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Abstract

Recent research results [1, 2] using simulation have

demonstrated that Disk Caching Disk (DCD), a new

disk I/O architecture, has the potential for drasti-

cally improving disk write performance besides its

higher reliability than traditional disk systems. To

validate whether DCD can live up to its promise in

the real world environment, we have designed and

implemented a DCD device driver for the Sun's So-

laris operating system. Measured performance re-

sults are very promising. For metadata intensive

benchmarks, our DCD driver outperforms the tra-

ditional system by a factor of 2{6 in terms of pro-

gram execution speeds. The driver also guarantees

�le system integrity in the events of system crashes

or failures. Moreover, unlike other approaches such

as Log-structured File Systems or Soft Updates, the

DCD driver is completely transparent to the OS. It

does not require any changes to the OS or the on-

disk data layout. As a result, it can be used as a

\drop-in" replacement for the traditional disk de-

vice driver in an existing system to obtain imme-

diate performance improvement. Our multi-layered

device-driver approach signi�cantly reduces the im-

plementation overhead and improves portability.

1 Introduction

Most Unix �le systems use synchronous writes for

metadata updates to ensure proper ordering of

changes being written into disks [3, 4]. The or-

derly updating is necessary to ensure �le system re-

coverability and data integrity after system failures.

However, it is well known that using synchronous

writes is very expensive because it forces the updates

to be processed at disk speeds rather than proces-

sor/memory speeds [3]. As a result, synchronous

�This research is supported in part by National Science
Foundation under Grants MIP-9505601 and MIP-9714370.

writes signi�cantly limit the overall system perfor-

mance.

Many techniques have been proposed to speed up

synchronous writes. Among them the Log-structured

File System (LFS) [5, 4, 6] and metadata logging [7]

are two well-known examples. In LFS, the only data

structure on the disk is a log. All writes are �rst

bu�ered in a RAM segment and logged to the disk

when the segment is full. Since LFS converts many

small writes into a few large log writes, the overhead

associated with disk seeking and rotational latency

is signi�cantly reduced. In metadata logging, only

the changes of metadata are logged, the on-disk data

structure is left unchanged so the implementation

is simpler than that of LFS. Both LFS and meta-

data logging provide higher performance and quicker

crash-recovery ability than traditional �le systems.

Soft Updates [3] converts the synchronous writes

of metadata to delayed writes to achieve high perfor-

mance. Soft Updates maintains dependency infor-

mation of metadata in its kernel memory structures.

The dependency information is used when an up-

dated dirty block is ushed to a disk to make sure

that data in the disk is in a consistent state. Ganger

and Patt have shown that Soft Updates can signi�-

cantly improve the performance of benchmarks that

are metadata update intensive, when compared to

the conventional approaches. Soft Updates requires

only moderate changes to the OS kernel (Ganger and

Patt's implementation on the SVR4 Unix MP system

consists of 1500 lines of C code). In addition, it does

not require changes to the on-disk data structures.

LFS, metadata logging, and Soft Updates all have

good performance. However, they are not without

limitations. For example, LFS and metadata logging

require redesigning of a signi�cant portion of the �le

system. Soft Updates also needs some modi�cations

to the OS kernel source code which is not easily ac-

cessible to many researchers. Partly due to these

limitations, LFS, metadata logging and Soft Updates



are not available on many commonly used Unix sys-

tems. Moreover, the implementations of LFS, meta-

data logging and Soft Updates are intrinsically tied

to kernel data structures such as the bu�er cache

and the virtual memory system. They often become

broken and require re-implementations when the ker-

nel internal data-structures are changed with OS up-

grading. For example, Seltzer et al. implemented an

LFS for 4.4BSD [4]; McKusick implemented Soft Up-

dates for FreeBSD, a descendant of the 4.4BSD sys-

tem. Both the LFS and the Soft Updates code have

been broken as a result of the evolution of FreeBSD.

While the Soft Updates code is again working in

FreeBSD 3.1, the latest stable version as of this writ-

ing, the LFS code is not. In fact, the FreeBSD team

has decided to drop the e�ort to �x the LFS code

because of the lack of human resources, and the LFS

code has even been removed from the FreeBSD CVS

repository.

In this research we used another approach that

avoids many of the above limitations. Our approach

is based on a new hierarchical disk I/O architecture

called DCD (Disk Caching Disk) that we have re-

cently invented [1, 2, 8]. DCD converts small re-

quests into large ones before writing data to the

disk. A similar approach has been successfully used

in database systems [9]. Simulation results show

that DCD has the potential for drastically improving

write performance (for both synchronous and asyn-

chronous writes) with very low additional cost. We

have designed and implemented a DCD device driver

for Sun's Solaris operating system. Measured perfor-

mance results show that the DCD driver runs dra-

matically faster than the traditional system while

ensuring �le system integrity in the events of sys-

tem crashes. For benchmarks that are metadata up-

date intensive, our DCD driver outperforms the tra-

ditional system by a factor of 2{6 in terms of program

execution speeds. Moreover, the DCD driver is com-

pletely transparent to the OS. It does not require

any changes to the OS. It does not need accesses to

the kernel source code. And it does not change the

on-disk data layout. As a result, it can be used as a

\drop-in" replacement of the traditional disk device

driver in an existing system to obtain immediate per-

formance improvement.

The paper is organized as follows. The next sec-

tion presents the overview of the DCD concept and

the system architecture, followed by the detailed de-

scriptions of the design and operations of the DCD

device driver in Section 3. Section 4 discusses our

benchmark programs and the measured results. We

conclude the paper in Section 5.

