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Abstract

Text is a popular storage and distribution format for

information, partly due to generic text-processing

tools like Unix grep and sort. Unfortunately, ex-

isting generic tools make assumptions about text

format (e.g., each line is a record) that limit their

applicability. Custom-built tools are one alterna-

tive, but they require substantial time investment

and programming expertise. We describe a new ap-

proach, lightweight structured text processing, which

overcomes these di�culties by enabling users to de-

�ne text structure interactively and manipulate the

structure with generic tools. Our prototype system,

LAPIS, is a web browser that can highlight, �lter,

and sort text regions described by the user. LAPIS

has several advantages over other systems: (1) the

ability to de�ne custom structure with a simple, in-

tuitive pattern language; (2) interactive speci�ca-

tion, showing pattern matches in context and let-

ting users choose the most convenient combination

of manual selection and pattern matching; and (3)

external parsers for standard text formats. The pat-

tern language in LAPIS, text constraints, describes

text structure in high-level terms, with region re-

lationships like before, after, in, and contains. We

describe an implementation of text constraints us-

ing a novel, compact representation of region sets

as collections of rectangles, or region intervals. We

also illustrate some examples of applying LAPIS to

web pages, text �les, and source code.

1 Introduction

Structured text has always been a popular way to

store, process, and distribute information. Tradi-

tional examples of structured text include source

code, SGML or LaTeX documents, bibliographies,

and email messages. With the advent of the World

Wide Web, structured text (in the form of HTML)

has become a dominant medium for online informa-

tion.

The popularity of text is easy to explain. As an old,

standard data format, ASCII text can be viewed and

edited easily on any platform. Text can be cut and

pasted into any application, printed by any printer,

included in any email message, and indexed by any

search engine. Unix in particular has a rich set of

generic tools for operating on text �les: grep, sort,

uniq, sed, etc.

Unfortunately, the generic nature of existing text-

processing tools is also a weakness, because generic

tools can make only limited assumptions about the

format of the text. Most Unix tools assume that a

text �le is divided into records separated by newlines

(or some other delimiter character). But this as-

sumption breaks down for most kinds of structured

text, such as source code and HTML. Consider the

following tasks, which are di�cult for generic text-

processing tools to handle:

1. Find functions that call exit() in a program.

2. Check spelling in program comments.

3. Extract a bibliography from a Web page.

4. Sort a �le of postal addresses by ZIP code.

The traditional approach to these problems is to

custom-build a tool for a particular text format.

For example, tasks #1 and #2 might be solved by

a development environment customized for the pro-

gramming language. Tasks #3 and #4 are typi-

cally solved by hand-coded Perl or AWK scripts.

The problemwith this approach is that custom-built



programs require substantial investment, are di�-

cult to reuse for other tasks or text formats, and lie

beyond the ability of casual users to create.

The de�ciencies of the custom-built approach are

best highlighted by custom text structure { struc-

ture which has not been blessed by standard gram-

mars or widely-available parsers. Many users store

small databases (such as address lists) as text �les.

Many programs generate reports and logs in text

form. Nearly every web page uses some kind of

custom structure represented in HTML; examples

include lists of publications, search engine results,

product catalogs, news briefs, weather reports, stock

quotes, sports scores, etc. Given the proliferation

of custom text formats, developing a tool for every

combination of task and text format is inconceiv-

able.

Our approach to generic tools for structured text is

called lightweight structured text processing. Light-

weight structured text processing enables users to

de�ne custom text structure interactively and in-

crementally, so that generic tools can operate on

the text in structured fashion. We envision that a

lightweight structured text processing system would

have four components:

� a structure description language for describing

text structure;

� an interactive document viewer for viewing doc-

uments, developing and testing structure de-

scriptions, and invoking tools;

� parsers for standard structures, like HTML

and programming language syntax;

� tools for manipulating text using structure de-

scriptions: sorting, searching, extracting, re-

formatting, editing, computing statistics, graph-

ing, etc.

Following this plan, we have built a prototype sys-

tem called LAPIS (Lightweight Architecture for Pro-

cessing Information Structure). LAPIS includes a

new structure description language called text con-

straints. Text constraints describe a set of regions in

a document in terms of relational operators (like be-

fore, after, in, and contains) and primitive regions

generated by external parsers or literal matching.

Text constraints can be used not only for queries

(such as Function contains "exit") but also for

structure de�nition, as in the following example:

Sentence = ends with SentencePunct;

SentencePunct = ('.' | '?' | '!'),

just before Whitespace,

but not '.' at end of

Abbreviation;

Abbreviation = 'Mr.' | 'Mrs.' |

'Ms.' | 'Dr.' | ...;

Text constraints di�er in several ways from context-

free grammars and regular expressions (the tradi-

tional techniques for structure description). Text

constraints permit conjunctions of patterns (indi-

cated by commas in the previous example) and ref-

erences to context (such as \just before"). Text con-

straints can also refer to structure de�ned by exter-

nal parsers { even multiple parsers simultaneously.

For example, Line at start of Function refers

to both Line (a name de�ned by a line-scanning

parser) and Function (de�ned by a programming-

language parser) to match the �rst line of every

function. Finally, we believe that text constraints

are more readable and comprehensible for users than

grammars or regular expressions, because a struc-

ture description can be reduced to a list of simple,

intuitive constraints which can be read and under-

stood individually. In the LAPIS prototype, text

constraints are implemented as an algebra operating

on sets of regions, using e�cient set representations

to achieve reasonable performance.

LAPIS combines text constraints with a web browser

that allows the user to develop text constraints in-

teractively and apply them to web pages, source

code, and text �les. In the browser, the user can de-

scribe a set of regions either programmatically (us-

ing text constraints or an external parser), manually

(by selection), or using any combination of the two.

Combining manual selection and programmatic de-

scription can be quite powerful. Manual selection

can be used to restrict attention to part of a doc-

ument which can be selected more easily than it

can be described, such as the content area of a web

page (omitting navigation bars and advertisements).

Manual selection can also �x up errors made by an

almost-correct structure description, adding or re-

moving regions from the set as necessary. Relying

on manual intervention is not always appropriate,

but sometimes it can help �nish a task faster.

The LAPIS browser also includes a few commands

that operate on sets of regions. Find simply high-

lights and navigates through a set of regions. Filter

displays only the selected regions, eliminating other

text from the display. Sort displays a set of regions



Figure 1: The LAPIS web browser, showing a

web page that describes user interface toolkits.

The user has entered the pattern Bold at start

of Paragraph containing "Mac" to highlight the

names of toolkits that support Macintosh develop-

ment.

sorted by the value of a sub�eld. In LAPIS, these

features are provided as interactive commands in

the browser, but we also plan to implement batch-

mode tools in the style of grep and sort, which would

take as input a text �le and its structure description.

The remainder of this paper is structured as fol-

lows: Section 2 describes the LAPIS browser and

tools. Section 3 describes the text constraints lan-

guage. Section 4 describes our current implementa-

tion of text constraints. Section 5 presents some ap-

plications of the system to web pages, text �les, and

source code. Section 6 covers related work, Section 7

describes future work, and Section 8 concludes.

2 LAPIS Web Browser

Our prototype lightweight structured text process-

ing system is LAPIS, a web browser that has been

extended with a pattern language (text constraints)

and several generic text-processing tools. LAPIS is

built on top of Sun's Java Foundation Classes. A

screenshot of the browser is shown in Figure 1.

Like other web browsers, the LAPIS browser can

retrieve any �le that can be named by a URL and

retrieved by HTTP, FTP, or from the local �lesys-

tem. The browser can display text �les or HTML

pages. HTML pages can be displayed either as text,

which shows the source including tags, or as HTML,

which renders the page according to the HTML for-

matting.

Several parsers are included in the browser, which

run automatically when a page of a certain MIME

type is loaded. A parser interprets a particular text

format and labels its components in the document.

The built-in parsers include:

� HTML: parses HTML pages, labeling HTML

tags and elements while simultaneously build-

ing a parse tree for rendering the page;

� Character: parses plain text and HTML to

�nd character classes like Whitespace, Letters,

and Digits;

� Java: parses Java programs to �nd syntax

constructs like Class, Method, Statement, and

Expression;

� USEnglish: parses plain text and HTML to

�nd regions like Sentence, Line, Time, Date,

and Currency, according to conventions of Amer-

ican English.

Parsers can also be associated with URL patterns.

For example, a parser that identi�es components of

an AltaVista search result page might be associated

with URLs of the form http://altavista.digital

.com/*.

New parsers can be de�ned in two ways: writing

a Java class that implements our Parser interface,

or by developing a system of text constraints. The

HTML and Character parsers were written by hand

in Java. The Java parser was automatically gener-

ated from an example grammar included with the

JavaCC parser-generator [26], showing that LAPIS

can take advantage of existing parsers without re-

coding the grammar in text constraint expressions.

USEnglish was developed interactively in LAPIS as

a system of text constraints.

In the browser, the user can enter a text constraint

expression and see the matching regions highlighted

(see Figure 1). Highlighting is simple to imple-

ment and familiar to users, but unfortunately it



merges adjacent and overlapping regions together,

without distinguishing their endpoints. Future re-

search should identify better ways to display over-

lapping region sets in context. To view highlighted

regions, the user can either scroll the document or

use the Next Match menu command to jump from

one highlighted region to the next.

In addition to patterns, the user can also highlight

regions by manual selection. In the prototype, a

selection made with the mouse is distinct from the

highlighted region set showing matches to a pattern.

The selection is a single, contiguous region (colored

blue), whereas the highlighted region set may be

multiple, noncontiguous regions (colored red). The

current selection in the document is always avail-

able as a one-element region set named Selection.

