cost of multiple writes (e.g.,
log-structured file systems). Additionally, we assumed
a disk with a uniform seek time of 5ms. Admittedly, a
more complex model of disk access could yield more ac-
curate results, but this should not affect the validity of

our simulations (a 5ms seek time disk is fast by modern
standards). In Section 4.3 we examine the effect of using
a faster disk (up to a seek time of 0.625ms).

4.2 Results of Detailed Simulations

4.2.1 Wide Range Results

For each of our test programs, we chose a wide range of
memory sizes to simulate. The plots of this section show
the entire simulated range for each program. Subsequent
sections, however, concentrate on the interesting region
of memory sizes. This range usually begins around the
size where a program spends 90% of its time paging and
10% of its time executing on the CPU, and ends at a size
where the program causes very little paging.

Figure 3 shows log-scale plots of the paging time of
each of our programs as a function of the memory size.
Each line in the plot represents the results of simulating
a compressed cache using a particular algorithm on our
SPARC 168 MHz machine. The paging time of a reg-
ular LRU memory system (i.e., with no compression) is
shown for a comparison. As can be seen, compressed
caching yields benefits for a very wide range of mem-
ory sizes, indicating that our adaptivity mechanism reli-
ably detects locality patterns of different sizes. Note that
all compression algorithms exhibit benefits, even though
there are definite differences in their performance.

Figure 3 only aims at conveying the general idea of the
outcome of our experiments. The same results are ana-
lyzed in detail in subsequent sections (where we isolate
interesting memory regions, algorithms, architectures,
and trends).

4.2.2 Normalized Benefits and the Effect of Com-
pression Algorithms

Our first goal is to quantify the benefits obtained by us-
ing compressed caching and to identify the effect of dif-
ferent compression algorithms on the overall system per-
formance. It is hard to see this effect in Figure 3, which
seems to indicate that all compression algorithms obtain
similar results.

A more detailed plot reveals significant variations be-
tween algorithm performance. Figure 4 plots the normal-
ized paging times for different algorithms in the interest-
ing region. (Recall that this usually begins at the size
where a program spends 90% of its time paging and 10%
of its time executing on the CPU, and ends at a size where
the program causes very little paging). By “normalized
paging time” we mean the ratio of paging time for com-
pressed caching over the paging time for a regular LRU
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Figure 3: Compressed caching yields consistent benefits across a wide range of memory sizes.
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Figure 4: Varying compression algorithms can affect performance significantly. Even though all algorithms yield
benefits compared to uncompressed virtual memory, some are significantly better than others.



replacement policy.

As can be seen, all algorithms obtain significant ben-
efit over uncompressed virtual memory for the interest-
ing ranges of memory sizes. Benefits of over 40% are
common for large parts of the plots in Figure 4. At the
same time, losses are rare (only exhibited for gnuplot)
and small. Additionally, losses diminish for faster com-
pression algorithms (and faster processors, which is not
shown in this plot). That is, when our adaptivity does not
perform optimally, its cost can be reduced by having a
fast compression algorithm, since it is a direct function of
performing unnecessary compressions and decompres-
sions.

Gnuplot is an interesting program to study more
closely. The program stores data that are highly com-
pressible (exhibiting a ratio of over 4:1 on average). This
way, the compressed VM policy can look at quite large
memory sizes, expecting that it can compress enough
pages so that all the required data remains in memory.
Nevertheless, gnuplot’s running time is dominated by a
large loop iterating only twice on a lot of data. Hence,
for small memory sizes the behavior that the compressed
caching policy tries to exploit ends before any benefits
can be seen. For larger sizes, the benefit can be substan-
tial, reaching over 80%.

As shown in Figure 4, the performance difference of
compressed caching under different compression algo-
rithms can often be over 15%. Our WKdm algorithm
achieves the best performance for the vast majority of
data points, due to its speed and comparable compression
rates to LZO. The LZRW1 algorithm, used by Douglis
yields consistently the worst results. This fact, combined
with the slow machine used (for current standards) are
at least partially responsible for the rather disappointing
results that Douglis observed.

4.2.3 Implementation and Architecture Effects

In the past sections we only showed results for our
SPARC 168 MHz machine. As expected, the faster
SPARC 300 MHz machine has a lower compression and
decompression overhead and, thus, should perform bet-
ter overall. The Pentium Pro 180 MHz machine is usu-
ally slower than both SPARC machines in compressing
and uncompressing pages (not unexpectedly as it is an
older architecture—see also out later remarks on mem-
ory bandwidth).

Figure 5 shows three of our test programs simulated
under WKdm and LZO in all three architectures. For
WKdm, the performance displayed agrees with our ob-
servations on machine speeds. Nevertheless, the per-

formance of LZO is significantly better on the Pentium
Pro 180 MHz machine than one would expect based on
the machine speed alone. The reason is that, as pointed
out earlier, the implementation of LZO we used on the
Pentium Pro is hand optimized for speed in Intel x86
assembly language. Perhaps surprisingly, the effect of
the optimization is quite significant, as can be seen. For
ghostscript, for instance, the Pentium Pro is faster than
the SPARC 168 MHz using LZO.

4.3 Technology Trends

4.3.1 Is Memory Bandwidth a Problem?

Compressed caching mostly benefits from the increases
of CPU speed relative to disk latency. Nevertheless, a
different factor comes into play when disk and memory
bandwidths are taken into account. A first observation
is that moving data from memory takes at most one-
third of the execution time of our WKdm compression
algorithm. (This ratio is true for both the Pentium Pro
180 MHz machine, which has a slow memory subsys-
tem, and the SPARC 300 MHz, which has a fast proces-
sor. It is significantly better for the SPARC 168 MHz
machine.) Hence, memory bandwidth does not seem to
be the limiting factor for the near future. Even more
importantly, faster memory architectures (e.g., RAM-
BUS) will soon become widespread and compression al-
gorithms can fully benefit as they only need to read con-
tiguous data. The overall trend is also favorable. Mem-
ory bandwidths have historically grown at 40%, while
disk bandwidths and latencies have only grown at rates
around 20%. (An analysis of technology trends can be
found in M. Dahlin’s “Technology Trends” Web Page at
http://www.cs.utexas.edu/users/dahlin/techTrends/ .)

4.3.2 Sensitivity Analysis

The cost and benefits of compressed caching are de-
pendent on the relative costs of compressing (and un-
compressing) a page vs. fetching a page from disk. If
compression is insufficiently fast relative to disk paging,
compressed virtual memory will not be worthwhile.

On the other hand, if CPU speeds continue to increase
far faster than disk speeds, as they have for many years,
then compressed virtual memory will become increas-
ingly effective and increasingly attractive. Over the last
decade, CPU speeds have increased by about 60% a year,
while disk latency and bandwidth have increased by only
about 20% a year. This works out to an increase in CPU
speeds relative to disk speeds of one third a year—or a
doubling every two and a half years, and a quadrupling
every five years.
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Figure 5: A SPARC 168 MHz usually has better performance than a Pentium Pro 180 MHz, while a SPARC 300 MHz
is significantly better than both. Nevertheless, the Pentium Pro 180 MHz is much faster for a hand-optimized version
of the LZO algorithm, sometimes surpassing the SPARC 168 MHz.
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Figure 6: A sensitivity analysis studying disks of various speeds. This conservatively covers the cases of slower CPUs,
perfect prefetching, and larger page sizes.



Figure 6 shows plots of simulated performance of our
adaptive caching system, using page compression tim-
ings measured on a 300 MHz UltraSPARC. Each line
represents the paging costs for simulations using a given
disk fault cost. Costs are normalized to the performance
of a conventional LRU memory with the same disk page
access time; that is, each curve represents the speedup or
slowdown that comes from using compressed caching.

The middle line in each plot can be regarded as the
performance of a machine the speed of a 300 MHz Ultra-
SPARC with an average page fetch cost (for 4KB pages)
of only 2.5ms, about one third the average disk seek time
of a fast disk. Note that, in normalized performance
terms, assuming a twice as fast disk is exactly equiva-
lent to assuming a twice as slow CPU. At the same time,
studying the case of a fast disk conservatively covers the
case of perfect prefetching of multiple pages (a twice as
fast disk is equivalent to always prefetching the next two
needed pages with one seek). This, in turn, conserva-
tively covers the case of using larger page sizes. Hence,
our sensitivity analysis (taking into account fast disks)
also subsumes many other scenarios.