2 Disk Caching Disks

Cache Disk

RAM Buffer

(a) A physical DCD

Interface

Data Disk
Data Disk
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Figure 1: The structure of DCD

Figure 1 shows the general structures of DCD. The

fundamental idea behind DCD is to use a small log

disk, called cache-disk, as an extension of a small

NVRAM (Non-Volatile RAM) bu�er on top of a

data-disk where a normal �le system exists. The

NVRAM bu�er and the cache-disk together form a

two-level cache hierarchy to cache write data. Small

write requests are �rst collected in the small NVRAM

bu�er. When the NVRAM bu�er becomes full, the

DCD writes all the data blocks in the RAM bu�er,

in one large data transfer, into the cache-disk. This

large write �nishes quickly since it requires only

one seek instead of tens of seeks. As a result, the

NVRAM bu�er is very quickly made available again

to accept new incoming requests. The two-level

cache appears to the host as a large virtual NVRAM

cache with a size close to the size of the cache-disk.

When the data-disk is idle or less busy, it performs

destaging operations which transfer data from the

cache-disk to the data-disk. The destaging overhead

is quite low because most data in the cache-disk are

short-lived and are quickly overwritten, therefore re-

quiring no destaging at all. Moreover, many sys-

tems, such as those used in o�ce/engineering envi-

ronments, have su�cient long idle periods between

bursts of requests. For example, Blackwell et al. [10]

found that 97% of all LFS cleaning could be done in

the background on the most heavily loaded system

they studied. Similarly, DCD destaging can be per-

formed in the idle periods, therefore will not interfere

with normal user operations at all.

Since the cache in DCD is a disk with a capacity

much larger than a normal NVRAM cache, it can

achieve very high performance with much less cost.

It is also non-volatile and thus highly reliable.

The cache-disk in DCD can be a separate physical

disk drive to achieve high performance (a physical



DCD) as shown in Figure 1(a), or one logical disk

partition physically residing on one disk drive for

cost e�ectiveness (a logical DCD) as shown in Fig-

ure 1(b). In this paper we concentrate on implement-

ing the logical DCD, which does not need a dedicated

cache-disk. Rather, a partition of the existing data-

disk is used as a cache-disk. In addition, the RAM

bu�er shown in Figure 1(b) is implemented using a

small portion of the system RAM. Therefore this im-

plementation is complete software without any extra

hardware.

One very important fact is that the cache-disk of

DCD is only a cache that is completely transparent

to the �le system. Hu and Yang pointed out that

DCD can be implemented at the device or device

driver level [1], which has many signi�cant advan-

tages. Since a device driver is well-isolated from the

rest of the kernel, there is no need to modify the

OS and no need to access the kernel source code.

In addition, since the device driver does not access

kernel data structures, it is less likely that any ker-

nel changes will require a re-implementation of the

driver. Furthermore, since DCD is transparent to

the �le system and does not require any changes to

the on-disk data layout, it can easily replace a cur-

rent driver without a�ecting the data already stored

on the disk (as long as a free cache-disk partition

somewhere in the system can be provided). This is

very important to many users with large amount of

installed data.

DCD can speed up both synchronous writes and

asynchronous writes. Although asynchronous writes

normally do not have a direct impact on the sys-

tem performance, they often a�ect the system per-

formance indirectly. For example, most Unix systems

ush dirty data in the �le system cache to disks every

30{60 seconds for reliability reasons, creating a large

burst of writes 1. This large burst will interfere with

the normal read and write activities of users. DCD

can avoid this problem by using a large and inex-

pensive cache-disk to quickly absorb the large write

burst, destaging the data to the data-disk only when

the system is idle.

Using results of trace-driven simulations, Hu and

Yang have demonstrated that DCD has superior per-

formance compared to traditional disk architectures

in terms of I/O response times [1]. However, recent

studies [12] have shown that I/O response times are

not always a good performance indicator in I/O sys-

tems because not all I/O requests a�ect the system

behavior in the same way. Trace-driven simulations

also have limited accuracy because there is no feed-

1Some systems use a rolling update policy [11] to avoid this
problem.

back between the traces and the simulators. The

main objective of this research is to examine whether

DCD will have good performance in the real world.

We believe that the best way to evaluate the real

world performance is to actually implement the DCD

architecture and measure its performance in terms of

program execution times, using some realistic bench-

marks.

3 Design and Implementation

This section describes the data structures and algo-

rithms used to implement our DCD device driver.

Please note that while we have adopted the DCD ar-

chitecture from [1], our implementation algorithms

are considerably di�erent from the ones reported in

[1]. We choose these new algorithms mostly because

they o�er better performance and simpli�ed designs.

In some cases a new algorithm was chosen because of

the di�erent design goals of the DCD device driver

and the original DCD. For example, the original

DCD uses an NVRAM bu�er and it reorders data

in the NVRAM bu�er to obtain better performance.

However, when implementing the DCD driver, we

have to use the system DRAM as the bu�er. We can

not reorder data in the DRAM bu�er before the data

is written to the disk, otherwise we can not maintain

the order of updates to the disk. Keeping the or-

der has some impact on the performance, but it is

the price that has to be paid for maintaining the �le

system integrity.

Dirty Segment List

.  .  .

Cache-Disk

Data-Disk

In-Memory Data Structrures

In-Memory HeadersRAM Buffer

Segment Buffer

Segment Buffer

Data
Lookup
Table

Free Segment List

Figure 2: The Structure of the DCD Driver

Figure 2 shows the general structure of the DCD

driver which consists of three main parts: the in-

memory data-structures, a cache-disk and a data-

disk. The In-memory data-structures include a Data

Lookup Table which is used to locate data in the

cache; a RAM bu�er which comprises several Seg-

ment Bu�ers and a number of In-memory Segment-

Headers. The In-memory Segment-Headers form two



lists: the Free Segment List and the Dirty Segment

List. The following subsections discuss these struc-

tures and the DCD operations in detail.