By referring to Selection in a text constraint, for

example, the user can limit the pattern's scope to a

manually selected region of the document. The user

can also construct a named region set by adding or

removing regions. The Label menu command adds

the current selection to the region set with the given

name. A corresponding Unlabel command removes

the selection from a given named region set by delet-

ing regions that lie inside the selection and trimming

the ends of regions that overlap the selection. By

applying Label and Unlabel repeatedly to a sequence

of selections, the user can build up a named region

set by hand, or modify a named region set created

by a parser or a pattern.

Several tools are provided for manipulating the high-

lighted regions. Filter eliminates all unhighlighted

text from the display. By default, Filter inserts

linebreaks between the highlighted regions to keep

the display readable. Documents are �ltered at the

source text level { even HTML documents. The re-

sult is sometimes illegal HTML (with orphaned start

tags or end tags), but the web browser can render

it passably.

Like Filter, Sort �lters the display down to high-

lighted regions, and also reorders the regions. Re-

gions can be sorted alphabetically or numerically.

By default, the sort key is the entire content of a

region, but the user can provide an additional text

constraint expression describing the sort �eld.

3 Text Constraints

Text constraints (TC) is a language for specifying

text structure using relationships among regions (sub-

strings of the text). TC describes a substring by

specifying its start o�set and end o�set. Formally,

a region is an interval [b; e] of inter-character po-

sitions in a string, where 0 � b � e � n (n is the

length of the string). A region [b; e] identi�es the

substring that starts at the bth cursor position (just

before the bth character of the string) and ends at

the eth cursor position (just before the eth charac-

ter, or at the end of the string if e = n ). Thus the

length of a region is e� b.

TC is essentially an algebra over sets of regions { op-

erators take region sets as arguments and generate

a region set as the result. TC permits an expression

to match an arbitrary set of regions, unlike other

structured text query languages that constrain re-

gion sets to certain types: nonoverlapping (regular

expressions), nonnesting (GC-lists [5]), or hierarchi-

cal (Proximal Nodes [19]).

3.1 Primitives

TC has three primitive expressions: literals, regular

expressions, and identi�ers. A literal string enclosed

in single or double quotes matches all occurrences

of the string in the document. Thus "Gettysburg"

�nds all regions exactly matching the literal charac-

ters \Gettysburg". The literal matcher can generate

overlapping regions, so matching "aa" against the

string \aaaaa" would yield 4 regions.

A regular expression is indicated by /regexp/. Our

regular expression matcher is based on the ORO-

Matcher library for Java [20]. The library follows

Perl 5 syntax and semantics [27], returning a set of

nonoverlapping regions that are as long as possible.

An identi�er is any whitespace-delimited token (ex-

cept for words and punctuation reserved by TC op-

erators). Identi�ers refer to the named region sets

generated by parsers. For example, after the HTML

parser has run, Tag refers to the set of all HTML

tags in the document. Only a single namespace is

provided by the LAPIS prototype, so the names gen-

erated by di�erent parsers must be chosen uniquely.

A future version of LAPIS is expected to support

multiple independent namespaces.



Four score and seven years ago...
R

A

B

D F

E

C

Figure 2: Fundamental region relations in an ex-

ample string. Regions A through F are related to

region R as follows: A before R; B overlaps-start R;

C contains R; D in R; E overlaps-end R; and F after

R.

3.2 Region Relations

TC operators are based on six fundamental binary

relations among regions: before, after, in, contains,

overlaps-start, and, overlaps-end. (Similar relations

on time intervals were de�ned in [2].) The region

relations are de�ned as follows:

[b1; e1] before [b2; e2] , e1 � b2
[b1; e1] after [b2; e2] , e2 � b1
[b1; e1] in [b2; e2] , b2 � b1 ^ e1 � e2
[b1; e1] contains [b2; e2] , b1 � b2 ^ e2 � e1
[b1; e1] overlaps-start [b2; e2] , b1 � b2 ^ e1 � e2
[b1; e1] overlaps-end [b2; e2] , b2 � b1 ^ e2 � e1

Note that before and after are inverses, as are in

and contains, and overlaps-start and overlaps-end.

The six region relations are illustrated in Figure 2.

The six region relations are complete in the sense

that every ordered pair of regions is found in at least

one of the relations. Some regions may be related in

several ways, however. For example, in Figure 2, if

A's end point were identical to R's start point, then

we would have both A before R and A overlaps-start

R. These relations are useful in pattern matching, so

we de�ne a set of derived relations in which regions

have coincident endpoints:

just-before = before \ overlaps-start

just-after = after \ overlaps-end

at-start-of = in \ overlaps-start

at-end-of = in \ overlaps-end

starts-with = contains \ overlaps-start

ends-with = contains \ overlaps-end

Figure 3 illustrates the derived relations.

Four score and seven years ago...
R

B

A F

E

D

C

Figure 3: Region relations with coincident end-

points. Regions A through F are related to region

R as follows: A just-before R; B at-start-of R; C

at-end-of R; D starts-with R; E ends-with R; and F

just-after R.

Another useful derived relation is overlaps:

overlaps = in [ contains [

overlaps-start [ overlaps-end

In Figure 2, the regions B, C, D, and E overlap R,

but A and F do not. In Figure 3, all the regions

overlap R.

3.3 Relational Operators

Each region relation corresponds to a relational op-

erator in TC. Each relational operator takes two

forms, one unary and the other binary. The unary

form, op S, generates the set of regions that bear

the relation op to some region matching S. For ex-

ample, in an HTML document, the constraint ex-

pression in Paragraph returns all regions that are

inside some paragraph element.

The binary form of a relational operator, R op S,

generates all regions matching R that bear the rela-

tion op to some region matching S. For example, in

HTML, Paragraph contains "Lincoln" returns all

paragraph elements that contain the string \Lin-

coln."

For the sake of simplicity, all relational operators

have equal precedence and right associativity, so

that X in Y in Z is parsed as X in (Y in Z).



3.4 Intersection, Union, and Di�erence

Constraints that must be simultaneously true of a

region are expressed by separating the constraint

expressions with commas. The region set matched

by S1, S2, ..., Sn is the intersection of the re-

gion sets matched by each Si. For example just

after "From:", just before "nn" describes all

regions that start immediately after a \From:" cap-

tion and end at a newline.

Alternative constraints are speci�ed by separating

the constraint expressions with \j". The region set

matched by S1 j S2 j ... j Sn is the union of

the region sets matched by each Si.

Set di�erence is indicated by but not. The region

set matched by S1 but not S2 is the set that

matches S1 after removing all regions that match

S2.

3.5 Delimiter Operators

When certain relational operators are intersected,

the resulting region set can be larger than the user

anticipates. For example, the expression starts

with R, ends with S matches every possible pair

of R and S, even if other R's and S's occur in

between. For situations where only adjacent pairs

are desired, any relational operator can be modi�ed

by the keyword delimiter. For example, starts

with delimiter S matches regions that start with

some region matching S and overlap no other region

matching S.

3.6 Concatenation and Background

Concatenation of regions is indicated by then. The

expression "Gettysburg" then "Address"matches

regions that consist of \Gettysburg" followed by

\Address", with nothing important in between. The

meaning of nothing important depends on a param-

eter called the background. The background is a set

of regions. Characters in the background regions are

ignored when concatenating constraint expressions.

For example, when the background is Whitespace,

the expression "Gettysburg" then "Address" �nds

not only \GettysburgAddress", but also \Gettys-

burg Address", and even \Gettysburg Address" split

across two lines. Relational operators that require

adjacency also use the background, so the expres-

sion "Gettysburg" just before "Address"will suc-

cessfully match the �rst word of \Gettysburg Ad-

dress".

The LAPIS browser chooses a default background

based on the current document view, following the

guideline that any text not printed on the screen is

part of the background. In the plain text view, the

default background is Whitespace. In the HTML

view, the default background is the union of White-

space and Tag, since tags a�ect rendering but are

not actually displayed.

The background can also be set explicitly using the

ignoring directive. To change the background to R

for the duration of a constraint expression expr, use

the form expr ignoring R. For example, a query

on source code might take the form expr ignoring

(Comment j Whitespace). The background can be

removed by setting it to nothing, which generates

the empty region set.

3.7 De�nitions and Constraint Systems

A constraint de�nition assigns a name to the result

of a constraint expression:

GettysburgAddress =

starts with

"Four score and seven years ago",

ends with

"shall not perish from the earth"

Region sets named by a constraint de�nition can

be used in the same way as region sets named by

a parser, as in the example Sentence at start of

GettysburgAddress. A constraint system is a set

of constraint de�nitions separated by semicolons.

3.8 Expressiveness

The theoretical power of TC | that is, the set of

languages that can be matched by a TC expres-

sion | depends on the power of the matchers and

parsers it uses. If its matchers and parsers gener-

ate only regular languages, then the TC expression

is also regular, since regular languages are closed

under the TC operators concatenation, intersection,

and union [11]. Since context-free languages are not

closed under intersection, however, a TC expression

using context-free parsers maymatch a non-context-

free language.



A TC constraint system that uses only literals (no

regular expressions or external parsers) is less pow-

erful than a regular expression, because TC lacks

recursive constraints or repetition operators (such

as the * operator). Future work discussed in Sec-

tion 7 will address this issue.

4 Implementation

This section describes the implementation of text

constraints used in LAPIS. Among the interesting

features of the implementation is a novel region set

representation, the region interval. Region intervals

are particularly good at representing the result of

a region relation operator. By a simple transfor-

mation, region intervals may be regarded as rect-

angles in two-dimensional space, allowing LAPIS to

draw on earlier research in computational geome-

try to �nd a data structure suitable for storing and

combining collections of region intervals.