Looking at the middle line of each plot, we can see
that with a disk page access cost of 2.5ms, most pro-
grams show a reduction of paging times by 30 to 70 per-
cent, averaged across the interesting range of memory
sizes. Thus, compressed virtual memory is a very clear
win even for a disk access cost of 2.5ms per 4KB page.
The line above the middle one can be taken to represent
a system with the same CPU speed and disk costs a fac-
tor of two lower, at 1.25ms per 4KB page. Even though
performance for this system is significantly worse, still
much speedup is obtained. The top line represents a sys-
tem where disk page accesses cost only 0.625ms per 4KB
page. For some programs, this degrades performance
overall to the point that compressed caching is not worth-
while.

Going the other direction, along with the technology
trends, we can look at the next lower line to see the per-
formance of a system with twice as fast a processor rela-
tive to its disk. For most of our programs, each doubling
of CPU speed offers a significant additional speedup,
typically decreasing remaining paging costs by ten to
forty percent.

5 Related Work

Our compression algorithms are roughly similar to the
well-known MTF (“move-to-front”) algorithm, which
maintains an LRU ordering, but is unusual in its use of
partial matching and a fixed 32-bit word as its basic gran-
ularity of operation. (The general MTF scheme is fairly

obvious and has been invented independently at least
four times [BCW90] before we reinvented it yet again.)

The use of partial matching (only the high bits) can
be viewed as a simple and fast approximation of delta
coding, a technique used for purely numeric data (such
as sensor input data or digitized audio) [Nel95].4 Delta
coding (a form of differential coding) encodes a numer-
ical value as a numerical difference from the previous
numerical value. Unlike a traditional delta coder, our al-
gorithm can encode a value by its difference (low bits)
from any of the values in an MTF dictionary, rather than
the unique previous value.

In [KGJ96], Kjelso, Gooch, and Jones presented a
compression algorithm also designed for in-memory
data. Their X-match algorithm (which is designed for
hardware implementation) is similar to ours in that both
use a small dictionary of recently used words. Rizzo, in
[Riz97], also devised a compression algorithm specific to
in-memory data. His approach was to compress away the
large number of zeros found in such data. Rizzo asserts
that more complex modeling would be too costly. We
have shown that it is possible to find more regularities
without great computational expense.

While we have not addressed the compression of ma-
chine code, others have shown that it is possible to com-
press machine code by a factor of 3 using a specially
tuned version of a conventional compressor [Yu96] and
by as much as a factor of 5 using a compressor that un-
derstands the instruction set [EEF+97]. We believe that
similar techniques can be made very fast and achieve a
compression ratio of at least 2, similar to the ratios we
get for data, so an overall compression ratio of 2 for
both code and data should generally be achievable. This
is within 20% of the size reduction found by Cogswell
and Russinovich using an extremely fast, simple, and un-
tuned “general purpose” compression algorithm [RC96].
(Their paging data also support the assumption that full
workloads exhibit the kind of locality needed for com-
pressed paging, making our focus on data paging more
reasonable.)

A significant previous study of compressed caching
was done by Douglis, who implemented a compressed
virtual memory for the Sprite operating system and eval-
uated it on a DECStation 5000, which is several times to
an order of magnitude slower than the machines we used
in our experiments.

Douglis’s results were mixed, in that compressed vir-
tual memory was beneficial for some programs and detri-
mental to others. As should be apparent from our dis-

4“Delta coding” is something of a misnomer because it’s really a
modeling technique with an obvious encoding strategy.



cussion of performance modeling, we believe that this
was primarily due to the slow hardware (by today’s stan-
dards) used. This is supported by our sensitivity analy-
sis, which showed that an 8 times slower machine than a
300 MHz UltraSPARC would yield mixed results, even
with better compression algorithms than those available
to Douglis.

As discussed earlier, Russinovich and Cogswell’s
study [RC96] showed that a simple compression cache
was unlikely to achieve significant benefits for the PC
application workload they studied. Nevertheless, their
results do not seem to accurately reflect the trade-offs in-
volved. On one hand, they reported compression over-
heads that seem unrealistically low (0.05ms per com-
pression on an Intel 80486 DX2/66, which is improbable
even taking only the memory bandwidth limitations into
account). But the single factor responsible for their re-
sults is the very high overhead for handling a page fault
that they incurred (2ms—this is overhead not containing
the actual seek time). This overhead is certainly a result
of using a slow processor but it is possibly also an artifact
of the OS used (Windows 95) and their implementation.

A study on compressed caching, performed in 1997
but only very recently published, was done by Kjelso,
Gooch, and Jones [KGJ99]. They, too, used simulations
to demonstrate the efficacy of compressed caching. Ad-
ditionally, they addressed the problem of memory man-
agement for the variable-size compressed pages. Their
experiments used the LZRW1 compression algorithm in
software and showed for most programs the same kinds
of reduction in paging costs that we observed. These
benefits become even greater with a hardware implemen-
tation of their X-match algorithm.

Kjelso, Gooch, and Jones did not, however, address
the issue of adaptively resizing the compressed cache in
response to reference behavior. Instead, they assumed
that it is always beneficial to compress more pages to
avoid disk faults. This is clearly not true as when more
pages are compressed, many more memory accesses may
suffer a decompression overhead, while only a few disk
faults may be avoided. The purpose of our adaptive
mechanism is to determine when the trade-off is ben-
eficial and compression should actually be performed.
Kjelso, Gooch, and Jones did acknowledge that some
compressed cache sizes can damage performance. In-
deed, their results strongly suggest the need for adap-
tivity: two of their four test programs exhibit perfor-
mance deterioration under software compression for sev-
eral memory sizes.

6 Conclusions

Compressed virtual memory appears quite attractive
on current machines, offering an improvement of tens
of percent in virtual memory system performance. This
improvement is largely due to increases in CPU speeds
relative to disk speeds, but substantial additional gains
come from better compression algorithms and successful
adaptivity to program behavior.

For all of the programs we examined, on currently
available hardware, a virtual memory system that uses
compressed caching will incur significantly less paging
cost. Given memory sizes for which running a program
suffers tolerable amounts of paging, compressed caching
often eliminates 20% to 80% of the paging cost, with
an average savings of approximately 40%. As the gap
between processor speed and disk speed increases, the
benefit will continue to improve.

The recency based approach to adaptively resizing the
compression cache provides substantial benefit at nearly
any memory size, for many kinds of programs. In our
tests, the adaptive resizing provided benefit over a very
wide range of memory sizes, even when the program
was paging little. The adaptivity is not perfect, as small
cost may be incurred due to failed attempts to resize the
cache, but performs well for the vast majority of pro-
grams. Moreover, it is capable of providing benefit for
small, medium, and large footprint programs.

The WK compression algorithms successfully take
advantage of the regularities of in-memory data, pro-
viding reasonable compression at high speeds. After
many decades of development of Ziv-Lempel compres-
sion techniques, our WKdm compressor fared favorably
with the fastest known LZ compressors. Further research
into in-memory data regularities promises to provide
tighter compression at comparable speeds, improving the
performance and applicability of compressed caching for
more programs.

It appears that compressed caching is an idea whose
time has come. Hardware trends favor further improve-
ment in compressed caching performance. Although past
experiments failed to produce positive results, we have
improved on the components required for compressed
caching and have found that it could be successfully ap-
plied today.
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Abstract

Compressed caching uses part of the available RAM to
hold pages in compressed form, effectively adding a new
level to the virtual memory hierarchy. This level attempts
to bridge the huge performance gap between normal (un-
compressed) RAM and disk.

Unfortunately, previous studies did not show a consis-
tent benefit from the use of compressed virtual memory.
In this study, we show that technology trends favor com-
pressed virtual memory—it is attractive now, offering re-
duction of paging costs of several tens of percent, and
it will be increasingly attractive as CPU speeds increase
faster than disk speeds.