3.1 Cache-disk Organization

Segment Buffer ID Slot 0 LBA

Slot 1 LBA

Slot M-2 LBA

Slot M-1 LBA

. . .

Slot M-1Slot M-2Slot M-3. . .Slot. . .Slot 1Slot 0Segment Header

Segment 0 Segment 1 Segment 2 Segment N-2 Segment N-1. . .

Cache disk space

Segment ID

Slot LBA Table

Time Stamp

Valid Slot Count

Figure 3: Cache-disk Organization

The original DCD in [1] writes variable-length logs

into the cache-disk. However, when we tried to actu-

ally implement a DCD device driver, we found that

variable-length logs make the destaging algorithm

too complex, since it is di�cult to locate a partic-

ular log in the cache disk. As a result, in the DCD

device driver we use a �xed-length segment approach

similar to the one used by LFS.

Figure 3 shows the data organization of the cache

disk. The entire cache-disk is divided into a num-

ber of �xed-length segments. The data is written

into the cache disk in �xed-size transfers equal to

the segment-size, although the segment may be par-

tially full. Each segment contains a segment-header

followed by a �xed-number of data slots. A slot is

the basic caching unit, and in our current implemen-

tation, can store 1 KB of data. The entire segment

size is 128 KB plus two additional 512 byte blocks,

used for the segment-header.

The segment-header describes the contents of a

segment. It contains:

1. A segment-ID which is unique to each segment.

2. A segment-bu�er-ID whose functions will be dis-

cussed later.

3. A valid-slot-count that indicates the number of

slots in the segment containing valid data. This

entry is used to speed up the destaging process.

4. A time-stamp which records the time when the

segment is written into the cache-disk. During

a crash recovery period, the time-stamps help

the DCD driver to search for segments and to

rebuild its in-memory data structures.

5. A slot-LBA-table. Each slot in the segment has

a corresponding entry in the table. Each ta-

ble entry is an integer that describes the logical

block address (LBA) of the data stored in its slot.

For example, if a data block written into block

No. 12345 (i.e., its LBA) of the data-disk is cur-

rently cached in slot 1, then entry 1 of the ta-

ble contains 12345 to indicate that slot 1 caches

this particular data block. This information is

needed since eventually data in the cache-disk

will be destaged to their original addresses on

the data-disk. If a slot in the segment is empty

or contains invalid data, its entry in the slot-

LBA-table is �1.

3.2 In-memory Segment-Headers

Once a segment is written into the cache-disk,

its contents, including the segment-header (on-disk

segment-header) are �xed. Furthermore, the on-disk

segment-headers in the cache-disk are not accessed

during the normal operations of the driver, but are

used during crash-recovery. However, subsequent

requests may overwrite data contained in the seg-

ment on the cache-disk, requiring updating of the

segment-headers. For example, if a slot of an on-

disk segment is overwritten, its corresponding slot-

LBA-entry should be marked invalid, with a �1, to

indicate that the slot no longer contains valid data.

Additionally the valid-slot-count should be decreased

by 1. It is prohibitively costly to update the on-

disk segment-header for every such overwrite, there-

fore each segment-header has an in-memory copy (in-

memory segment-header). Once a segment is written

into the cache-disk, only the in-memory segment-

header is updated upon overwriting. The on-disk

segment-header remains untouched. If the system

crashes, the in-memory segment-headers can be re-

built by scanning the cache-disk and \replaying"

the on-disk segment-headers in order of their time-

stamps. Since the on-disk segment-headers have

�xed locations on the disk, this scanning process can

be done very quickly. We will discuss the crash re-

covery process in detail later in this section.

An in-memory segment-header is always in one of

the following two lists: the Free-Segment-List and the

Dirty-Segment-List. If a segment does not contain

any valid data, its in-memory segment-header is in

the Free-Segment-List. Otherwise it is put in the

Dirty-Segment-List. When the system is idle, the

destaging process picks up segments from the Dirty-

Segment-List and moves valid data in these segments

to the data disk. Once all data in a dirty segment is

destaged, its header is moved to the Free-Segment-



List. Segments which are entirely overwritten during

normal operation, i.e. the valid-slot-count becomes 0,

are also put on the Free-Segment-List.

In our current prototype, the cache-disk is 64 MB

and has about 512 segments (128 KB per segment).

The size of each in-memory segment-header is 512

bytes. In total, 512 segment-headers require only

250 KB of RAM. Given today's low RAM cost, we

put the entire 250 KB of headers in the system RAM

so they can be accessed quickly.

3.3 Data Lookup Table

One of the most challenging tasks in this research is

to design an e�cient data structure and a search al-

gorithm for the Data Lookup Table, used for locating

data in the cache. In DCD, a previously written data

block may exist in one of the following three places:

the RAM bu�er, the cache-disk and the data-disk.

The Data Lookup Table is used to keep track of the

location of data in these places. Since the driver must

search the table for every incoming request, it is im-

perative to make the searching algorithm e�cient.

In other I/O systems with a similar problem, a

hash table with the LBA (Logical Block Address) of

incoming requests as the search key, is usually used

for this purpose. Unfortunately this simple approach

does not work for the DCD driver. Since in Solaris

and many other Unix systems, the requests sent to

the disk device driver have variable lengths and may

be overlapped. For example, suppose a data block

B cached in the DCD has a starting LBA of S and

a length of L. Another incoming request asks for a

data block B0 with a starting LBA of S + 1 and a

length of L0. If L > 1, then B and B0 overlap, and

the system should be able to detect the overlapping.

Since B and B0 have di�erent LBAs, simply using

the LBA of B0 as the search key will not be able to

�nd block B in the hash table.