4.1 Region Interval Representation

The key ingredient to an implementation of text

constraints is choice of representation: how shall

region sets be represented? One alternative is a

bitvector, with one bit for each possible region in

lexicographic order. With a bitvector representa-

tion, every region set requires O(n2) space, where

n is the length of the document. Considering that

the region sets generated by matchers and parsers

typically have only O(n) elements, the bitvec-

tor representation wastes space. Another alterna-

tive represents a region set as a list of explicit pairs

[b; e], which is more appropriate for sparse sets. Un-

fortunately the region sets generated by relational

operators are not sparse. To choose a pathological

example, after [0; 0] matches every region in the

document. In general, for any region relation op

and region set S, the set matching op S may have

O(n2) elements.

Other systems have dealt with this problem by re-

stricting region sets to nested sets [19] or overlapped

sets [5], sacri�cing expressiveness for linear storage

and processing. Instead of restricting region sets,

we compress dense region sets with a representa-

tion called region intervals. A region interval is a

quadruple [b; c; d; e], representing the set of all re-

gions [x; y] such that b � x � c and d � y � e.

Essentially, a region interval is a set of regions whose

starts and ends are given by intervals, rather than

points. A region interval is depicted by extending

the region notation for regions (j|j), replacing the

vertical lines denoting the region's endpoints with

boxes denoting intervals.

A few facts about region intervals follow immedi-

ately from the de�nition:

� The set of all regions in a string of length

n can be represented by the region interval

[0; n; 0; n].

� The singleton region set f[b; e]g is represented

by the region interval [b; b; e; e].

� A region interval represents the empty set if

b > c or d > e or b > e.

� A region interval [b1; c1; d1; e1] is a subset of

another region interval [b2; c2; d2; e2] if and

only if b2 � b1 � c1 � c2 and d2 � d1 �

e1 � e2.

� The intersection of two intervals [b1; c1; d1; e1]

and [b2; c2; d2; e2] is

[max(b1; b2);min(c1; c2);

max(d1; d2);min(e1; e2)]

which may of course be the empty set.

Region intervals are particularly useful for repre-

senting the result of applying a region relation op-

erator. Given any region X and a region relation

op, the set of regions which are related to X by op

can be represented by exactly one region interval,

as shown in Figure 4.

By extension, if a region relation operator is applied

to a region set with m elements, then the result

can be represented with m region intervals (possi-

bly fewer, since some of the region intervals may be

redundant).

This result extends to region intervals as well: ap-

plying a region relation operator to a region interval

yields exactly one region interval. For example, the

result of before [b; c; d; e] is the set of all regions

which lie before some region in [b; c; d; e]. As-

suming the region interval is nonempty, every re-

gion ending at or before c quali�es, so the result of

this operator can be described by the region interval

[0; c; 0; c].
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contains X
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Figure 4: Region intervals corresponding to the re-

lational operators.

We can represent an arbitrary region set by a union

of region intervals, which is simply a collection of

tuples. The size of this collection may still be O(n2)

in the worst case (consider, for example, the set of

all regions [b; e] of even length, which must be

represented by O(n2) singleton region intervals),

but most collections are O(n) in practice.

To summarize, the union-of-region-intervals repre-

sentation enables a straightforward implementation

of the text constraints language:

� Primitives: convert the set of regions gener-

ated by a literal, regular expression, or parser

into a union of region intervals by replacing

each region [b; e] with the singleton region

interval [b; b; e; e].

� Relational operators: for each region inter-

val [b; c; d; e], compute a new region interval

op [b; c; d; e].

� Union: merge the two collections of region

intervals, eliminating any region interval that

is a subset of another.

� Intersection: intersect every possible pair of

region intervals (one from each collection) and

collect the results.

4.2 Region Space

It remains to choose a representation for the collec-

tion of region intervals that provides the operations

we need (region relations, union, and intersection).

A 2D geometric interpretation of regions will prove

helpful. Any region [b; e] can be regarded as a

point in the plane, where the x-coordinate indicates

the start of the region and the y-coordinate indi-

cates the end. We refer to this two-dimensional in-

terpretation of regions as region space (see Figure 5).

Strictly speaking, only points with integral coordi-

nates correspond to regions, and even then only if

they lie above the 45-degree line, where b � e.

Under this interpretation, a region interval [b; c; d; e]

corresponds to an axis-aligned rectangle in region

space. Two region intervals intersect if and only

if their region space rectangles intersect. A region

interval is a subset of another if and only if its rect-

angle is completely enclosed in the other's rectangle.

A region set can be represented as a union of re-

gion intervals, which in turn can be represented as

a union of axis-aligned rectangles in region space.

We seek a data structure representing a union of

rectangles with the following operations:

� Create (P): create a union of rectangles from

a set of rectangles P .

� Relation (op, R): generate a new union of

rectangles by applying a region relation oper-

ator op elementwise to R.

� Union (R,S): combine two unions of rectan-

gles R and S.

� Intersect (R,S): intersect two unions of rect-

angles R and S.

n

0
0 n

Start point

End point

...and seven years ago...

b e
b

e

Figure 5: A region [b; e] corresponds to a point in

region space.



Ideally, these operations should take linear time and

linear space. In other words, �nding the intersection

or union of a collection of M rectangles with a col-

lection of N rectangles should take O(N +M +F )

time (where F is the number of rectangles in the

result), and computing a region relation on a col-

lection of N rectangles should take O(N ) time.

The data structure itself should store N rectangles

in O(N ) space.

Research in computational geometry and multidi-

mensional databases has developed a variety of data

structures and algorithms for storing and intersect-

ing collections of rectangles, including plane-sweep

algorithms, k-d trees, quadtrees of various kinds, R-

trees , and R+-trees (see [24] for a survey).

LAPIS uses a variant of the R-tree [9]. The R-tree

is a balanced tree derived from the B-tree, in which

each internal node has between m and M children

for some constants m and M . The tree is kept in

balance by splitting overowing nodes and merging

underowing nodes. Rectangles are associated with

the leaf nodes, and each internal node stores the

bounding box of all the rectangles in its subtree.

The decomposition of space provided by an R-tree

is adaptive (dependent on the rectangles stored) and

overlapping (nodes in the tree may represent over-

lapping regions). To keep lookups fast, the R-tree

insertion algorithm attempts to minimize the over-

lap and total area of nodes using various heuristics

(for example, inserting a new rectangle in the sub-

tree that would increase its overlap with its siblings

by the least amount). One set of heuristics, called

the R*-tree [4], has been empirically validated as

reasonably e�cient for random collections of rectan-

gles. Initially we used the R*-tree heuristics in our

prototype. The rectangle collections generated by

text constraints are not particularly random, how-

ever; they tend to be distributed linearly along some

dimension of region space, such as the 45-degree

line, the x-axis, or the y-axis. We were able to im-

prove overall performance by a factor of 5 by simply

ordering the rectangles in lexicographic order, elimi-

nating the expensive calculations that decide where

to place a rectangle without sacri�cing the tree's

logarithmic decomposition of region space.

Two R-trees T1 and T2 can be intersected by

traversing the trees in tandem, comparing the cur-

rent T1 node with the current T2 node and

expanding the nodes only if their bounding boxes

overlap. Traversing the trees in tandem has the po-

tential for pruning much of the search, since if two

nodes high in each tree are found to be disjoint, the

rectangles stored in their subtrees will never be com-

pared. In practice, tandem tree intersection takes

time O(N +M + F ). It will never do worse than

O(NM ). Tandem tree traversal is e�ective for im-

plementing set intersection, union, and di�erence.

4.3 Performance

The LAPIS prototype is written in Java 1.1. The

core text constraints engine is implemented in about

3500 lines of code, not includingmatchers and parsers.

The web browser consists of about 1000 lines of code

on top of the JFC JEditorPane text component.

The text constraints engine can evaluate an opera-

tor at a typical rate of 20,000 regions per second,

using Symantec JIT 3.0 on a 133 MHz Pentium.

The actual evaluation time of a text constraint ex-

pression varies according to the complexity of the

expression and the size of its intermediate results.

The text constraint expressions used in the exam-

ples in Section 5 were all evaluated in less than 0.1

second, on text �les and web pages ranging up to

80KB in size.

5 Applications

5.1 Web Pages

Many web pages display data in a custom format,

using HTML markup to set o� important parts of

the text typographically or spatially. Figure 6 shows

part of a page describing user interface toolkits [17]

The page describes over 100 toolkits with various

properties: some are free, some are commercial; some

run on Unix, others Microsoft Windows, others Mac-

intosh, and others are cross-platform. To browse the

page conveniently, we might want to restrict the dis-

play to show only toolkits matching certain require-

ments { for example, toolkits running under both

Unix and Microsoft Windows, sorted by price.

Each toolkit on this page is contained in a single

paragraph (<P> element in HTML). So we might

start by describing the toolkit as the Paragraph el-

ement, which is identi�ed by the built-in HTML

parser:

Toolkit = Paragraph



AlphaWindow,
Cumulus Technology Corp.,

1007 Elwell Court,

Palo Alto, CA, 94303,

(415) 960-1200,

$750,

Unix, Discontinued,

Alpha-numeric terminal windows, Window System

Altia Design, Altia,

5030 Corporate Plaza Dr #300,

Colorado Springs, CO, 80919,

(800)653-9957 or (719)598-4299,

UNIX or Windows, IB

Amulet,

Brad Myers,

Human-Computer Interaction Institute,

Carnegie Mellon Univ,

Pittsburgh, PA, 15213,

(412) 268-5150,

amulet@cs.cmu.edu,

FREE,
X or MS Windows, portable toolkit, UIMS

Figure 6: Excerpt from a web page describing user

interface toolkits.