Two of the elements of our approach are innova-
tive. First, we introduce novel compression algorithms
suited to compressing in-memory data representations.
These algorithms are competitive with more mature Ziv-
Lempel compressors, and complement them. Second, we
adaptively determine how much memory (if at all) should
be compressed by keeping track of recent program be-
havior. This solves the problem of different programs,
or phases within the same program, performing best for
different amounts of compressed memory.

1 Introduction

For decades, CPU speeds have continued to double ev-
ery 18 months to two years, but disk latencies have im-
proved only very slowly. Disk latencies are five to six
orders of magnitude greater than main memory access
latencies, while other adjacent levels in the memory hi-
erarchy typically differ by less than one order of mag-
nitude. Programs that run entirely in RAM benefit from
improvements in CPU speeds, but the runtime of pro-
grams that page is likely to be dominated by disk seeks,
and may run many times more slowly than CPU-bound
programs.

In [Wil90, Wil91b] we proposed compressed caching
for virtual memory—storing pages in compressed form
in a main memory compression cache to reduce disk pag-
ing. Appel also promoted this idea [AL91], and it was
evaluated empirically by Douglis [Dou93] and by Russi-
novich and Cogswell [RC96]. Unfortunately Douglis’s
experiments with Sprite showed speedups for some pro-
grams, but no speedup or some slowdown for others.
Russinovich and Cogswell’s data for a mixed PC work-
load showed only a slight potential benefit. There is a
widespread belief that compressed virtual memory is at-
tractive only for machines without a fast local disk, such
as diskless handheld computers or network computers,
and laptops with slow disks. As we and Douglis pointed
out, however, compressed virtual memory is more attrac-
tive as CPUs continue to get faster. This crucial point
seems to have been generally overlooked, and no operat-
ing system designers have adopted compressed caching.

In this paper, we make a case for the value of com-
pressed caching in modern systems. We aim to show
that the discouraging results of former studies were pri-
marily due to the use of machines that were quite slow
by current standards. For current, fast, disk-based ma-
chines, compressed virtual memory offers substantial
performance improvements, and its advantages only in-
crease as processors get faster. We also study future
trends in memory and disk bandwidths. As we show,
compressed caching will be increasingly attractive, re-
gardless of other OS improvements (like sophisticated
prefetching policies, which reduce the average cost of
disk seeks, and log-structured file systems, which reduce
the cost of writes to disk).

We will also show that the use of better compression
algorithms can provide a significant further improvement
in the performance of compressed caching. Better Ziv-
Lempel variants are now available, and we introduce here
a new family of compression algorithms designed for in-
memory data representations rather than file data.



The concrete points in our analysis come from simula-
tions of programs covering a variety of memory require-
ments and locality characteristics. At this stage of our
experiments, simulation was our chosen method of eval-
uation because it allowed us to easily try many ideas in
a controlled environment. It should be noted that all our
simulation parameters are either relatively conservative
or perfectly realistic. For instance, we assume a quite
fast disk in our experiments. At the same time, the costs
of compressions and decompressions used in our simu-
lations are the actual runtime costs for the exact pages
whose compression or decompression is being simulated
at any time.

The main value of our simulation results, however,
is not in estimating the exact benefit of compressed
caching (even though it is clearly substantial). Instead,
we demonstrate that it is possible to detect reliably how
much memory should be compressed during a phase of
program execution. The result is a compressed virtual
memory policy that adapts to program behavior. The
exact amount of compressed memory crucially affects
program performance: compressing too much memory
when it is not needed can be detrimental, as is compress-
ing too little memory when slightly more would pre-
vent many memory faults. Unlike any fixed fraction of
compressed memory, our adaptive compressed caching
scheme yields uniformly high benefits for all test pro-
grams and a wide range of memory sizes.

2 Compression Algorithms

In [WLM91] we explained how a compressor with a
knowledge of a programming language implementation
could exploit that knowledge to achieve high compres-
sion ratios for data used by programs. In particular, we
explained how pointer data contain very little informa-
tion on average, and that pointers can often be com-
pressed down to a single bit.

Here we describe algorithms that make much weaker
assumptions, primarily exploiting data regularities im-
posed by hardware architectures and common program-
ming and language-implementation strategies. These al-
gorithms are fast and fairly symmetrical—compression is
not much slower than decompression. This makes them
especially suitable for compressed virtual memory ap-
plications, where pages are compressed about as often as
they’re decompressed. 1

1A variant of one of our algorithms has been used successfully for
several years in the virtual memory system of the Apple Newton, a
personal digital assistant with no disk [SW91] (Walter Smith, personal
communication 1994, 1997). While we have not previously published
this algorithm, we sketched it for Smith and he used it in the New-
ton, with good results—it achieved slightly less compression than a

As we explain below, the results for these algo-
rithms are quite encouraging. A straightforward imple-
mentation in C is competitive with the best assembly-
coded Ziv-Lempel compressor we could find, and su-
perior to the LZRW1 algorithm (written in C by Ross
Williams)[Wil91a] used in previous studies of com-
pressed virtual memory and compressed file caching.

As we will explain, we believe that our results are sig-
nificant not only because our algorithms are competitive
and often superior to advanced Ziv-Lempel algorithms,
but because they are different. Despite their immaturity,
they work well, and they complement other techniques.
They also suggest areas for research into significantly
more effective algorithms for in-memory data.

(Our algorithms are also interesting in that they could
be implemented in a very small amount of hardware, in-
cluding only a tiny amount of space for dictionaries, pro-
viding extraordinarily fast and cheap compression with a
small amount of hardware support.)

2.1 Background: Compression

To understand our algorithms and their relationship to
other algorithms, it is necessary to understand a few basic
ideas about data compression. (We will focus on lossless
compression, which allows exact reconstruction of the
original data, because lossy compression would gener-
ally be a disaster for compressed VM.)

All data compression algorithms are in a deep sense
ad hoc—they must exploit expected regularities in data
to achieve any compression at all. All compression al-
gorithms embody expectations about the kinds of regu-
larities that will be encountered in the data being com-
pressed. Depending on the kind of data being com-
pressed, the expectations may be appropriate or inappro-
priate and compression may work better or worse. The
main key to good compression is having the right kinds
of expectations for the data at hand.

Compression can be thought of as consisting of two
phases, which are typically interleaved in practice: mod-
eling and encoding [BCW90, Nel95]. Modeling is the
process of detecting regularities that allow a more con-
cise representation of the information. Encoding is the
construction of that more concise representation.

Ziv-Lempel compression. Most compression algo-
rithms, including the overwhelmingly popular Ziv-
Lempel family, are based on detection of exact repeti-
tions of strings of atomic tokens. The token size is usu-
ally one byte, for speed reasons and because much data

Ziv-Lempel algorithm Apple had used previously, but was much faster.
Unfortunately, we do not have any detailed performance comparisons.



is in some sense byte-oriented (e.g., characters in a text
file) or multiple-byte oriented (e.g., some kinds of image
data, Intel Architecture machine code, unicode).

A Ziv-Lempel compressor models by reading through
the input data token by token, constructing a dictionary
of observed sequences, and looking for repetitions as it
goes. It encodes by writing strings to its output the first
time they are observed, but writing special codes when
a repetition is encountered (e.g., the number of the dic-
tionary entry). The output thus consists of appropriately
labeled “new” data and references to “old” data (repeti-
tions).

The corresponding LZ decompressor reads through
this data much like an interpreter, reconstructing the dic-
tionary created during compression. When it sees a new
string, it adds it to the dictionary just as the compressor
did, as well as sending it to its (uncompressed) output.
When it sees a code for a repetition of a dictionary item,
it copies that item to its output. In this way, its dictio-
nary always matches the dictionary that the compressor
had at the same point in the data stream, and its output
replicates the original input by expanding the repetition
codes into the strings they represent.

The main assumption embodied by this kind of com-
pressor is that literal repetitions of multi-token strings
will occur in the input—e.g., you’ll often see several
bytes in a row that are exactly the same bytes in the same
order as something you saw before. This is a natural as-
sumption in text, and reasonable in some other kinds of
data, but often wrong for in-memory data.