Our pro�ling of I/O requests in Solaris demon-

strated that the majority of requests are aligned to 4

KB or 8 KB boundaries and are not overlapped. Ad-

ditionally, all requests were determined to be aligned

to a 1 KB boundary. Therefore the Data Lookup

Table was designed to e�ciently handle the common

cases (i.e., aligned un-overlapped 4 or 8 KB requests),

while still able to handle other requests.

The minimum storage and addressing unit of the

device driver was chosen to be a cache fragment, of

size 1 KB and aligned to a 1 KB boundary. The

fragments are designed to �t into the slots in the

cache-disk segments. Since they are aligned and not

overlapped they should be easy to �nd in the system.

Although a fragment is the minimum unit used in

the driver, most requests occupy several consecutive

fragments. It is wasteful to break every incoming

request into a series of fragments, and search the hash

table for each fragment. Therefore a cache line was

designed to hold 4 fragments or 4 KB of data aligned

to a 4 KB boundary.

Hash Table

. . .

Line Entry

Line Entry

Line Entry Line Entry

Line Entry Line Entry

Segment-ID/Slot-No Pair

Fragment Entry Pointer

Segment-ID/Slot-No Pair

Segment-ID/Slot-No Pair

Segment-ID/Slot-No Pair

Segment-ID/Slot-No Pair

Bitmap

LBA

Figure 4: Data Lookup Table

The Data Lookup Table is in the form of a hash

table chain, as is shown in Figure 4. Each entry in

the Data Lookup Table, line entry, contains infor-

mation associated with the blocks currently in the

DCD. Each incoming request is mapped into one or

more cache lines. The Data Lookup Table is then

searched, using the LBA of the start of each cache

line in the request as a search key. All entries in

the hash table with the same hash value are linked

together in a doubly-linked list.

A Data Lookup Table line entry consists of the

following �elds:

1. An LBA entry that is the LBA of the cache line.

2. A segment-ID/slot-no pair which uniquely de-

termines the starting address of the data in the

cache-disk. Although data cached in the DCD

can be either in the RAM bu�er or on the cache-

disk, a uni�ed addressing scheme is used. The

segment-ID/slot-no pair are also used to address

data in the RAM bu�er. This uni�ed scheme,

discussed in more detail later, is used to reduce

to bookkeeping overheard involved when data

bu�ered in the RAM is written into the cache-

disk.

3. An optional fragment entry pointer used to de-

scribe partial or fragmented cache entries.

While most I/O requests will map to one or two

complete cache line entries, some requests are for par-

tial lines. Also, overwriting can cause caches lines to

be broken. For example, suppose a cache line has



4 consecutive fragments stored in segment S. If an-

other request overwrites the second fragment in seg-

ment S and stores the new data in segment S0, then

the cache line becomes a fragmented line with data

stored in several di�erent places: the �rst fragment

is in S; the second one in S0; and the remaining two

fragments in S. To be able to handle both of these

cases, the line entry, used in the Data Lookup Ta-

ble, contains an optional pointer to a fragment entry,

which describes both partial lines and fragmented

lines.

Fragment entries contain the following �elds:

1. A bitmap which marks the fragments of a cache

line contain that valid data. Recall that a cache-

line can contain 4 fragments, of 1 KB each,

stored in 4 slots. If for example, a request con-

tains only 2 KB, starting on a 4 KB boundary,

then only the �rst two fragments of line are valid

yielding a bitmap of 1100.

2. A table containing four possible segment-

ID/slot-no pair entries which identify the loca-

tions of each fragment. The bitmap is used to

determine which entries in the table are valid.

For every incoming request the Data Lookup Table

is searched one or more times. If an entry is found in

the Data Lookup Table (a cache hit), the requested

block is contained somewhere in the DCD, either in

the RAM bu�er, or in the cache-disk. Otherwise if

no corresponding entry is located (a cache miss), the

requested block can be found on the data-disk.

Our I/O pro�ling results, of the prototype driver,

show that most requests (50-90%) are contained in

only one or two complete cache lines. The remain-

ing requests need to access fragmented cache lines.

Therefore the Data Lookup table is both space and

time e�cient.

3.4 Segment Bu�ers

Another important component of DCD is the RAM

bu�er. In our implementation the RAM bu�er is

divided into several (2{4) Segment Bu�ers which

have the same structure as on-disk segments without

segment-headers. Each Segment Bu�er is assigned a

unique segment-bu�er ID.

Segment Bu�ers, much like their on-disk counter-

parts, are tracked using two lists: the Free Segment-

Bu�er List and the Dirty Segment-Bu�er List, when

not mapped to a segment. When a write request ar-

rives, the driver picks a free segment bu�er to become

the Current Segment-Bu�er. Meanwhile the driver

also obtains a free disk segment from the Free Seg-

ment List to become the Current Disk Segment. The

driver then \pairs" the RAM segment bu�er and the

disk segment together by writing the segment-bu�er

ID into the corresponding �eld into the header of the

in-memory header of the disk segment.

From this point until the current Segment Bu�er is

written into the Current Disk Segment on the cache-

disk, incoming write data is written into the slots of

the segment bu�er. However the Data Lookup Table

will use the segment-ID/slot-no pairs of the Current

Disk Segment as the addresses of these data (the uni-

�ed addressing scheme). In addition, the RAM bu�er

does not have its own header. It shares the header of

the disk segment. Imagine that the segment bu�er

\overlays" itself on top of the disk segment, as shown

in Figure 5(a), therefore any data written to the slots

of the Current Disk Segment is actually written into

the slots of the Current Segment Bu�er.

In-Memory Header Segment Buffer No. 2
...

Segment Buffer ID

2. . . b c a

...
On-Disk SegmentOn-Disk Header

xx x x x x x x x x x xxxx

(a) Before Log Writing

...
Segment Buffer No. 2 (Free)

In-Memory Header

-1. . .