Finding the prices is straightforward using Number,

a region set identi�ed by the built-in USEnglish

parser:

Price = ("\$" then Number | "FREE")

in Toolkit;

Finding toolkits that run under Macintosh is easy

(Toolkit contains "Mac"), since the page refers

consistently to Macintosh as \Mac". But Unix plat-

forms are sometimes described as \X", \X Win-

dows", or \Motif", and Microsoft Windows is also

called \MS Windows" or just plain \Windows". We

deal with these problems by de�ning a constraint for

each kind of platform that speci�es all these possi-

bilities and further constrains the matched literal to

be a full Word (not just part of a word):

Macintosh = Word, "Mac";

Unix = Word, ("Unix" | "X" | "Motif");

MSWindows = Word, ("PC" |

"Windows" but not just after "X");

Using these de�nitions, we can readily �lter the web

page for toolkits matching a certain requirements

(Toolkit, contains Unix, contains MSWindows)

and sort them according to Price.

5.2 Plain Text

Plain text has less explicit structure than HTML,

so text constraints for plain text typically refer to

delimiters like punctuation marks and line breaks.

Consider the following example of processing email

messages. Several airlines distribute weekly email

announcing low-price airfares. An excerpt from one

message (from US Airways) is shown in Figure 7.

Describing the boundaries of the table itself is fairly

straightforward given the delimiters (BlankLine is

identi�ed by the built-in USEnglish parser):

Table = starts with delimiter

"Roundtrip Fares Departing From",

ends with delimiter BlankLine;

The rows of the table can be found using Line, also

identi�ed by the built-in parser:

Flight = Line starts with "\$" in Table;

Fare = Number just after "\$" in Flight;

The origin and destination cities can be described

in terms of their boundaries:

Origin = just after delimiter "From",

just before delimiter "To",

in Line at start of Table;

Destination = just after Price,

in Flight;

Roundtrip Fares Departing From BOSTON, MA To

--------------------------------------------------

$109 INDIANAPOLIS, IN

$89 PITTSBURGH, PA

Roundtrip Fares Departing From PHILADELPHIA, PA To

--------------------------------------------------

$79 BUFFALO, NY

$89 CLEVELAND, OH

$89 COLUMBUS, OH

$89 DAYTON, OH

$89 DETROIT, MI

$79 PITTSBURGH, PA

$79 RICHMOND/WMBG., VA

$79 SYRACUSE, NY

Figure 7: Excerpt from an email message announc-

ing cheap airfares.



/**

* Convert a local filename to a URL.

* @param file File to convert

* @return URL corresponding to file

*/

public static URL FileToURL (File file)

throws MalformedURLException {

return new URL ("file:"

+ toURLDelimiters

(file.getAbsolutePath ()));

}

Figure 8: A Java method with a documentation

comment.

Using these de�nitions, we can readily �lter the mes-

sage for ights of interest, e.g. fromBoston to Pitts-

burgh:

Flight,

contains Destination contains "PITTSBURGH",

in Table contains Origin contains "BOSTON";

The expression for the ight's origin is somewhat

convoluted because ights (which are rows of the ta-

ble) do not contain the origin as a �eld, but rather

inherit it from the heading of the table. This ex-

ample demonstrates, however, that useful structure

can be described and queried with a small set of

relational operators.

5.3 Source Code

Source code can be processed like plain text, but

with a parser for the programming language, source

code can be queried much more easily. LAPIS in-

cludes a Java parser, so the examples that follow are

in Java.

Unlike other systems for querying and processing

source code, TC operates on regions in the source

text, not on an abstract syntax tree. At the text

level, the user can achieve substantial mileage know-

ing only a few general types of regions identi�ed by

the parser, such as Statement, Comment, Expres-

sion, and Method, and using text constraints to

specialize them. For example, our parser identi�es

Comment regions, but does not specially distinguish

the \documentation comments" that can be auto-

matically extracted by the javadoc utility. Figure 8

shows a Java method preceded by a documentation

comment.

The user can �nd the documentation comments by

constraining Comment with a text-level expression:

DocComment = Comment starts with "/**";

A similar technique can be used to distinguish pub-

lic class methods from private methods:

PublicMethod = Method starts with "public";

In this case, however, the accuracy of the pattern de-

pends on programmer convention, since attributes

like public may appear in any order in a method

declaration, not necessarily �rst. All of the follow-

ing method declarations are equivalent in Java:

public static synchronized void f ()

static public synchronized void f ()

synchronized static public void f ()

If necessary, the user can deal with this problem by

adjusting the pattern (e.g., Method starts with

Line contains "public") or relying on the Java

parser to identify attribute regions (e.g., Method

contains Attribute contains "public") . In prac-

tice, however, it is often more convenient to use ty-

pographic conventions, like public always appear-

ing �rst, than to modify the parser for every con-

tingency. Since text constraints can express such

conventions, constraints might also be used to en-

force them, if desired.

We can use DocComment and PublicMethod to �nd

public methods that need documentation:

PublicMethod but not just after DocComment;

Text constraints are also useful for de�ning custom
structure inside source code. Java documentation
comments can include various kinds of �elds, such
as @param to describe method parameters, @return
to describe the return value, and @exception to de-
scribe exceptional return conditions. These �elds
can be described by text constraint expressions:

DocField = starts with delimiter "@",

in DocComment;

ParamDoc = DocField, starts with "@param";

ReturnDoc = DocField, starts with "@return";

ExceptionDoc = DocField, starts with

"@exception";

Using this structure, we can �nd methods whose

documentation is incomplete in various ways. For



example, this expression �nds methods with param-

eters but no parameter documentation:

PublicMethod contains FormalParameter,

just after (DocComment but not

contains ParamDoc);

6 Related Work

Text processing is a rich and varied �eld. Languages

like AWK [1] and Perl [27] are popular tools provid-

ing fast regular expression matching in an impera-

tive programming language designed for text pro-

cessing. These tools are not interactive, however,

sacri�cing the ability to view pattern matches in

context (particularly important for web pages) and

the ability to combine manual selection with pro-

grammatic selection. Visual Awk [15] made some

strides toward interactive development of AWK pro-

grams which was inspirational for this work, but

Visual AWK is still line-oriented, limited to regu-

lar expression patterns, and unable to use external

parsers.

The concept of lightweight structured text process-

ing described in this paper is independent of the

language chosen for structure description. The text

constraints language in LAPIS is novel and appeal-

ing for its simple and intuitive operators, its uniform

treatment of parser-generated regions and constraint-

generated regions, the concept of background re-

gions, and its direct implementation, but another

language may be used instead. A variety of lan-

guages have been proposed for querying structured

text databases, such as Proximal Nodes [19], GC-

lists [5], p-strings [8], tree inclusion [13], Maestro [16],

and PAT expressions [23]. A survey of structured

text query languages is found in [3]. Sgrep [12] is a

variant of grep that uses a structured text query lan-

guage instead of regular expressions, which helped

inspire us to incorporate other Unix-style tools into

a structured text processing system. Domain-speci�c

query tools include ASTLOG [6], a query language

speci�c to source code, and WebL [14], which com-

bines an HTML query language with a program-

ming language specialized for fetching and process-

ing World Wide Web pages.

Structured text editors are a common form of struc-

tured text processing, but lacking the \lightweight-

ness" that enables users to construct structure de-

scriptions interactively. Examples of structured text

editors include Gandalf [10], GRIF [22], and to some

extent, EMACS [25]. These systems accept a struc-

ture description and provide tools for editing docu-

ments that follow the structure. The structure de-

scription is generally a variant of context-free gram-

mar, although EMACS uses regular expressions to

describe syntax coloring. EMACS is unusual in an-

other sense, too: unlike structured text editors that

enforce syntactic correctness at all times, EMACS

uses the structure description to assist editing where

possible, but does not prevent the user from enter-

ing free text. Our LAPIS system follows this philos-

ophy, allowing the user to describe and access the

document as free text, as structured text, or any

combination of the two.

Sam [21] combines an interactive editor with a com-

mand language that manipulates regions matching

regular expressions. Regular expressions can be pipe-

lined to automatically process multiline structure

in ways that line-oriented systems cannot. Unlike

LAPIS, however, Sam does not provide mechanisms

for naming, composing, and reusing the structure

described by its regular expressions.

Also related are recent e�orts to build structure-

aware user interfaces, such as Cyberdesk [7] and

Apple Data Detectors [18]. These systems associate

actions with text structure, so that URLs might be

associated with the \open in browser" action, and

email addresses with \compose a message" or \look

up phone number." When a URL or email address

is selected by the user, its associated actions be-

come available in the user interface. Action asso-

ciation is a useful tool that might be incorporated

in LAPIS, but unlike LAPIS, these other systems

use traditional structure description languages like

context-free grammars and regular expressions.

7 Future Work

This work is part of the �rst author's PhD thesis

research, and continues to evolve. This section de-

scribes some of the directions in which the work will

be taken in the coming months.

LAPIS will be extended with new matchers, parsers,

and tools. A more useful matcher for literals would

optionally ignore alphabetic case, optionally match

only full words, match spaces in the literal expres-

sion against any background character, and option-

ally do simple stemming. Parser support would be



improved by allowing parsers to operate on lim-

ited parts of the document { for example, apply-

ing an HTML parser only to Java documentation

comments, which may contain HTML tags. Useful

new tools would include computing statistics on re-

gion sets (such as counts, sums, and averages) and

reformatting text by template substitution.