2.2 In-Memory Data Representations

It is commonly thought that LZ-style compression is
“general purpose,” and that in-memory data are fairly
arbitrary—different programs operate on different kinds
of data in different ways, so there’s not much hope for
a better algorithm than LZ for compressing in-memory
data. The first assumption is basically false,2 and the
second is hasty, so the conclusion is dubious.

While different programs do different things, there are
some common regularities, which is all a compression
algorithm needs to work well on average. Rather than
consisting of byte strings, the data in memory are often

2It is worth stressing this again, because there is widespread confu-
sion about the “optimality” of some compression algorithms. In gen-
eral, an encoding scheme (such as Huffman coding or arithmetic cod-
ing) can be provably optimal within some small factor, but a compres-
sor cannot, unless the regularities in the data are known in advance and
in detail. Sometimes compression algorithms are proven optimal based
on the simplifying assumption that the source is a stochastic (random-
ized, typically Markov) source, but real data sources in programs are
generally not stochastic[WJNB95], so the proof does not hold for real
data.

best viewed as records and data structures—the overall
array of memory words is typically used to store records,
whose fields are mostly one or two words. Note that
fields of records are usually word-aligned and that the
data in those words are frequently numbers or pointers.
Pointers can be usefully viewed as numbers—they are
integer indices into the array of memory itself.

Integer and pointer data often have certain strong regu-
larities. Integer values are usually numerically small (so
that only their low-order bytes have significant informa-
tion content), or else similar to other integers very nearby
in memory.

Likewise, pointers are likely to point to other ob-
jects nearby in memory, or be similar to other nearby
pointers—that is, they may point to another area of mem-
ory, but other pointers nearby may point to the same area.
These regularities are quite common and strong. One
reason is that heap data are often well-clustered; com-
mon memory allocators tend to allocate mostly within a
small area of memory most of the time; data structures
constructed during a particular phase of program execu-
tion are often well-clustered and consist of one or a few
types of similar objects [WJNB95].

Other kinds of data often show similar regularities.
Examples include the hidden headers many allocators
put on heap objects, virtual function table pointers in
C++ objects, booleans, etc.

These regularities are strong largely because in-
memory data representations are designed primarily for
speed, not space, and because real programs do not usu-
ally use random data or do random things with data.
(Even randomized data can be very regular in this way;
consider an array of random integers less than 1000—all
of them will have zeroes in their upper 22 bits.)

2.3 Exploiting In-Memory Data Regularities

Our goal in this section is to convey the basic flavor
of our algorithms (which we call WK algorithms); the
actual code is available from our web site and is well-
commented for those who wish to explore it or experi-
ment with it.

We note that these algorithms were designed several
years ago, when CPU’s were much slower than today—
they therefore stress simplicity and speed over achieving
high compression. We believe that better algorithms can
be designed by refining the basic modeling technique,
perhaps in combination with more traditional sequence-
oriented modeling, and by using more sophisticated en-
coding strategies. Given their simplicity, however, they
are strikingly effective in our experiments.



Our compression algorithms exploit in-memory data
regularities by scanning through the input data a 32-bit
word at a time, and looking for data that are numerically
similar—specifically, repetitions of the high-order 22-bit
pattern of a word, even if the low-order 10 bits are differ-
ent.3 They therefore perform partial matching of whole-
word bit patterns.

To detect repetitions, the encoder maintains a dictio-
nary of just 16 recently-seen words. (One of our algo-
rithms manages this dictionary as a direct mapped cache,
and another as a 4x4 set-associative cache, with LRU
used as the replacement algorithm for each set. These
are simple software caching schemes, and could be triv-
ially implemented in very fast hardware. Due to lack of
space and because the exact algorithm did not matter for
compressed caching performance, we will only discuss
the direct-mapped algorithm in this paper.)

For these compression algorithms to work as well as
they do, the regularities must be very strong. Where a
typical LZ-style compressor uses a dictionary of many
kilobytes (e.g., 64 KB), our compressors use only 64
bytes and achieve similar compression ratios for in-
memory data.

The compressor scans through a page, reading each
word, probing its cache (dictionary) for a matching pat-
tern, and emitting a two-bit code classifying the word. A
word may

� not match a dictionary entry, or

� match only in the upper 22 bits, or

� match a whole 32-bit pattern.

As a special case, we check first to see if the word is all
zeroes, i.e., matches a full-word zero, in which case we
use the fourth two-bit pattern.

For the all-zeroes case, only the two-bit tag is writ-
ten to the compressed output page. For the other three
cases, additional information must be emitted as well. In
the no-match case, the entire 32-bit pattern that did not
match anything is written to the output. For a full (32-bit)
match, the dictionary index is written, indicating which
dictionary word was repeated. For the partial (22-bit)
match case, the dictionary index and the (differing) low
10 bits are written.

The corresponding decompressor reads through the
compressed output, examining one two-bit tag at a time

3The 22/10 split was arrived at experimentally, using an early data
set that partially overlaps the one used in this study. The effectiveness
of the algorithm is not very sensitive to this parameter, however, and
varying the split by 2 bits does not seem to make much difference—
using more high bits means that matches are encoded more compactly,
but somewhat fewer things match.

and taking the appropriate action. As with more conven-
tional compression schemes, a tag indicating no-match
directs it to read an item (one word) from the compressed
input, insert it in the dictionary, and echo it to the output.
A tag indicating all-zeroes directs it to write a word of
zeroes to its output. A tag indicating a full-word match
directs it to copy a dictionary item to the output, either
whole (in the full match case) or with its low bits re-
placed by bits consumed from the input (for a partial
match).

The encoding can then be performed quickly. Rather
than actually writing the result of compressing a word
directly to the output, the algorithm writes each kind of
information into a different intermediate array as it reads
through the input data, and then a separate postprocess-
ing pass “packs” that information into the output page,
using a fast packing routine. (The output page is seg-
mented, with each segment containing one kind of data:
tags, dictionary indices, low bits, and full words.) For ex-
ample, the two-bit tags are actually written as bytes into
a byte array, and a special routine packs four consecutive
words (holding 16 tags) into a single word of output by
shifting and XORing them together. During decompres-
sion, a prepass unpacks these segments before the main
pass reconstructs the original data.

3 Adaptively Adjusting the Compression
Cache Size

To perform well, a compressed caching system should
adapt to the working set sizes of the programs it caches
for. If a program’s working set fits comfortably in RAM,
few pages (or no pages) should be kept compressed, so
that the overwhelming majority of pages can be kept in
uncompressed form and accessed with no penalty. If a
program’s working set is larger than the available RAM,
and compressing pages would allow it to be kept in
RAM, more pages should be compressed until the work-
ing set is “captured”. In this case, the reduction in disk
faults may greatly outweigh the increase in compression
cache accesses, because disk faults are many times more
expensive than compression cache faults.

Douglis observed in his experiments that different pro-
grams needed compressed caches of different sizes. He
implemented an adaptive cache-sizing scheme, which
varied the split between uncompressed and compressed
RAM dynamically. Even with this adaptive caching sys-
tem, however, his results were inconsistent; some pro-
grams ran faster, but others ran slower. We believe that
Douglis’s adaptive caching strategy may have been partly
at fault. Douglis used a fairly simple scheme in which
the two caches competed for RAM on the basis of how



recently their pages were accessed, rather like a normal
global replacement policy arbitrating between the needs
of multiple processes, keeping the most recently-touched
pages in RAM. Given that the uncompressed cache al-
ways holds more recently-touched pages than the com-
pressed cache, this scheme requires a bias to ensure that
the compressed cache has any memory at all. We believe
that this biased recency-based caching can be maladap-
tive, and that a robust adaptive cache-sizing policy can-
not be based solely on the LRU ordering of pages within
the caches.