On-Disk SegmentOn-Disk Header

. . . -1 ...b c a

(b) After Log Writing

Figure 5: Segment Bu�ers and Disk Segments

If a read request tries to access a newly written

data in the segment bu�er before it is logged into

the cache-disk, the Data Lookup Table will return

a segment-ID/slot-no pair to indicate that the re-

quested data is in a particular segment. However,

the driver will know from the segment-bu�er ID en-

try in the segment-header that the data are actually

in the RAM bu�er instead of in the on-disk segment.

When the current segment bu�er becomes full, the

driver schedules a log write so that the entire seg-

ment bu�er is written into the Current Disk Seg-

ment on the cache-disk. Meanwhile another segment-

bu�er/disk-segment pair is chosen to accept new in-

coming requests. When the log write �nishes, the



driver then changes the segment-bu�er ID �eld in the

in-memory segment-header to �1 to indicate that all

the data is now in the cache-disk, as shown in Fig-

ure 5(b). There is no need to update all of the Data

Lookup Table entries for all the blocks in the seg-

ment. Finally the segment bu�er is freed and placed

on the Free Segment Bu�er List, and the in-memory

segment-header is placed on the Dirty Segment List

waiting to be destaged.

3.5 Operations

3.5.1 Writes

After receiving a write request, the DCD driver �rst

searches the Data Lookup Table and invalidates any

entries that are overwritten by the incoming request.

Next the driver checks to see if segment bu�er/disk

segment pair exists, if not, a Free Segment Bu�er

and Free Disk Segment are paired together. Then all

of the data in the request is copied into the segment

bu�er, and their addresses are recorded as entries in

the Data Lookup Table. Finally, the driver signals

the kernel that the request is complete, even though

the data has not been written into the disk. This

immediate-report scheme does not cause any relia-

bility or �le system integrity problems, as will be

discussed shortly in this section.

There are two cases where data written into the

DCD is handled in a di�erent manner. First, to re-

duce destage overhead, requests 64 KB or larger are

written directly into the data-disk. Second, if a user

request sets the \sync" ag in an I/O request, the re-

quest is also written directly into the data disk. Only

after the requests �nishes writing, does the driver sig-

nal completion to the kernel.

Invalid Data

Write Data

BBBA ... C B

Segment Buffer
Start

Figure 6: Overwriting in a Segment Bu�er

When data is copied into the segment bu�er, it

is always \appended" to the previous data in the

bu�er, even when the new data overwrites previously

written data. For example, Figure 6 shown a seg-

ment bu�er containing blocks A, B and C. Block

B has been overwritten several times. Instead of

overwriting the old block B in the segment bu�er,

the new data of block B is simply appended to the

segment bu�er. The old data of block B is still in

the bu�er, although it becomes inaccessible (hence

garbage). The append-only policy ensures that the

ordering relationship between requests is maintained,

and correctly recorded in the cache-disk. If the new

copy of block B were to overwrite the old copy of the

block B in the segment bu�er, then order of updates

between B and C would not have been preserved.

Although the append-only policy is necessary,

it also has some drawbacks. Speci�cally, it in-

creases the logging and destaging overhead since

much garbage is logged into the cache-disk. One

possible solution is to \compact" the segment bu�er

prior to writing it to the cache-disk. However the

compacting process is a CPU-intensive task since it

involves moving large amount of data in RAM. We

have not tried this in our current implementation.

3.5.2 Reads

In DCD, data may be in one of three di�erent places:

the RAM bu�er, the cache-disk and the data-disk.

Conceptually read operations are simple; the driver

just needs to �nd the locations of the requested data,

get the data and return them to the host.

However, when we actually started the design and

implementation, we found that reads are quite com-

plex. Because of fragmentation, the contents of a

requested data block may be scattered in all of the

three places. The driver has to collect all data from

all these places and assemble them together. This is

not only complicated, but time-consuming.

Similar to writes, when a read request is received,

the DCD driver searches the Data Lookup Table for

entries. Most requests can not be found in the ta-

ble, because newly written data is also cached in the

�le system. Therefore the system does not need to

reread them. On the other hand the older written

data has very likely been moved to the data-disk by

destaging. Hu and Yang found in [1], that 99% of

all read must be sent to the data disk. The simu-

lations and experimental results con�rm this; reads

from other places seldom occur. Since virtually all

reads are sent to the data-disk which has the same

on-disk data layout as the traditional disk, DCD will

at least have similar performance compared to a tra-

ditional disk 2.

For the majority of read requests, the DCD driver

simply forwards them to the data-disk. For the re-

maining 1% of requests, if all the data are stored

in the RAM bu�er or consecutively on the cache-

disk, the operation is also simple. However, for a

2In fact, compared to a traditional disk, DCD has better
read performance because it removes the write tra�c from the
critical path therefore reducing the disk contention.



very small percentage of requests that access data

scattered all over the system, the operation could

be quite complex. After evaluating several alterna-

tives, we adopted a simple solution: The driver �rst

calls the foreground destage routine to move all the

data related to the requests to the data-disk, then

forwards the requests to the data-disk to fetch the

data. While this approach may not be the most ef-

�cient one, it greatly simpli�es our implementation.

In addition, since such cases occur infrequently, the

bene�ts of simple implementation override the low

e�ciency, and performance is not hurt noticeably.

3.5.3 Destages

In DCD, data written into the cache-disk must even-

tually be moved into the original location on the

data-disk. This process is called destaging. The

destage process starts when the DCD driver detects

an idle period, a span of time during which there is

no request. The threshold of the idle period (any

idle period longer than the threshold will start the

destage process) is a function of the cache-disk uti-

lization. If the cache-disk is mostly empty, then the

threshold can be as long as one second. However,

if the cache-disk is mostly full, the threshold can be

as short as 1 ms, to quickly empty the cache-disk,

and prepare for the next burst of requests. Once

the destage process starts, it will continue until the

cache-disk becomes empty, or until a new request ar-

rives. In the later case the destaging is suspended,

until the driver detects another idle period.