Another fruitful area for research is integration of

lightweight structured text processing into other ap-

plications, in particular an extensible text editor

such as EMACS. Integration with a text editor poses

at least two challenges: the interface problem of us-

ing named region sets uidly in direct-manipulation

text editing, and the implementation problem of up-

dating region sets cheaply as the user edits.

The text constraint language has room for improve-

ment. It should be possible to count (e.g. 2nd Line

in Table) and use numeric operators (e.g. Toolkit

contains Price < 100). Constraint systems should

support recursive or mutually recursive de�nitions.

It would also be useful to precede a constraint ex-

pression by a fuzzy quali�er, such as always, usual-

ly, rarely, or never. A fuzzy quali�er describes

how important it is for a matching region to sat-

isfy the constraint. Finally, it will be important to

determine the conditions under which our text con-

traints implementation (tandem tree intersection)

runs in linear time.

8 Conclusions

This paper has described lightweight structured text

processing, a technique for allowing users to de-

�ne and manipulate text structure interactively. A

prototype system, LAPIS, was described and evalu-

ated on example applications, including web pages,

source code, and plain text. LAPIS includes a struc-

ture description language called text constraints,

which can express text structure in terms of rela-

tionships among regions.

The LAPIS prototype has several important advan-

tages over other systems. First is the ability to

handle custom structure with a simple language ac-

cessible to users. The second advantage is inter-

active speci�cation, which allows users to see pat-

tern matches in context and de�ne text structure

by the most convenient combination of manual se-

lection and pattern matching. Finally, LAPIS sup-

ports external parsers, giving the user leverage over

standard text formats, supporting existing parsers

without recoding them in a new grammar language,

and allowing the user to write patterns that refer to

multiple parse trees at once.

Availability

The LAPIS prototype described in this paper, in-

cluding Java source code, is available free from

http://www.cs.cmu.edu/~rcm/lapis/.
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Abstract

Text is a popular storage and distribution format for

information, partly due to generic text-processing

tools like Unix grep and sort. Unfortunately, ex-

isting generic tools make assumptions about text

format (e.g., each line is a record) that limit their

applicability. Custom-built tools are one alterna-

tive, but they require substantial time investment

and programming expertise. We describe a new ap-

proach, lightweight structured text processing, which

overcomes these di�culties by enabling users to de-

�ne text structure interactively and manipulate the

structure with generic tools. Our prototype system,

LAPIS, is a web browser that can highlight, �lter,

and sort text regions described by the user. LAPIS

has several advantages over other systems: (1) the

ability to de�ne custom structure with a simple, in-

tuitive pattern language; (2) interactive speci�ca-

tion, showing pattern matches in context and let-

ting users choose the most convenient combination

of manual selection and pattern matching; and (3)

external parsers for standard text formats. The pat-

tern language in LAPIS, text constraints, describes

text structure in high-level terms, with region re-

lationships like before, after, in, and contains. We

describe an implementation of text constraints us-

ing a novel, compact representation of region sets

as collections of rectangles, or region intervals. We

also illustrate some examples of applying LAPIS to

web pages, text �les, and source code.

1 Introduction

Structured text has always been a popular way to

store, process, and distribute information. Tradi-

tional examples of structured text include source

code, SGML or LaTeX documents, bibliographies,

and email messages. With the advent of the World

Wide Web, structured text (in the form of HTML)

has become a dominant medium for online informa-

tion.

The popularity of text is easy to explain. As an old,

standard data format, ASCII text can be viewed and

edited easily on any platform. Text can be cut and

pasted into any application, printed by any printer,

included in any email message, and indexed by any

search engine. Unix in particular has a rich set of

generic tools for operating on text �les: grep, sort,

uniq, sed, etc.

Unfortunately, the generic nature of existing text-

processing tools is also a weakness, because generic

tools can make only limited assumptions about the

format of the text. Most Unix tools assume that a

text �le is divided into records separated by newlines

(or some other delimiter character). But this as-

sumption breaks down for most kinds of structured

text, such as source code and HTML. Consider the

following tasks, which are di�cult for generic text-

processing tools to handle:

1. Find functions that call exit() in a program.

2. Check spelling in program comments.

3. Extract a bibliography from a Web page.

4. Sort a �le of postal addresses by ZIP code.

The traditional approach to these problems is to

custom-build a tool for a particular text format.

For example, tasks #1 and #2 might be solved by

a development environment customized for the pro-

gramming language. Tasks #3 and #4 are typi-

cally solved by hand-coded Perl or AWK scripts.

The problemwith this approach is that custom-built



programs require substantial investment, are di�-

cult to reuse for other tasks or text formats, and lie

beyond the ability of casual users to create.

The de�ciencies of the custom-built approach are

best highlighted by custom text structure { struc-

ture which has not been blessed by standard gram-

mars or widely-available parsers. Many users store

small databases (such as address lists) as text �les.

Many programs generate reports and logs in text

form. Nearly every web page uses some kind of

custom structure represented in HTML; examples

include lists of publications, search engine results,

product catalogs, news briefs, weather reports, stock

quotes, sports scores, etc. Given the proliferation

of custom text formats, developing a tool for every

combination of task and text format is inconceiv-

able.

Our approach to generic tools for structured text is

called lightweight structured text processing. Light-

weight structured text processing enables users to

de�ne custom text structure interactively and in-

crementally, so that generic tools can operate on

the text in structured fashion. We envision that a

lightweight structured text processing system would

have four components:

� a structure description language for describing

text structure;

� an interactive document viewer for viewing doc-

uments, developing and testing structure de-

scriptions, and invoking tools;

� parsers for standard structures, like HTML

and programming language syntax;

� tools for manipulating text using structure de-

scriptions: sorting, searching, extracting, re-

formatting, editing, computing statistics, graph-

ing, etc.

Following this plan, we have built a prototype sys-

tem called LAPIS (Lightweight Architecture for Pro-

cessing Information Structure). LAPIS includes a

new structure description language called text con-

straints. Text constraints describe a set of regions in

a document in terms of relational operators (like be-

fore, after, in, and contains) and primitive regions

generated by external parsers or literal matching.

Text constraints can be used not only for queries

(such as Function contains "exit") but also for

structure de�nition, as in the following example:

Sentence = ends with SentencePunct;

SentencePunct = ('.' | '?' | '!'),

just before Whitespace,

but not '.' at end of

Abbreviation;

Abbreviation = 'Mr.' | 'Mrs.' |

'Ms.' | 'Dr.' | ...;

Text constraints di�er in several ways from context-

free grammars and regular expressions (the tradi-

tional techniques for structure description). Text

constraints permit conjunctions of patterns (indi-

cated by commas in the previous example) and ref-

erences to context (such as \just before"). Text con-

straints can also refer to structure de�ned by exter-

nal parsers { even multiple parsers simultaneously.

For example, Line at start of Function refers

to both Line (a name de�ned by a line-scanning

parser) and Function (de�ned by a programming-

language parser) to match the �rst line of every

function. Finally, we believe that text constraints

are more readable and comprehensible for users than

grammars or regular expressions, because a struc-

ture description can be reduced to a list of simple,

intuitive constraints which can be read and under-

stood individually. In the LAPIS prototype, text

constraints are implemented as an algebra operating

on sets of regions, using e�cient set representations

to achieve reasonable performance.

LAPIS combines text constraints with a web browser

that allows the user to develop text constraints in-

teractively and apply them to web pages, source

code, and text �les. In the browser, the user can de-

scribe a set of regions either programmatically (us-

ing text constraints or an external parser), manually

(by selection), or using any combination of the two.

Combining manual selection and programmatic de-

scription can be quite powerful. Manual selection

can be used to restrict attention to part of a doc-

ument which can be selected more easily than it

can be described, such as the content area of a web

page (omitting navigation bars and advertisements).

Manual selection can also �x up errors made by an

almost-correct structure description, adding or re-

moving regions from the set as necessary. Relying

on manual intervention is not always appropriate,

but sometimes it can help �nish a task faster.

The LAPIS browser also includes a few commands

that operate on sets of regions. Find simply high-

lights and navigates through a set of regions. Filter

displays only the selected regions, eliminating other

text from the display. Sort displays a set of regions



Figure 1: The LAPIS web browser, showing a

web page that describes user interface toolkits.

The user has entered the pattern Bold at start

of Paragraph containing "Mac" to highlight the

names of toolkits that support Macintosh develop-

ment.

sorted by the value of a sub�eld. In LAPIS, these

features are provided as interactive commands in

the browser, but we also plan to implement batch-

mode tools in the style of grep and sort, which would

take as input a text �le and its structure description.

The remainder of this paper is structured as fol-

lows: Section 2 describes the LAPIS browser and

tools. Section 3 describes the text constraints lan-

guage. Section 4 describes our current implementa-

tion of text constraints. Section 5 presents some ap-

plications of the system to web pages, text �les, and

source code. Section 6 covers related work, Section 7

describes future work, and Section 8 concludes.

2 LAPIS Web Browser

Our prototype lightweight structured text process-

ing system is LAPIS, a web browser that has been

extended with a pattern language (text constraints)

and several generic text-processing tools. LAPIS is

built on top of Sun's Java Foundation Classes. A

screenshot of the browser is shown in Figure 1.

Like other web browsers, the LAPIS browser can

retrieve any �le that can be named by a URL and

retrieved by HTTP, FTP, or from the local �lesys-

tem. The browser can display text �les or HTML

pages. HTML pages can be displayed either as text,

which shows the source including tags, or as HTML,

which renders the page according to the HTML for-

matting.

Several parsers are included in the browser, which

run automatically when a page of a certain MIME

type is loaded. A parser interprets a particular text

format and labels its components in the document.