3.1 Online Cost/Benefit Analysis

Our own adaptive cache-sizing mechanism addresses
the issue of adaptation by performing an online
cost/benefit analysis, based on recent program behav-
ior statistics. Assuming that behavior in the relatively
near future will resemble behavior in the relatively re-
cent past, our mechanism actually keeps track of aspects
of program behavior that bear directly on the perfor-
mance of compressed caching for different cache sizes,
and compresses more or fewer pages to improve perfor-
mance.

This system uses the kind of recency information kept
by normal replacement policies, i.e., it maintains an ap-
proximate ordering of the pages by how recently they
have been touched. Our system extends this by retaining
the same information for pages which have been recently
evicted. This information is discarded by most replace-
ment policies, but can be retained and used to tell how
well a replacement policy is working, compared to what
a different replacement policy would do.

We therefore maintain an LRU (or recency) ordering
of the pages in memory and a comparable number of
recently-evicted pages. This ordering is not used primar-
ily to model what is in the cache, but rather to model
what the program is doing.

A Simplified Example. To understand how our system
works, consider a very simple version which manages a
pool of 100 page frames, and only chooses between two
compressed cache sizes: 50 frames, and 0 frames. With a
compression cache of 50 frames and a compression ratio
of 2:1, we can hold the 50 most-recently-accessed pages
in uncompressed form in the uncompressed cache, and
the next 100 in compressed form. This effectively in-
creases the size of our memory by 50% in terms of its
effect on the disk fault rate.

The task of our adaptation mechanism is to decide
whether doing this is preferable to keeping 100 pages in
uncompressed form and zero in compressed form. (We
generally assume that pages are compressed before being

evicted to disk, whether or not the compression cache is
of significant size. Our experiments show that this cost
is very small.)

memory size
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Figure 1: Cost/benefit computation using the miss-rate
histogram.

Figure 1 shows an example miss rate histogram deco-
rated with some significant data points. (This is not real
data, and not to scale because the actual curve is typically
very high on the far left, but the data points chosen are
reasonable).

The benefit of this 50/50 configuration is the reduction
in disk faults in going from a memory of size 100 to a
memory of size 150. We can measure this benefit simply
by counting the number of times we fault on pages that
are between the 101st and 150th positions in the LRU
ordering (30,000 in Figure 1), and multiplying that count
by the cost of disk service.

The cost of this 50/50 configuration is the cost of com-
pressing and decompressing all pages outside the uncom-
pressed cache region. These are exactly the touches to
the pages beyond the 51st position in the LRU ordering
(200,000 touches). Thus, in the example of Figure 1,
compressed caching is beneficial if compressing and de-
compressing 200,000 pages is faster than fetching 30,000
pages from disk.

In general, our recency information allows us to es-
timate the cost and benefit of a compression cache of a
given size, regardless of what the current size of the com-
pression cache actually is, and which pages are currently
in memory. That is, we can do a “what if analysis” to
find out if the current split of memory between caches
is a good one, and what might be a better one. We can
simply count the number of touches to pages in differ-
ent regions of the LRU ordering, and interpret those as
hits or misses relative to different sizes of uncompressed
cache and corresponding sizes of compressed cache and
overall effective memory size.



Multiple target sizes. We generalize the above scheme
by using several different “target” compression cache
sizes, interpreting touches to different ranges of the LRU
ordering appropriately for each size. The adaptive com-
ponent of our system computes the costs and benefits
of each of the target sizes, based on recent counts of
touches to regions of the LRU ordering, and chooses the
target size with the lowest cost. Then the compressed
cache size is adjusted in a demand-driven way: memory
is compressed or uncompressed only when an access to a
compressed page (either in compressed RAM or on disk)
occurs.

Actually, our system chooses a target uncompressed
cache size, and the corresponding overall effective cache
size is computed based on the number of page frames
left for the compressed cache, multiplied by an esti-
mate of the compression ratio for recently compressed
pages. This means that the statistics kept by our adaptiv-
ity mechanism are not exact (our past information may
contain hits that are in a different recency region than that
indicated by the current compressibility estimate). Nev-
ertheless, this does not seem to matter much in our sim-
ulations; approximate statistics about which pages have
been touched how recently are quite sufficient. This indi-
cates that our system will not be sensitive to the details of
the replacement policy used for the uncompressed cache;
any normal LRU approximation should work fine. (E.g.,
a clock algorithm using reference bits, a FIFO-LRU seg-
mented queue using kernel page traps, or a RANDOM-
LRU segmented queue using TLB miss handlers.)

The overheads of updating the statistics, performing
the cost/benefit analyses, and adaptively choosing a tar-
get split are low—just a few hundred instructions per un-
compressed cache miss, if the LRU list is implemented
as a tree with an auxiliary table (a hash table or sparse
page-table like structure).

3.2 Adapting to Recent Behavior

To adapt to recent program behavior our statistics are
decayed exponentially with time. Time, however, is de-
fined as the number of interesting events elapsed. Events
that our system considers “interesting” are page touches
that could affect our cost benefit analysis (i.e., would
have been hits if we had compressed as much memory as
any of our target compression sizes currently suggests).
Defining time this way has the benefit that touches to
very recently used pages are ignored, thus filtering out
high-frequency events.

Additionally, the decay factor used is inversely pro-
portional to the size of memory (total number of page
frames), so that time typically advances more slowly for
larger memories than for small ones—small memories

usually have a shorter replacement cycle, and need to de-
cay their statistics at a faster rate than larger ones.

If the decay rate were not inversely proportional to the
memory size, time would advance inappropriately slowly
for small memories and inappropriately quickly for large
ones. The small cache would wait too long to respond
to changes, and the large one would twitchily “jump” at
brief changes in program behavior, which are likely not
to persist long enough to be worth adapting toward.

Extensive simulation results show that this strategy
works as intended: our adaptivity ensures that for any
memory size, the cache responds to changes in the re-
cent behavior of a program relatively quickly, so that it
can benefit from relatively persistent program behavior,
but not so quickly that it is continually “distracted” by
short duration behaviors.

A single setting of the decay factor (relativized auto-
matically to the memory size) works well across a variety
of programs, and across a wide ranges of memory sizes.

4 Detailed Simulations

In this section, we describe the methodology and re-
sults of detailed simulations of compressed caching. We
captured page image traces, recording the pages touched
and their contents, for six varied UNIX programs, and
used these to simulate compressed caching in detail.

(The code for our applications, tracing and filtering
tools, and compressors and simulator are all available
from our web site for detailed study and further re-
search.)

Note that our traces do not contain references to exe-
cutable code pages. We focus on data pages, because our
main interest is in compressing in-memory data. As we
will explain in Section 5, compressing code equally well
is an extra complication but can certainly be done. Sev-
eral techniques complementary to ours have been pro-
posed for compressing code and the data from [RC96]
indicate that references to code pages exhibit the same
locality properties as references to data pages.

4.1 Methodology

Test suite. For these simulations, we traced six pro-
grams on an Intel x86 architecture under the Linux oper-
ating system with a page size of 4KB (we will study the
effect of larger page sizes in Section 4.3). The behavior
of most of these programs is described in more detail in
[WJNB95]. Here is a brief description of each:

� gnuplot: A plotting program with a large input pro-
ducing a scatter plot.



� rscheme: A bytecode-based interpreter for a
garbage-collected language. Its performance is
dominated by the runtime of a generational garbage
collector.

� espresso: A circuit simulator.

� gcc: The component of the GNU C compiler that
actually performs C compilation.

� ghostscript: A PostScript formatting engine.

� p2c: A Pascal to C translator.

These programs constitute a good test selection for
locality experiments (as we try to test the adaptivity of
our compressed caching policy relative to locality pat-
terns at various memory sizes). Their data footprints
vary widely: gnuplot and rscheme are large programs
(with over 14,000 and 2,000 pages, respectively), gcc and
ghostscript are medium-sized (around 550 pages), while
espresso and p2c are small (around 100 pages).

We used the following three processors:

1. Pentium Pro at 180 MHz: This processor approx-
imately represents an average desktop computer at
this time. Compressed caching is not only for fast
machines.

2. UltraSPARC-10 300 Mhz: While one of the fastest
processors available now, it will be an average pro-
cessor two years from now. Compressed caching
works even better on a faster processor.