The driver uses a \last-write-�rst-destage algo-

rithm" [1], where the most recently written segment

(the �rst one on the dirty segment list) is destaged

�rst. While this algorithm is very straightforward,

and works well, it may result in unnecessary destag-

ing work since it always destages newly written data

�rst. An optimization to this algorithm would be

to use the segment-header's valid-slot-count to se-

lect a segment, for destage, which contains the least

amount of valid data. Therefore reducing the number

of writes needed to move the data from cache-disk to

the data-disk. Also, when writing data blocks from

the destage bu�er to the data-disk, the driver does

not try to reorder the writes. A possible optimization

here is to reorder the blocks according their locations

on the data disk to minimize the seek overhead. We

will try these optimizations in the future version of

the driver.

3.5.4 Crash Recovery

The crash recovery process of a system using DCD

can be divided into two stages. In the �rst stage the

DCD tries to recover itself to a stable state. In the

second stage the �le system performs normal crash-

recovery activities.

The crash recovery of the DCD driver is rela-

tively simple. Since cached-data is saved reliably to

the cache-disk, only the in-memory data-structures,

such as the Data Lookup Table and the In-Memory

Segment-Headers, need to be reconstructed. We have

designed the crash-recovery algorithm, but since it is

not part of the critical path of the driver, this has not

been been implemented in the current prototype.

To rebuild the in-memory data structures, the

DCD driver can �rst read all of theOn-Disk Segment-

Headers from the cache-disk into RAM. For a cache-

disk of 64 MB, only 512 headers need to be read.

Since the cache-disk locations of the headers are

known, this should not take too long. The head-

ers in RAM are organized in a list ordered ascend-

ingly according to their time-stamps. Starting with

the �rst header on the list, the headers can be used

in temporal order, to reconstruct the Data Lookup

Table and the In-Memory Segment-Headers. Each

time a new header is encountered, entries in the Data

Lookup Table and In-Memory Segment-Headers may

be overwritten, because data in the second segment

may overwrite data in the earlier segment. This pro-

cess continues until all the headers are processed.

Essentially, all the cache-disk headers can be used

to \replay" the entire history of requests captured

on the cache-disk. At this point, the DCD driver re-

turns to a clean and stable state, and the �le system

can start a normal crash-recovery process, such as

running the \fsck" program.

3.6 Reliability and File System In-

tegrity

DCD uses immediate report mode for most writes,

except for those requests with the \sync" ags set

by user applications. Write requests are returned

from the driver once the data are written into the

RAM bu�er. This scheme does not cause a reliability

problem for the following two reasons.

First, the delay caused by the DCD driver is lim-

ited to several hundreds of milliseconds at most.

Once the previous log writing �nishes (which may

take up to several hundreds of milliseconds), the

driver will write the current segment bu�er to the

cache-disk even before the segment bu�er becomes

full. Therefore the DCD driver guarantees that data

be written in to the cache-disk within several hun-

dreds of milliseconds. Since most �le data is cached

in RAM for 30{60 seconds before they are ushed

into the disk anyway, we believe that the additional



several hundreds of milliseconds should not result in

any problem.

Second, for metadata updates, the \append-only"

algorithm of the DCD driver guarantees the order of

updates to the disk. So while metadata updates may

be kept in RAM for up to several hundred millisec-

onds, they are guaranteed to be written into the disk

in the proper order to ensure �le system integrity.

In this sense DCD is similar to other solutions such

as LFS and Soft Updates, which also store metadata

updates in RAM for even longer time but are able to

maintain �le system integrity.

3.7 Layered Device Driver Approach

One potential di�culty of the DCD device driver is

that it may have to communicate with disk hard-

ware directly, resulting in high complexity and poor

portability. We solved this problem by using a multi-

layered device driver approach. We implemented our

DCD driver on top of a traditional disk device driver

(End users specify which traditional disk driver will

be used). The DCD driver calls the low-level disk

driver, through the standard device driver interface,

to perform the actual disk I/Os. This approach has

three major advantages. First, it greatly simpli-

�es the implementation e�orts since the DCD driver

avoids the complex task of direct communication

with the hardware 3. Second, the same DCD driver

works with all kinds of disks in a system because all

the low-level disk device drivers use the same stan-

dard interface. Third, it is easy to port our current

implementation to other systems, since most Unix

systems use similar device driver interfaces.

4 Performance Results

4.1 Benchmarks and Experimental

Setup

To examine the performance of the experimental sys-

tems, we need some benchmark programs. Initially

we have planed to use the Andrew benchmark [13].

However we found that the execution time of Andrew

benchmark is very short (less than several seconds for

most phases in the benchmark) on most modern ma-

chines, resulting in signi�cant measurement errors.

Also the benchmark does not exercise the disk sys-

tem su�ciently in machines with reasonable amount

3Our prototype implementation consists of only 3200 lines
of C code. Once we have validated our algorithms with an
event-driven simulator, the �rst author took only two weeks
to produce a working device driver.

of RAM, since most of its data can be cached in

RAM.

Because of this, we have created a set of our

own metadata intensive benchmark programs. Our

benchmarks are similar to the ones used by Ganger

and Patt in [3]. The benchmarks consist of 3 sets

of programs: N-user untar, N-user copy, and N-

user remove. N-user untar simulates one or more

users concurrently and independently un-taring a tar

�le to create a directory tree. N-user copy and N-

user remove simulate one or more users concurrently

copying (using the \cp -r" command) or removing

(using the \rm -r" command) the entire directory

tree created by the N-user untar benchmark, respec-

tively. We chose these benchmarks because they rep-

resent the typical and realistic I/O intensive tasks

performed by normal users on a daily basis.