The built-in parsers include:

� HTML: parses HTML pages, labeling HTML

tags and elements while simultaneously build-

ing a parse tree for rendering the page;

� Character: parses plain text and HTML to

�nd character classes like Whitespace, Letters,

and Digits;

� Java: parses Java programs to �nd syntax

constructs like Class, Method, Statement, and

Expression;

� USEnglish: parses plain text and HTML to

�nd regions like Sentence, Line, Time, Date,

and Currency, according to conventions of Amer-

ican English.

Parsers can also be associated with URL patterns.

For example, a parser that identi�es components of

an AltaVista search result page might be associated

with URLs of the form http://altavista.digital

.com/*.

New parsers can be de�ned in two ways: writing

a Java class that implements our Parser interface,

or by developing a system of text constraints. The

HTML and Character parsers were written by hand

in Java. The Java parser was automatically gener-

ated from an example grammar included with the

JavaCC parser-generator [26], showing that LAPIS

can take advantage of existing parsers without re-

coding the grammar in text constraint expressions.

USEnglish was developed interactively in LAPIS as

a system of text constraints.

In the browser, the user can enter a text constraint

expression and see the matching regions highlighted

(see Figure 1). Highlighting is simple to imple-

ment and familiar to users, but unfortunately it



merges adjacent and overlapping regions together,

without distinguishing their endpoints. Future re-

search should identify better ways to display over-

lapping region sets in context. To view highlighted

regions, the user can either scroll the document or

use the Next Match menu command to jump from

one highlighted region to the next.

In addition to patterns, the user can also highlight

regions by manual selection. In the prototype, a

selection made with the mouse is distinct from the

highlighted region set showing matches to a pattern.

The selection is a single, contiguous region (colored

blue), whereas the highlighted region set may be

multiple, noncontiguous regions (colored red). The

current selection in the document is always avail-

able as a one-element region set named Selection.

By referring to Selection in a text constraint, for

example, the user can limit the pattern's scope to a

manually selected region of the document. The user

can also construct a named region set by adding or

removing regions. The Label menu command adds

the current selection to the region set with the given

name. A corresponding Unlabel command removes

the selection from a given named region set by delet-

ing regions that lie inside the selection and trimming

the ends of regions that overlap the selection. By

applying Label and Unlabel repeatedly to a sequence

of selections, the user can build up a named region

set by hand, or modify a named region set created

by a parser or a pattern.

Several tools are provided for manipulating the high-

lighted regions. Filter eliminates all unhighlighted

text from the display. By default, Filter inserts

linebreaks between the highlighted regions to keep

the display readable. Documents are �ltered at the

source text level { even HTML documents. The re-

sult is sometimes illegal HTML (with orphaned start

tags or end tags), but the web browser can render

it passably.

Like Filter, Sort �lters the display down to high-

lighted regions, and also reorders the regions. Re-

gions can be sorted alphabetically or numerically.

By default, the sort key is the entire content of a

region, but the user can provide an additional text

constraint expression describing the sort �eld.

3 Text Constraints

Text constraints (TC) is a language for specifying

text structure using relationships among regions (sub-

strings of the text). TC describes a substring by

specifying its start o�set and end o�set. Formally,

a region is an interval [b; e] of inter-character po-

sitions in a string, where 0 � b � e � n (n is the

length of the string). A region [b; e] identi�es the

substring that starts at the bth cursor position (just

before the bth character of the string) and ends at

the eth cursor position (just before the eth charac-

ter, or at the end of the string if e = n ). Thus the

length of a region is e� b.

TC is essentially an algebra over sets of regions { op-

erators take region sets as arguments and generate

a region set as the result. TC permits an expression

to match an arbitrary set of regions, unlike other

structured text query languages that constrain re-

gion sets to certain types: nonoverlapping (regular

expressions), nonnesting (GC-lists [5]), or hierarchi-

cal (Proximal Nodes [19]).

3.1 Primitives

TC has three primitive expressions: literals, regular

expressions, and identi�ers. A literal string enclosed

in single or double quotes matches all occurrences

of the string in the document. Thus "Gettysburg"

�nds all regions exactly matching the literal charac-

ters \Gettysburg". The literal matcher can generate

overlapping regions, so matching "aa" against the

string \aaaaa" would yield 4 regions.

A regular expression is indicated by /regexp/. Our

regular expression matcher is based on the ORO-

Matcher library for Java [20]. The library follows

Perl 5 syntax and semantics [27], returning a set of

nonoverlapping regions that are as long as possible.

An identi�er is any whitespace-delimited token (ex-

cept for words and punctuation reserved by TC op-

erators). Identi�ers refer to the named region sets

generated by parsers. For example, after the HTML

parser has run, Tag refers to the set of all HTML

tags in the document. Only a single namespace is

provided by the LAPIS prototype, so the names gen-

erated by di�erent parsers must be chosen uniquely.

A future version of LAPIS is expected to support

multiple independent namespaces.
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Figure 2: Fundamental region relations in an ex-

ample string. Regions A through F are related to

region R as follows: A before R; B overlaps-start R;

C contains R; D in R; E overlaps-end R; and F after

R.

3.2 Region Relations

TC operators are based on six fundamental binary

relations among regions: before, after, in, contains,

overlaps-start, and, overlaps-end. (Similar relations

on time intervals were de�ned in [2].) The region

relations are de�ned as follows:

[b1; e1] before [b2; e2] , e1 � b2
[b1; e1] after [b2; e2] , e2 � b1
[b1; e1] in [b2; e2] , b2 � b1 ^ e1 � e2
[b1; e1] contains [b2; e2] , b1 � b2 ^ e2 � e1
[b1; e1] overlaps-start [b2; e2] , b1 � b2 ^ e1 � e2
[b1; e1] overlaps-end [b2; e2] , b2 � b1 ^ e2 � e1

Note that before and after are inverses, as are in

and contains, and overlaps-start and overlaps-end.

The six region relations are illustrated in Figure 2.

The six region relations are complete in the sense

that every ordered pair of regions is found in at least

one of the relations. Some regions may be related in

several ways, however. For example, in Figure 2, if

A's end point were identical to R's start point, then

we would have both A before R and A overlaps-start

R. These relations are useful in pattern matching, so

we de�ne a set of derived relations in which regions

have coincident endpoints:

just-before = before \ overlaps-start

just-after = after \ overlaps-end

at-start-of = in \ overlaps-start

at-end-of = in \ overlaps-end

starts-with = contains \ overlaps-start

ends-with = contains \ overlaps-end

Figure 3 illustrates the derived relations.

Four score and seven years ago...
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Figure 3: Region relations with coincident end-

points. Regions A through F are related to region

R as follows: A just-before R; B at-start-of R; C

at-end-of R; D starts-with R; E ends-with R; and F

just-after R.

Another useful derived relation is overlaps:

overlaps = in [ contains [

overlaps-start [ overlaps-end

In Figure 2, the regions B, C, D, and E overlap R,

but A and F do not. In Figure 3, all the regions

overlap R.

3.3 Relational Operators

Each region relation corresponds to a relational op-

erator in TC. Each relational operator takes two

forms, one unary and the other binary. The unary

form, op S, generates the set of regions that bear

the relation op to some region matching S. For ex-

ample, in an HTML document, the constraint ex-

pression in Paragraph returns all regions that are

inside some paragraph element.

The binary form of a relational operator, R op S,

generates all regions matching R that bear the rela-

tion op to some region matching S. For example, in

HTML, Paragraph contains "Lincoln" returns all

paragraph elements that contain the string \Lin-

coln."

For the sake of simplicity, all relational operators

have equal precedence and right associativity, so

that X in Y in Z is parsed as X in (Y in Z).



3.4 Intersection, Union, and Di�erence

Constraints that must be simultaneously true of a

region are expressed by separating the constraint

expressions with commas. The region set matched

by S1, S2, ..., Sn is the intersection of the re-

gion sets matched by each Si. For example just

after "From:", just before "nn" describes all

regions that start immediately after a \From:" cap-

tion and end at a newline.

Alternative constraints are speci�ed by separating

the constraint expressions with \j". The region set

matched by S1 j S2 j ... j Sn is the union of

the region sets matched by each Si.

Set di�erence is indicated by but not. The region

set matched by S1 but not S2 is the set that

matches S1 after removing all regions that match

S2.

3.5 Delimiter Operators

When certain relational operators are intersected,

the resulting region set can be larger than the user

anticipates. For example, the expression starts

with R, ends with S matches every possible pair

of R and S, even if other R's and S's occur in

between. For situations where only adjacent pairs

are desired, any relational operator can be modi�ed

by the keyword delimiter. For example, starts

with delimiter S matches regions that start with

some region matching S and overlap no other region

matching S.

3.6 Concatenation and Background

Concatenation of regions is indicated by then. The

expression "Gettysburg" then "Address"matches

regions that consist of \Gettysburg" followed by

\Address", with nothing important in between. The

meaning of nothing important depends on a param-

eter called the background. The background is a set

of regions. Characters in the background regions are

ignored when concatenating constraint expressions.

For example, when the background is Whitespace,

the expression "Gettysburg" then "Address" �nds

not only \GettysburgAddress", but also \Gettys-

burg Address", and even \Gettysburg Address" split

across two lines. Relational operators that require

adjacency also use the background, so the expres-

sion "Gettysburg" just before "Address"will suc-

cessfully match the �rst word of \Gettysburg Ad-

dress".

The LAPIS browser chooses a default background

based on the current document view, following the

guideline that any text not printed on the screen is

part of the background. In the plain text view, the

default background is Whitespace. In the HTML

view, the default background is the union of White-

space and Tag, since tags a�ect rendering but are

not actually displayed.