3. UltraSPARC-2 168 MHz: A slower SPARC ma-
chine which provides an interesting comparison to
the Pentium Pro, due to its different architecture
(e.g., faster memory subsystem).

We used three different compression algorithms in our
experiments:

1. WKdm: A recency based compressor that oper-
ates on machine words and uses a direct-mapped,
16 word dictionary and a fast encoding implemen-
tation.

2. LZO: Specifically, LZO1F, is a carefully coded
Lempel-Ziv implementation designed to be fast,
particularly on decompression tasks. It is well
suited to compressing small blocks of data, using
small codes when the dictionary is small. While all
compressors we study are written in C, this one also
has a speed-optimized implementation (in Intel x86
assembly) for the Pentium Pro.

3. LZRW1: Another fast Lempel-Ziv implementa-
tion. This algorithm was used by Douglis in
[Dou93]. While it does not perform as well as LZO,
we wanted to demonstrate that even this algorithm
would allow for an effective compressed cache on
today’s hardware.

The runtimes of the test suite. Our results are pre-
sented in terms of time spent paging, but it is helpful to
know the processing time required to execute each pro-
gram in the test suite. Figure 2 shows the time required
to execute each of our six programs on each of the three
processors, when no paging occurs. These times can
be added with paging time information to obtain total
turnaround time for a given architecture, memory size,
and virtual memory configuration.

Program P-Pro SPARC SPARC
name 180MHz 168MHz 300MHz
gnuplot 46.89 32.99 20.61
rscheme 8.26 11.77 7.59
espresso 10.07 12.35 7.41
gcc 9.89 14.66 9.41
ghostscript 18.95 26.89 16.84
p2c 2.38 2.91 2.08

Figure 2: The processing times for each program in the
test suite on each processor used in this study. If enough
memory is available such that no paging occurs, these
times will be the turnaround times.

A brief note on compressor performance. All of our
compression algorithms achieve roughly a factor of two
in compression on average for all six programs. All can
compress and decompress a page in well under half a
millisecond on all processors. The WKdm algorithm is
the fastest, compressing a page in about 0.25 millisec-
onds and decompressing in about 0.15 milliseconds on
the Pentium Pro, faster on the SPARC 168 MHz, and
over twice as fast on the SPARC 300 MHz. (This is over
20 MB compressed and uncompressed per second, about
the bandwidth of a quite fast disk.) LZO is about 20%
slower, and LZRW1 about 20% slower still.

Tracing. Our simulator takes as input a trace of the
pages a program touches, augmented with information
about the compressibility and cost of compression of
each touched page for a particular compression algo-
rithm. To create such a trace and keep the trace size
manageable, we used several steps and several tracing
and filtering tools.

We traced each program using the portable tracing tool
VMTrace [WKB]. We added a module to VMTrace that



made it emit a complete copy of each page as it was ref-
erenced. We refer to such traces as page image traces.

Creating compression traces. To record the actual ef-
fectiveness and time cost of compressing each page im-
age, we created a set of compression traces. For each
combination of compression algorithm and CPU, we cre-
ated a trace recording how expensive and how effective
compression is for each page image in the reduced page
image trace. Since we have 6 test programs, 3 compres-
sion algorithms, and 3 CPU’s, this resulted in 54 com-
pression traces.

The tool that creates compression traces is linked with
a compressor and decompressor, and consumes a (re-
duced) page image trace. For each trace record in the
page image trace, it compresses and decompresses the
page image and outputs a trace record. This record con-
tains the page number, the times for compressing and de-
compressing the page’s contents at that moment, and the
resulting compressed size of the page. Each page image
is compressed and decompressed several times, and the
median times are reported. Timing is very precise, using
the Solaris high-resolution timer (all of our compression
timings were done under the Solaris operating system).
To avoid favorable (hardware) caching effects, the caches
are filled with unrelated data before each compression or
uncompression. (This is conservative, in that burstiness
of page faults will usually mean that some of the relevant
memory is still cached in the second-level cache in a real
system.)

Simulation parameters. We used four different target
compression sizes with values equal to 10%, 23%, 37%,
and 50% of the simulated memory size. Thus, during
persistent phases of program behavior (i.e., when the sys-
tem has enough time to adapt) either none, or 10%, or
23%, or 37%, or 50% of our memory pages are holding
compressed data. Limiting the number of target com-
pression sizes to four guarantees that our cost/benefit
analysis incurs a low overhead. The decay factor used is
such that the M-th most recent event (with M being the
size of memory) has a weight equal to 20% of the most
recent event. Our results were not particularly sensitive
to the exact value of the decay factor.

Estimates used. During simulation we had to estimate
the costs for reading a page from disk or writing it to
disk. We conservatively assumed that writing “dirty”
pages to disk incurs no cost at all, to compensate for file
systems that keep low the cost of multiple writes (e.g.,
log-structured file systems). Additionally, we assumed
a disk with a uniform seek time of 5ms. Admittedly, a
more complex model of disk access could yield more ac-
curate results, but this should not affect the validity of

our simulations (a 5ms seek time disk is fast by modern
standards). In Section 4.3 we examine the effect of using
a faster disk (up to a seek time of 0.625ms).

4.2 Results of Detailed Simulations

4.2.1 Wide Range Results

For each of our test programs, we chose a wide range of
memory sizes to simulate. The plots of this section show
the entire simulated range for each program. Subsequent
sections, however, concentrate on the interesting region
of memory sizes. This range usually begins around the
size where a program spends 90% of its time paging and
10% of its time executing on the CPU, and ends at a size
where the program causes very little paging.

Figure 3 shows log-scale plots of the paging time of
each of our programs as a function of the memory size.
Each line in the plot represents the results of simulating
a compressed cache using a particular algorithm on our
SPARC 168 MHz machine. The paging time of a reg-
ular LRU memory system (i.e., with no compression) is
shown for a comparison. As can be seen, compressed
caching yields benefits for a very wide range of mem-
ory sizes, indicating that our adaptivity mechanism reli-
ably detects locality patterns of different sizes. Note that
all compression algorithms exhibit benefits, even though
there are definite differences in their performance.

Figure 3 only aims at conveying the general idea of the
outcome of our experiments. The same results are ana-
lyzed in detail in subsequent sections (where we isolate
interesting memory regions, algorithms, architectures,
and trends).

4.2.2 Normalized Benefits and the Effect of Com-
pression Algorithms

Our first goal is to quantify the benefits obtained by us-
ing compressed caching and to identify the effect of dif-
ferent compression algorithms on the overall system per-
formance. It is hard to see this effect in Figure 3, which
seems to indicate that all compression algorithms obtain
similar results.

A more detailed plot reveals significant variations be-
tween algorithm performance. Figure 4 plots the normal-
ized paging times for different algorithms in the interest-
ing region. (Recall that this usually begins at the size
where a program spends 90% of its time paging and 10%
of its time executing on the CPU, and ends at a size where
the program causes very little paging). By “normalized
paging time” we mean the ratio of paging time for com-
pressed caching over the paging time for a regular LRU
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Figure 3: Compressed caching yields consistent benefits across a wide range of memory sizes.
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Figure 4: Varying compression algorithms can affect performance significantly. Even though all algorithms yield
benefits compared to uncompressed virtual memory, some are significantly better than others.



replacement policy.

As can be seen, all algorithms obtain significant ben-
efit over uncompressed virtual memory for the interest-
ing ranges of memory sizes. Benefits of over 40% are
common for large parts of the plots in Figure 4. At the
same time, losses are rare (only exhibited for gnuplot)
and small. Additionally, losses diminish for faster com-
pression algorithms (and faster processors, which is not
shown in this plot). That is, when our adaptivity does not
perform optimally, its cost can be reduced by having a
fast compression algorithm, since it is a direct function of
performing unnecessary compressions and decompres-
sions.