The particular tar �le we used is the source-code

distribution tar �le of Apache 1.3.3. Apache is the

most popular Web server as of this writing. The

resulting source �le tree contains 31 subdirectories

and 508 �les with an average �le size of 9.9 KB. The

total size of the directory tree is 4.9 MB.

To make our evaluation more conservative, we in-

tentionally ush the contents of the kernel bu�er

cache by �rst unmounting then remounting the �le

system between each run. This creates a cold read

cache e�ect, forcing the system to read data from the

disk again for each benchmark run. Our measured re-

sults show that the performance improvement of the

DCD driver over the traditional disk driver is much

higher (up to 50% higher) when the kernel bu�er

cache is warm (that is, if we do not ush the con-

tents of the bu�er). The cold cache e�ect results

in a large number of read requests that can not be

improved signi�cantly by DCD. Because of this arti-

�cially introduced cold cache e�ect, the performance

results reported in the section should be viewed as

a conservative estimate of DCD performance. Real

world DCD performance should be even better, be-

cause the bu�er cache will be warm most of the time.

All experiments were conducted on a Sun Ultra-

1 Model 170 workstation running Solaris 2.6. The

machine has 128 MB RAM and a 4 GB, high per-

formance Seagate Barracuda hard disk drive. The

system was con�gured as a Logical DCD with the

�rst 64 MB of the disk used as the cache-disk par-

tition of the DCD; the rest as the data-disk. The

RAM bu�er size of the DCD driver was 256 KB.

The total RAM overhead, including the RAM bu�er,

the Data Lookup Table, the In-Memory Segment-

Headers, etc., is about 750 KB, which is a small por-

tion of the 128 MB system RAM.

The performance of the DCD device driver is com-



pared to that of the default disk device driver of So-

laris. We used the Unix timex command to mea-

sure the benchmark execution time, and the user

and system CPU times. We also used the built-in

kernel tracing facilities of Solaris to obtain detailed

low-level performance numbers such as the average

response times of read and write requests.

4.2 Measured Performance Results

In this subsection we compare the performance of

our DCD device driver to that of the traditional disk

device driver of Solaris. All numerical results shown

here are the averages of three experimental runs.

4.2.1 Benchmark Execution Times

Figures 7{9 compare the benchmark execution times

for the traditional disk device drivers with those of

the DCD device driver. The total execution times

are further broken down into the CPU time and the

waiting time. The �gures clearly show that these

benchmarks run dramatically faster using the DCD

driver than using the traditional driver. The DCD

driver outperforms the traditional driver by a factor

of 2{6 in all cases. The most impressive improve-

ments come from the N-user untar and the N-user

remove benchmarks that are very metadata inten-

sive, where DCD runs more than 3{6 times faster

than the traditional driver. The N-user copy bench-

mark spends much of its time on disk reads which

can not be improved by DCD. Its performance im-

provement of 2{3 times is not that dramatic but still

very impressive. Note that the performance di�er-

ence is even bigger if we do not arti�cially ush the

cache contents between each run. For example, our

results show that the N-user copy benchmark also

runs 4{5 times faster on the DCD driver than on the

traditional driver if we do not ush the cache.

Figures 7{9 clearly indicate that the performance

of the traditional driver is severely limited by the disk

speed. Its CPU utilization ratio is only about 3{15%,

meaning the system spends 85{97% of its time wait-

ing for disk I/Os. While the performance of DCD

is still limited by the disk speed, DCD signi�cantly

improves the CPU utilization ratio to 16{50%.

We can also see that the DCD driver and the tradi-

tional disk driver have similar CPU overheads. This

demonstrates that our DCD driver algorithms are

very e�cient. Although the DCD driver is much

more complex than the traditional disk driver, the

former increases the CPU overhead only slightly

compared to the later.

0

2

4

6

8

10

12

14

16

18

20

traditional DCD

1−User Untar

traditional DCD

1−User Copy

traditional DCD

1−User Remove

P
ro

gr
am

 E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

wait time
CPU time 

Figure 7: Benchmark execution times for 1-user un-

tar, copy and remove
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Figure 8: Benchmark execution times for 4-user un-

tar, copy and remove

4.2.2 Maximum Possible Speedup

We have shown that DCD can speed up the metadata

intensive benchmarks by a factor of 2{6. To see if we

can further improve the performance of DCD and

to understand what is the performance limitation,

we have measured the raw disk write bandwidth at

various request sizes. The bandwidth is obtained by

randomly writing 20 MB worth of data to the disk at

di�erent sizes, using the raw device driver interface.

Figure 10 shows the measurement results in terms

of I/O bandwidth. The raw disk write performance

at the 128 KB unit size is about 55 times faster than

the 1 KB unit, 28 times faster than the 2 KB unit,

14.3 times faster than the 4 KB unit, and 7.4 times

faster than the 8 KB unit sizes.

DCD always writes to the cache disk in the 128

KB segments. When running the 4-user remove

benchmark program on the traditional disk device

driver, our pro�ling results show that about 50%
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Figure 10: Raw disk write performance of the exper-

imental system

of requests are in 8 KB, 15% in 2 KB and 35%

in 1 KB. Therefore the maximum possible speedup

of DCD over the traditional disk driver is approxi-

mately 7:4 � 50%+ 28 � 15%+ 55 � 35% = 25:4. The

benchmarks also spend some time on reads and CPU

overhead which can not be improved by DCD. For

our 4-user remove benchmark, the reads and CPU

overhead account for about 7% of the total execu-

tion time on the traditional disk driver. As a result,

we expect that the maximum achievable speedup be

around 1=(7% + 93%=25:4) = 9:4 without destage.