The background can also be set explicitly using the

ignoring directive. To change the background to R

for the duration of a constraint expression expr, use

the form expr ignoring R. For example, a query

on source code might take the form expr ignoring

(Comment j Whitespace). The background can be

removed by setting it to nothing, which generates

the empty region set.

3.7 De�nitions and Constraint Systems

A constraint de�nition assigns a name to the result

of a constraint expression:

GettysburgAddress =

starts with

"Four score and seven years ago",

ends with

"shall not perish from the earth"

Region sets named by a constraint de�nition can

be used in the same way as region sets named by

a parser, as in the example Sentence at start of

GettysburgAddress. A constraint system is a set

of constraint de�nitions separated by semicolons.

3.8 Expressiveness

The theoretical power of TC | that is, the set of

languages that can be matched by a TC expres-

sion | depends on the power of the matchers and

parsers it uses. If its matchers and parsers gener-

ate only regular languages, then the TC expression

is also regular, since regular languages are closed

under the TC operators concatenation, intersection,

and union [11]. Since context-free languages are not

closed under intersection, however, a TC expression

using context-free parsers maymatch a non-context-

free language.



A TC constraint system that uses only literals (no

regular expressions or external parsers) is less pow-

erful than a regular expression, because TC lacks

recursive constraints or repetition operators (such

as the * operator). Future work discussed in Sec-

tion 7 will address this issue.

4 Implementation

This section describes the implementation of text

constraints used in LAPIS. Among the interesting

features of the implementation is a novel region set

representation, the region interval. Region intervals

are particularly good at representing the result of

a region relation operator. By a simple transfor-

mation, region intervals may be regarded as rect-

angles in two-dimensional space, allowing LAPIS to

draw on earlier research in computational geome-

try to �nd a data structure suitable for storing and

combining collections of region intervals.

4.1 Region Interval Representation

The key ingredient to an implementation of text

constraints is choice of representation: how shall

region sets be represented? One alternative is a

bitvector, with one bit for each possible region in

lexicographic order. With a bitvector representa-

tion, every region set requires O(n2) space, where

n is the length of the document. Considering that

the region sets generated by matchers and parsers

typically have only O(n) elements, the bitvec-

tor representation wastes space. Another alterna-

tive represents a region set as a list of explicit pairs

[b; e], which is more appropriate for sparse sets. Un-

fortunately the region sets generated by relational

operators are not sparse. To choose a pathological

example, after [0; 0] matches every region in the

document. In general, for any region relation op

and region set S, the set matching op S may have

O(n2) elements.

Other systems have dealt with this problem by re-

stricting region sets to nested sets [19] or overlapped

sets [5], sacri�cing expressiveness for linear storage

and processing. Instead of restricting region sets,

we compress dense region sets with a representa-

tion called region intervals. A region interval is a

quadruple [b; c; d; e], representing the set of all re-

gions [x; y] such that b � x � c and d � y � e.

Essentially, a region interval is a set of regions whose

starts and ends are given by intervals, rather than

points. A region interval is depicted by extending

the region notation for regions (j|j), replacing the

vertical lines denoting the region's endpoints with

boxes denoting intervals.

A few facts about region intervals follow immedi-

ately from the de�nition:

� The set of all regions in a string of length

n can be represented by the region interval

[0; n; 0; n].

� The singleton region set f[b; e]g is represented

by the region interval [b; b; e; e].

� A region interval represents the empty set if

b > c or d > e or b > e.

� A region interval [b1; c1; d1; e1] is a subset of

another region interval [b2; c2; d2; e2] if and

only if b2 � b1 � c1 � c2 and d2 � d1 �

e1 � e2.

� The intersection of two intervals [b1; c1; d1; e1]

and [b2; c2; d2; e2] is

[max(b1; b2);min(c1; c2);

max(d1; d2);min(e1; e2)]

which may of course be the empty set.

Region intervals are particularly useful for repre-

senting the result of applying a region relation op-

erator. Given any region X and a region relation

op, the set of regions which are related to X by op

can be represented by exactly one region interval,

as shown in Figure 4.

By extension, if a region relation operator is applied

to a region set with m elements, then the result

can be represented with m region intervals (possi-

bly fewer, since some of the region intervals may be

redundant).

This result extends to region intervals as well: ap-

plying a region relation operator to a region interval

yields exactly one region interval. For example, the

result of before [b; c; d; e] is the set of all regions

which lie before some region in [b; c; d; e]. As-

suming the region interval is nonempty, every re-

gion ending at or before c quali�es, so the result of

this operator can be described by the region interval

[0; c; 0; c].
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Figure 4: Region intervals corresponding to the re-

lational operators.

We can represent an arbitrary region set by a union

of region intervals, which is simply a collection of

tuples. The size of this collection may still be O(n2)

in the worst case (consider, for example, the set of

all regions [b; e] of even length, which must be

represented by O(n2) singleton region intervals),

but most collections are O(n) in practice.

To summarize, the union-of-region-intervals repre-

sentation enables a straightforward implementation

of the text constraints language:

� Primitives: convert the set of regions gener-

ated by a literal, regular expression, or parser

into a union of region intervals by replacing

each region [b; e] with the singleton region

interval [b; b; e; e].

� Relational operators: for each region inter-

val [b; c; d; e], compute a new region interval

op [b; c; d; e].

� Union: merge the two collections of region

intervals, eliminating any region interval that

is a subset of another.

� Intersection: intersect every possible pair of

region intervals (one from each collection) and

collect the results.

4.2 Region Space

It remains to choose a representation for the collec-

tion of region intervals that provides the operations

we need (region relations, union, and intersection).

A 2D geometric interpretation of regions will prove

helpful. Any region [b; e] can be regarded as a

point in the plane, where the x-coordinate indicates

the start of the region and the y-coordinate indi-

cates the end. We refer to this two-dimensional in-

terpretation of regions as region space (see Figure 5).

Strictly speaking, only points with integral coordi-

nates correspond to regions, and even then only if

they lie above the 45-degree line, where b � e.

Under this interpretation, a region interval [b; c; d; e]

corresponds to an axis-aligned rectangle in region

space. Two region intervals intersect if and only

if their region space rectangles intersect. A region

interval is a subset of another if and only if its rect-

angle is completely enclosed in the other's rectangle.

A region set can be represented as a union of re-

gion intervals, which in turn can be represented as

a union of axis-aligned rectangles in region space.

We seek a data structure representing a union of

rectangles with the following operations:

� Create (P): create a union of rectangles from

a set of rectangles P .

� Relation (op, R): generate a new union of

rectangles by applying a region relation oper-

ator op elementwise to R.

� Union (R,S): combine two unions of rectan-

gles R and S.

� Intersect (R,S): intersect two unions of rect-

angles R and S.

n

0
0 n

Start point

End point

...and seven years ago...

b e
b

e

Figure 5: A region [b; e] corresponds to a point in

region space.



Ideally, these operations should take linear time and

linear space. In other words, �nding the intersection

or union of a collection of M rectangles with a col-

lection of N rectangles should take O(N +M +F )

time (where F is the number of rectangles in the

result), and computing a region relation on a col-

lection of N rectangles should take O(N ) time.

The data structure itself should store N rectangles

in O(N ) space.

Research in computational geometry and multidi-

mensional databases has developed a variety of data

structures and algorithms for storing and intersect-

ing collections of rectangles, including plane-sweep

algorithms, k-d trees, quadtrees of various kinds, R-

trees , and R+-trees (see [24] for a survey).

LAPIS uses a variant of the R-tree [9]. The R-tree

is a balanced tree derived from the B-tree, in which

each internal node has between m and M children

for some constants m and M . The tree is kept in

balance by splitting overowing nodes and merging

underowing nodes. Rectangles are associated with

the leaf nodes, and each internal node stores the

bounding box of all the rectangles in its subtree.

The decomposition of space provided by an R-tree

is adaptive (dependent on the rectangles stored) and

overlapping (nodes in the tree may represent over-

lapping regions). To keep lookups fast, the R-tree

insertion algorithm attempts to minimize the over-

lap and total area of nodes using various heuristics

(for example, inserting a new rectangle in the sub-

tree that would increase its overlap with its siblings

by the least amount). One set of heuristics, called

the R*-tree [4], has been empirically validated as

reasonably e�cient for random collections of rectan-

gles. Initially we used the R*-tree heuristics in our

prototype. The rectangle collections generated by

text constraints are not particularly random, how-

ever; they tend to be distributed linearly along some

dimension of region space, such as the 45-degree

line, the x-axis, or the y-axis. We were able to im-

prove overall performance by a factor of 5 by simply

ordering the rectangles in lexicographic order, elimi-

nating the expensive calculations that decide where

to place a rectangle without sacri�cing the tree's

logarithmic decomposition of region space.

Two R-trees T1 and T2 can be intersected by

traversing the trees in tandem, comparing the cur-

rent T1 node with the current T2 node and

expanding the nodes only if their bounding boxes

overlap. Traversing the trees in tandem has the po-

tential for pruning much of the search, since if two

nodes high in each tree are found to be disjoint, the

rectangles stored in their subtrees will never be com-

pared. In practice, tandem tree intersection takes

time O(N +M + F ). It will never do worse than

O(NM ). Tandem tree traversal is e�ective for im-

plementing set intersection, union, and di�erence.

4.3 Performance

The LAPIS prototype is written in Java 1.1. The

core text constraints engine is implemented in about

3500 lines of code, not includingmatchers and parsers.

The web browser consists of about 1000 lines of code

on top of the JFC JEditorPane text component.

The text constraints engine can evaluate an opera-

tor at a typical rate of 20,000 regions per second,

using Symantec JIT 3.0 on a 133 MHz Pentium.