Gnuplot is an interesting program to study more
closely. The program stores data that are highly com-
pressible (exhibiting a ratio of over 4:1 on average). This
way, the compressed VM policy can look at quite large
memory sizes, expecting that it can compress enough
pages so that all the required data remains in memory.
Nevertheless, gnuplot’s running time is dominated by a
large loop iterating only twice on a lot of data. Hence,
for small memory sizes the behavior that the compressed
caching policy tries to exploit ends before any benefits
can be seen. For larger sizes, the benefit can be substan-
tial, reaching over 80%.

As shown in Figure 4, the performance difference of
compressed caching under different compression algo-
rithms can often be over 15%. Our WKdm algorithm
achieves the best performance for the vast majority of
data points, due to its speed and comparable compression
rates to LZO. The LZRW1 algorithm, used by Douglis
yields consistently the worst results. This fact, combined
with the slow machine used (for current standards) are
at least partially responsible for the rather disappointing
results that Douglis observed.

4.2.3 Implementation and Architecture Effects

In the past sections we only showed results for our
SPARC 168 MHz machine. As expected, the faster
SPARC 300 MHz machine has a lower compression and
decompression overhead and, thus, should perform bet-
ter overall. The Pentium Pro 180 MHz machine is usu-
ally slower than both SPARC machines in compressing
and uncompressing pages (not unexpectedly as it is an
older architecture—see also out later remarks on mem-
ory bandwidth).

Figure 5 shows three of our test programs simulated
under WKdm and LZO in all three architectures. For
WKdm, the performance displayed agrees with our ob-
servations on machine speeds. Nevertheless, the per-

formance of LZO is significantly better on the Pentium
Pro 180 MHz machine than one would expect based on
the machine speed alone. The reason is that, as pointed
out earlier, the implementation of LZO we used on the
Pentium Pro is hand optimized for speed in Intel x86
assembly language. Perhaps surprisingly, the effect of
the optimization is quite significant, as can be seen. For
ghostscript, for instance, the Pentium Pro is faster than
the SPARC 168 MHz using LZO.

4.3 Technology Trends

4.3.1 Is Memory Bandwidth a Problem?

Compressed caching mostly benefits from the increases
of CPU speed relative to disk latency. Nevertheless, a
different factor comes into play when disk and memory
bandwidths are taken into account. A first observation
is that moving data from memory takes at most one-
third of the execution time of our WKdm compression
algorithm. (This ratio is true for both the Pentium Pro
180 MHz machine, which has a slow memory subsys-
tem, and the SPARC 300 MHz, which has a fast proces-
sor. It is significantly better for the SPARC 168 MHz
machine.) Hence, memory bandwidth does not seem to
be the limiting factor for the near future. Even more
importantly, faster memory architectures (e.g., RAM-
BUS) will soon become widespread and compression al-
gorithms can fully benefit as they only need to read con-
tiguous data. The overall trend is also favorable. Mem-
ory bandwidths have historically grown at 40%, while
disk bandwidths and latencies have only grown at rates
around 20%. (An analysis of technology trends can be
found in M. Dahlin’s “Technology Trends” Web Page at
http://www.cs.utexas.edu/users/dahlin/techTrends/ .)

4.3.2 Sensitivity Analysis

The cost and benefits of compressed caching are de-
pendent on the relative costs of compressing (and un-
compressing) a page vs. fetching a page from disk. If
compression is insufficiently fast relative to disk paging,
compressed virtual memory will not be worthwhile.

On the other hand, if CPU speeds continue to increase
far faster than disk speeds, as they have for many years,
then compressed virtual memory will become increas-
ingly effective and increasingly attractive. Over the last
decade, CPU speeds have increased by about 60% a year,
while disk latency and bandwidth have increased by only
about 20% a year. This works out to an increase in CPU
speeds relative to disk speeds of one third a year—or a
doubling every two and a half years, and a quadrupling
every five years.
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Figure 5: A SPARC 168 MHz usually has better performance than a Pentium Pro 180 MHz, while a SPARC 300 MHz
is significantly better than both. Nevertheless, the Pentium Pro 180 MHz is much faster for a hand-optimized version
of the LZO algorithm, sometimes surpassing the SPARC 168 MHz.
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Figure 6: A sensitivity analysis studying disks of various speeds. This conservatively covers the cases of slower CPUs,
perfect prefetching, and larger page sizes.



Figure 6 shows plots of simulated performance of our
adaptive caching system, using page compression tim-
ings measured on a 300 MHz UltraSPARC. Each line
represents the paging costs for simulations using a given
disk fault cost. Costs are normalized to the performance
of a conventional LRU memory with the same disk page
access time; that is, each curve represents the speedup or
slowdown that comes from using compressed caching.

The middle line in each plot can be regarded as the
performance of a machine the speed of a 300 MHz Ultra-
SPARC with an average page fetch cost (for 4KB pages)
of only 2.5ms, about one third the average disk seek time
of a fast disk. Note that, in normalized performance
terms, assuming a twice as fast disk is exactly equiva-
lent to assuming a twice as slow CPU. At the same time,
studying the case of a fast disk conservatively covers the
case of perfect prefetching of multiple pages (a twice as
fast disk is equivalent to always prefetching the next two
needed pages with one seek). This, in turn, conserva-
tively covers the case of using larger page sizes. Hence,
our sensitivity analysis (taking into account fast disks)
also subsumes many other scenarios.

Looking at the middle line of each plot, we can see
that with a disk page access cost of 2.5ms, most pro-
grams show a reduction of paging times by 30 to 70 per-
cent, averaged across the interesting range of memory
sizes. Thus, compressed virtual memory is a very clear
win even for a disk access cost of 2.5ms per 4KB page.
The line above the middle one can be taken to represent
a system with the same CPU speed and disk costs a fac-
tor of two lower, at 1.25ms per 4KB page. Even though
performance for this system is significantly worse, still
much speedup is obtained. The top line represents a sys-
tem where disk page accesses cost only 0.625ms per 4KB
page. For some programs, this degrades performance
overall to the point that compressed caching is not worth-
while.

Going the other direction, along with the technology
trends, we can look at the next lower line to see the per-
formance of a system with twice as fast a processor rela-
tive to its disk. For most of our programs, each doubling
of CPU speed offers a significant additional speedup,
typically decreasing remaining paging costs by ten to
forty percent.

5 Related Work

Our compression algorithms are roughly similar to the
well-known MTF (“move-to-front”) algorithm, which
maintains an LRU ordering, but is unusual in its use of
partial matching and a fixed 32-bit word as its basic gran-
ularity of operation. (The general MTF scheme is fairly

obvious and has been invented independently at least
four times [BCW90] before we reinvented it yet again.)

The use of partial matching (only the high bits) can
be viewed as a simple and fast approximation of delta
coding, a technique used for purely numeric data (such
as sensor input data or digitized audio) [Nel95].4 Delta
coding (a form of differential coding) encodes a numer-
ical value as a numerical difference from the previous
numerical value. Unlike a traditional delta coder, our al-
gorithm can encode a value by its difference (low bits)
from any of the values in an MTF dictionary, rather than
the unique previous value.

In [KGJ96], Kjelso, Gooch, and Jones presented a
compression algorithm also designed for in-memory
data. Their X-match algorithm (which is designed for
hardware implementation) is similar to ours in that both
use a small dictionary of recently used words. Rizzo, in
[Riz97], also devised a compression algorithm specific to
in-memory data. His approach was to compress away the
large number of zeros found in such data. Rizzo asserts
that more complex modeling would be too costly. We
have shown that it is possible to find more regularities
without great computational expense.

While we have not addressed the compression of ma-
chine code, others have shown that it is possible to com-
press machine code by a factor of 3 using a specially
tuned version of a conventional compressor [Yu96] and
by as much as a factor of 5 using a compressor that un-
derstands the instruction set [EEF+97]. We believe that
similar techniques can be made very fast and achieve a
compression ratio of at least 2, similar to the ratios we
get for data, so an overall compression ratio of 2 for
both code and data should generally be achievable. This
is within 20% of the size reduction found by Cogswell
and Russinovich using an extremely fast, simple, and un-
tuned “general purpose” compression algorithm [RC96].
(Their paging data also support the assumption that full
workloads exhibit the kind of locality needed for com-
pressed paging, making our focus on data paging more
reasonable.)