Our prototype DCD driver achieves a performance

improvement of 6.2 times over the traditional device

driver for the 4-user remove benchmark. In other

words, the prototype driver realizes two thirds of the

potential performance gain. Although a small por-

tion of this loss of gain is due to the overhead of

destaging, our analysis indicates that there is clearly

still room for further improvement in the implemen-

tation. One of the main performance limitations in

the current implementation is our locking algorithm.

Because of the time limitations, we used a very sim-

ple but ine�ective locking scheme in the DCD driver

for concurrency control. When a request arrives, we

exclusively lock the entire cache for the request un-

til the request is complete. This scheme signi�cantly

limits parallelism and has a very negative impact on

the performance, especially for the multi-user envi-

ronment. We plan to reduce the lock granularity to

increase parallelism in the next version.

4.2.3 I/O Response Times

In order to further understand why the DCD device

driver provides such superior performance compared

to the traditional disk device driver, we measured the

read and write response times of both the DCD and

the traditional disk device driver, using the kernel

tracing facilities of Solaris.

Figures 11 and 12 show the histograms of read and

write response times of the DCD driver and the tra-

ditional driver. The data was collected while running

the 4-user copy benchmark. In these �gures the X-

axes are for response times and the Y-axes are for

the percentage of requests. Note that the X-axes

and Y-axes of the DCD driver and those of the tra-

ditional driver have a di�erent scale. The �gures

for the traditional driver have an X-scale of 0{500

ms, while the �gures of the DCD driver have an X-

scale of 0{25 ms. Because the DCD driver has much

lower response times, the histograms would have be

crammed in the left part of the �gures and become

inscrutable had we used the same X-scale for all the

�gures.
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Figure 11: Histograms of Write Response Times of

the DCD driver and Traditional Driver. Virtually all

requests here are synchronous.

As shown in Figure 11, for the traditional disk

driver, the response times for the majority of writes

fall within the range of 25{150 ms. The average write
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Figure 12: Histograms of Read Response Times of

the DCD driver and Traditional Driver

response time is 135.30 ms. Such a long response

time can mainly be attributed to the long queuing

time caused by disk bandwidth contention among 4

processes.

The DCD driver, on the other hand, signi�cantly

reduces the response time of writes. About 95% of

writes complete within 1ms, because they complete

after being written into the RAM bu�er. Another

3% of the writes, barely visible in Figure 11(a), take

less than 25 ms. Finally, the remaining 2% of re-

quest takes about 25{1500 ms to �nish. This hap-

pens when the cache-disk can not �nish log writing

quickly so the incoming requests have to wait. The

average write response time of the DCD driver is 9.59

ms 4, which is is less than 1=14 of the response time

of the traditional disk driver.

While the DCD driver can not speed up the read

requests directly, it signi�cantly reduces the average

read response time in two ways. First, since DCD

reduces write tra�c at the data-disk, the data-disk

has more available bandwidth for processing read re-

quests. This eliminates the queuing time caused by

disk bandwidth contention and decreases the aver-

age read response time. Second, the reduced write

tra�c at the data-disk allows a more e�ective use

of the built-in hard disk cache. Since fewer writes

'bump' read data, the read-ahead cache hit ratio is

signi�cantly higher. This is shown in Figure 12 where

approximately 40% of read requests complete within

1 ms because of the read-ahead cache hits. On the

other hand, in the traditional driver very few read

requests �nish within 1 ms. This is because a large

number of small writes constantly ush the read-

ahead cache, rendering the cache virtually useless.

Both the reduced bandwidth contention and the im-

proved cache hit-ratio \shifts" the entire histogram

4This number is surprisingly high, considering the fact that
95% of requests �nishes within 1ms. The bias is caused by the
2% of requests that �nish within 25{1500 ms.

to the far left. The average read response time of

DCD is 6.69 ms, which is about 1=7 of the 42.28 ms

response time of the traditional disk driver.

4.2.4 Destage Overhead

While DCD shows superb performance, for each data

write, DCD has to do extra work compared to a tra-

ditional disk. It has to write the data into the cache-

disk �rst and read it back from the cache-disk later

for destage. This extra overhead may become a per-

formance concern. However, we found that this extra

work does not result in extra tra�c in the disk sys-

tem.

In DCD, all writes to and reads from the cache-

disk are performed in large segment sizes | typically

up to 32 requests can be written into or read from

the cache-disk, both in one disk access. Therefore

the overhead increases only slightly. Moreover, this

small overhead can be compensated by the fact that

data can stay in the cache-disk much longer than

in RAM because the cache-disk is more reliable and

larger than the RAM cache. As a result, the data in

the cache-disk has a better chance of being overwrit-

ten, reducing the number of destaging operations.

Hartman and Ousterhout demonstrated in [14] that

between 36%{63% of newly written bytes are over-

written within 30 seconds and 60%{95% within 1000

seconds. Because of this, when compared to a normal

disk driver, a DCD driver actually generates fewer

total disk requests (including requests from the sys-

tem and applications as well as the internal destaging

requests).

5 Conclusion

In this paper we have designed and implemented a

Disk Caching Disk (DCD) device driver for the So-

laris operating system. Measured performance re-

sults are very promising, con�rming the simulation

results in [1, 2]. For metadata intensive benchmarks,

our un-optimized DCD driver prototype outperforms

the traditional system by a factor of 2{6 in terms

of program execution speeds. The driver also guar-

antees �le system integrity in the events of system

crashes or failures. Moreover, unlike previous ap-

proaches, the DCD driver is completely transparent

to the OS. It does not require any changes to the OS

or the on-disk data layout. As a result, it can be

used as a \drop-in" replacement for the traditional

disk device driver in an existing system to obtain

immediate performance improvement.

We plan to make the source code and binary code

of our DCD device driver available to the public as



soon as possible. We also plan to port the driver to

other systems such as FreeBSD or Linux.
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