A significant previous study of compressed caching
was done by Douglis, who implemented a compressed
virtual memory for the Sprite operating system and eval-
uated it on a DECStation 5000, which is several times to
an order of magnitude slower than the machines we used
in our experiments.

Douglis’s results were mixed, in that compressed vir-
tual memory was beneficial for some programs and detri-
mental to others. As should be apparent from our dis-

4“Delta coding” is something of a misnomer because it’s really a
modeling technique with an obvious encoding strategy.



cussion of performance modeling, we believe that this
was primarily due to the slow hardware (by today’s stan-
dards) used. This is supported by our sensitivity analy-
sis, which showed that an 8 times slower machine than a
300 MHz UltraSPARC would yield mixed results, even
with better compression algorithms than those available
to Douglis.

As discussed earlier, Russinovich and Cogswell’s
study [RC96] showed that a simple compression cache
was unlikely to achieve significant benefits for the PC
application workload they studied. Nevertheless, their
results do not seem to accurately reflect the trade-offs in-
volved. On one hand, they reported compression over-
heads that seem unrealistically low (0.05ms per com-
pression on an Intel 80486 DX2/66, which is improbable
even taking only the memory bandwidth limitations into
account). But the single factor responsible for their re-
sults is the very high overhead for handling a page fault
that they incurred (2ms—this is overhead not containing
the actual seek time). This overhead is certainly a result
of using a slow processor but it is possibly also an artifact
of the OS used (Windows 95) and their implementation.

A study on compressed caching, performed in 1997
but only very recently published, was done by Kjelso,
Gooch, and Jones [KGJ99]. They, too, used simulations
to demonstrate the efficacy of compressed caching. Ad-
ditionally, they addressed the problem of memory man-
agement for the variable-size compressed pages. Their
experiments used the LZRW1 compression algorithm in
software and showed for most programs the same kinds
of reduction in paging costs that we observed. These
benefits become even greater with a hardware implemen-
tation of their X-match algorithm.

Kjelso, Gooch, and Jones did not, however, address
the issue of adaptively resizing the compressed cache in
response to reference behavior. Instead, they assumed
that it is always beneficial to compress more pages to
avoid disk faults. This is clearly not true as when more
pages are compressed, many more memory accesses may
suffer a decompression overhead, while only a few disk
faults may be avoided. The purpose of our adaptive
mechanism is to determine when the trade-off is ben-
eficial and compression should actually be performed.
Kjelso, Gooch, and Jones did acknowledge that some
compressed cache sizes can damage performance. In-
deed, their results strongly suggest the need for adap-
tivity: two of their four test programs exhibit perfor-
mance deterioration under software compression for sev-
eral memory sizes.

6 Conclusions

Compressed virtual memory appears quite attractive
on current machines, offering an improvement of tens
of percent in virtual memory system performance. This
improvement is largely due to increases in CPU speeds
relative to disk speeds, but substantial additional gains
come from better compression algorithms and successful
adaptivity to program behavior.

For all of the programs we examined, on currently
available hardware, a virtual memory system that uses
compressed caching will incur significantly less paging
cost. Given memory sizes for which running a program
suffers tolerable amounts of paging, compressed caching
often eliminates 20% to 80% of the paging cost, with
an average savings of approximately 40%. As the gap
between processor speed and disk speed increases, the
benefit will continue to improve.

The recency based approach to adaptively resizing the
compression cache provides substantial benefit at nearly
any memory size, for many kinds of programs. In our
tests, the adaptive resizing provided benefit over a very
wide range of memory sizes, even when the program
was paging little. The adaptivity is not perfect, as small
cost may be incurred due to failed attempts to resize the
cache, but performs well for the vast majority of pro-
grams. Moreover, it is capable of providing benefit for
small, medium, and large footprint programs.

The WK compression algorithms successfully take
advantage of the regularities of in-memory data, pro-
viding reasonable compression at high speeds. After
many decades of development of Ziv-Lempel compres-
sion techniques, our WKdm compressor fared favorably
with the fastest known LZ compressors. Further research
into in-memory data regularities promises to provide
tighter compression at comparable speeds, improving the
performance and applicability of compressed caching for
more programs.

It appears that compressed caching is an idea whose
time has come. Hardware trends favor further improve-
ment in compressed caching performance. Although past
experiments failed to produce positive results, we have
improved on the components required for compressed
caching and have found that it could be successfully ap-
plied today.

References

[AL91] Andrew W. Appel and Kai Li. Virtual mem-
ory primitives for user programs. In Fourth
International Conference on Architectural
Support for Programming Languages and



Operating Systems (ASPLOS IV), pages 96–
107, Santa Clara, California, April 1991.

[BCW90] Timothy C. Bell, John G. Cleary, and Ian H.
Witten. Text Compression. Prentice Hall,
Englewood Cliffs, New Jersey, 1990.

[Dou93] Fred Douglis. The compression cache: Us-
ing on-line compression to extend physical
memory. In Proceedings of 1993 Winter
USENIX Conference, pages 519–529, San
Diego, California, January 1993.

[EEF+97] Jens Ernst, William Evans, Christopher W.
Fraser, Steven Lucco, and Todd A. Proeb-
sting. Code compression. In Proceedings of
the 1997 SIGPLAN Conference on Program-
ming Language Design and Implementation,
Las Vega, Nevada, June 1997. ACM Press.

[KGJ96] Morten Kjelso, M. Gooch, and S. Jones.
Main memory hardware data compression.
In 22nd Euromicro Conference, pages 423–
430. IEEE Computer Society Press, Septem-
ber 1996.

[KGJ99] M. Kjelso, M. Gooch, and S. Jones. Per-
formance evaluation of computer architec-
tures with main memory data compression.
In Journal of Systems Architecture 45, pages
571–590. Elsevier Science, 1999.

[Nel95] Mark Nelson. The Data Compression Book
(2nd ed.). M & T Books, 1995.

[RC96] Mark Russinovich and Bryce Cogswell.
RAM compression analysis, Febru-
ary 1996. O’Reilly Online Publishing
Report available from http://ftp.uni-
mannheim.de/info/OReilly/windows/
win95.update/model.html.

[Riz97] Luigi Rizzo. A very fast algorithm for RAM
compression. In Operating Systems Review
311997, pages 36–45, 1997.

[SW91] Walter R. Smith and Robert V. Welland.
A model for address-oriented software and
hardware. In 25th Hawaii International
Conference on Systems Sciences, January
1991.

[Wil90] Paul R. Wilson. Some issues and strate-
gies in heap management and memory hier-
archies. In OOPSLA/ECOOP ’90 Workshop
on Garbage Collection in Object-Oriented
Systems, October 1990. Also appears in SIG-
PLAN Notices 23(3):45–52, March 1991.

[Wil91a] Ross N. Williams. An extremely fast Ziv-
Lempel compression algorithm. In Data
Compression Conference, pages 362–371,
April 1991.

[Wil91b] Paul R. Wilson. Operating system support
for small objects. In International Workshop
on Object Orientation in Operating Systems,
pages 80–86, Palo Alto, California, October
1991. IEEE Press.

[WJNB95] Paul R. Wilson, Mark S. Johnstone, Michael
Neely, and David Boles. Dynamic stor-
age allocation: A survey and critical review.
In 1995 International Workshop on Memory
Management, Kinross, Scotland, UK, 1995.
Springer Verlag LNCS.

[WKB] Paul R. Wilson, Scott F. Kaplan, and V.B.
Balayoghan. Virtual memory reference trac-
ing using user-level access protections. In
Preparation.

[WLM91] Paul R. Wilson, Michael S. Lam, and
Thomas G. Moher. Effective static-graph re-
organization to improve locality in garbage-
collected systems. In Proceedings of the
1991 SIGPLAN Conference on Program-
ming Language Design and Implementa-
tion, pages 177–191, Toronto, Ontario, June
1991. ACM Press. Published as SIGPLAN
Notices 26(6), June 1992.

[Yu96] Tong Lai Yu. Data compression for PC soft-
ware distribution. Software Practice and
Experience, 26(11):1181–1195, November
1996.