The actual evaluation time of a text constraint ex-

pression varies according to the complexity of the

expression and the size of its intermediate results.

The text constraint expressions used in the exam-

ples in Section 5 were all evaluated in less than 0.1

second, on text �les and web pages ranging up to

80KB in size.

5 Applications

5.1 Web Pages

Many web pages display data in a custom format,

using HTML markup to set o� important parts of

the text typographically or spatially. Figure 6 shows

part of a page describing user interface toolkits [17]

The page describes over 100 toolkits with various

properties: some are free, some are commercial; some

run on Unix, others Microsoft Windows, others Mac-

intosh, and others are cross-platform. To browse the

page conveniently, we might want to restrict the dis-

play to show only toolkits matching certain require-

ments { for example, toolkits running under both

Unix and Microsoft Windows, sorted by price.

Each toolkit on this page is contained in a single

paragraph (<P> element in HTML). So we might

start by describing the toolkit as the Paragraph el-

ement, which is identi�ed by the built-in HTML

parser:

Toolkit = Paragraph



AlphaWindow,
Cumulus Technology Corp.,

1007 Elwell Court,

Palo Alto, CA, 94303,

(415) 960-1200,

$750,

Unix, Discontinued,

Alpha-numeric terminal windows, Window System

Altia Design, Altia,

5030 Corporate Plaza Dr #300,

Colorado Springs, CO, 80919,

(800)653-9957 or (719)598-4299,

UNIX or Windows, IB

Amulet,

Brad Myers,

Human-Computer Interaction Institute,

Carnegie Mellon Univ,

Pittsburgh, PA, 15213,

(412) 268-5150,

amulet@cs.cmu.edu,

FREE,
X or MS Windows, portable toolkit, UIMS

Figure 6: Excerpt from a web page describing user

interface toolkits.

Finding the prices is straightforward using Number,

a region set identi�ed by the built-in USEnglish

parser:

Price = ("\$" then Number | "FREE")

in Toolkit;

Finding toolkits that run under Macintosh is easy

(Toolkit contains "Mac"), since the page refers

consistently to Macintosh as \Mac". But Unix plat-

forms are sometimes described as \X", \X Win-

dows", or \Motif", and Microsoft Windows is also

called \MS Windows" or just plain \Windows". We

deal with these problems by de�ning a constraint for

each kind of platform that speci�es all these possi-

bilities and further constrains the matched literal to

be a full Word (not just part of a word):

Macintosh = Word, "Mac";

Unix = Word, ("Unix" | "X" | "Motif");

MSWindows = Word, ("PC" |

"Windows" but not just after "X");

Using these de�nitions, we can readily �lter the web

page for toolkits matching a certain requirements

(Toolkit, contains Unix, contains MSWindows)

and sort them according to Price.

5.2 Plain Text

Plain text has less explicit structure than HTML,

so text constraints for plain text typically refer to

delimiters like punctuation marks and line breaks.

Consider the following example of processing email

messages. Several airlines distribute weekly email

announcing low-price airfares. An excerpt from one

message (from US Airways) is shown in Figure 7.

Describing the boundaries of the table itself is fairly

straightforward given the delimiters (BlankLine is

identi�ed by the built-in USEnglish parser):

Table = starts with delimiter

"Roundtrip Fares Departing From",

ends with delimiter BlankLine;

The rows of the table can be found using Line, also

identi�ed by the built-in parser:

Flight = Line starts with "\$" in Table;

Fare = Number just after "\$" in Flight;

The origin and destination cities can be described

in terms of their boundaries:

Origin = just after delimiter "From",

just before delimiter "To",

in Line at start of Table;

Destination = just after Price,

in Flight;

Roundtrip Fares Departing From BOSTON, MA To

--------------------------------------------------

$109 INDIANAPOLIS, IN

$89 PITTSBURGH, PA

Roundtrip Fares Departing From PHILADELPHIA, PA To

--------------------------------------------------

$79 BUFFALO, NY

$89 CLEVELAND, OH

$89 COLUMBUS, OH

$89 DAYTON, OH

$89 DETROIT, MI

$79 PITTSBURGH, PA

$79 RICHMOND/WMBG., VA

$79 SYRACUSE, NY

Figure 7: Excerpt from an email message announc-

ing cheap airfares.



/**

* Convert a local filename to a URL.

* @param file File to convert

* @return URL corresponding to file

*/

public static URL FileToURL (File file)

throws MalformedURLException {

return new URL ("file:"

+ toURLDelimiters

(file.getAbsolutePath ()));

}

Figure 8: A Java method with a documentation

comment.

Using these de�nitions, we can readily �lter the mes-

sage for ights of interest, e.g. fromBoston to Pitts-

burgh:

Flight,

contains Destination contains "PITTSBURGH",

in Table contains Origin contains "BOSTON";

The expression for the ight's origin is somewhat

convoluted because ights (which are rows of the ta-

ble) do not contain the origin as a �eld, but rather

inherit it from the heading of the table. This ex-

ample demonstrates, however, that useful structure

can be described and queried with a small set of

relational operators.

5.3 Source Code

Source code can be processed like plain text, but

with a parser for the programming language, source

code can be queried much more easily. LAPIS in-

cludes a Java parser, so the examples that follow are

in Java.

Unlike other systems for querying and processing

source code, TC operates on regions in the source

text, not on an abstract syntax tree. At the text

level, the user can achieve substantial mileage know-

ing only a few general types of regions identi�ed by

the parser, such as Statement, Comment, Expres-

sion, and Method, and using text constraints to

specialize them. For example, our parser identi�es

Comment regions, but does not specially distinguish

the \documentation comments" that can be auto-

matically extracted by the javadoc utility. Figure 8

shows a Java method preceded by a documentation

comment.

The user can �nd the documentation comments by

constraining Comment with a text-level expression:

DocComment = Comment starts with "/**";

A similar technique can be used to distinguish pub-

lic class methods from private methods:

PublicMethod = Method starts with "public";

In this case, however, the accuracy of the pattern de-

pends on programmer convention, since attributes

like public may appear in any order in a method

declaration, not necessarily �rst. All of the follow-

ing method declarations are equivalent in Java:

public static synchronized void f ()

static public synchronized void f ()

synchronized static public void f ()

If necessary, the user can deal with this problem by

adjusting the pattern (e.g., Method starts with

Line contains "public") or relying on the Java

parser to identify attribute regions (e.g., Method

contains Attribute contains "public") . In prac-

tice, however, it is often more convenient to use ty-

pographic conventions, like public always appear-

ing �rst, than to modify the parser for every con-

tingency. Since text constraints can express such

conventions, constraints might also be used to en-

force them, if desired.

We can use DocComment and PublicMethod to �nd

public methods that need documentation:

PublicMethod but not just after DocComment;

Text constraints are also useful for de�ning custom
structure inside source code. Java documentation
comments can include various kinds of �elds, such
as @param to describe method parameters, @return
to describe the return value, and @exception to de-
scribe exceptional return conditions. These �elds
can be described by text constraint expressions:

DocField = starts with delimiter "@",

in DocComment;

ParamDoc = DocField, starts with "@param";

ReturnDoc = DocField, starts with "@return";

ExceptionDoc = DocField, starts with

"@exception";

Using this structure, we can �nd methods whose

documentation is incomplete in various ways. For



example, this expression �nds methods with param-

eters but no parameter documentation:

PublicMethod contains FormalParameter,

just after (DocComment but not

contains ParamDoc);

6 Related Work

Text processing is a rich and varied �eld. Languages

like AWK [1] and Perl [27] are popular tools provid-

ing fast regular expression matching in an impera-

tive programming language designed for text pro-

cessing. These tools are not interactive, however,

sacri�cing the ability to view pattern matches in

context (particularly important for web pages) and

the ability to combine manual selection with pro-

grammatic selection. Visual Awk [15] made some

strides toward interactive development of AWK pro-

grams which was inspirational for this work, but

Visual AWK is still line-oriented, limited to regu-

lar expression patterns, and unable to use external

parsers.

The concept of lightweight structured text process-

ing described in this paper is independent of the

language chosen for structure description. The text

constraints language in LAPIS is novel and appeal-

ing for its simple and intuitive operators, its uniform

treatment of parser-generated regions and constraint-

generated regions, the concept of background re-

gions, and its direct implementation, but another

language may be used instead. A variety of lan-

guages have been proposed for querying structured

text databases, such as Proximal Nodes [19], GC-

lists [5], p-strings [8], tree inclusion [13], Maestro [16],

and PAT expressions [23]. A survey of structured

text query languages is found in [3]. Sgrep [12] is a

variant of grep that uses a structured text query lan-

guage instead of regular expressions, which helped

inspire us to incorporate other Unix-style tools into

a structured text processing system. Domain-speci�c

query tools include ASTLOG [6], a query language

speci�c to source code, and WebL [14], which com-

bines an HTML query language with a program-

ming language specialized for fetching and process-

ing World Wide Web pages.

Structured text editors are a common form of struc-

tured text processing, but lacking the \lightweight-

ness" that enables users to construct structure de-

scriptions interactively. Examples of structured text

editors include Gandalf [10], GRIF [22], and to some

extent, EMACS [25]. These systems accept a struc-

ture description and provide tools for editing docu-

ments that follow the structure. The structure de-

scription is generally a variant of context-free gram-

mar, although EMACS uses regular expressions to

describe syntax coloring. EMACS is unusual in an-

other sense, too: unlike structured text editors that

enforce syntactic correctness at all times, EMACS

uses the structure description to assist editing where

possible, but does not prevent the user from enter-

ing free text. Our LAPIS system follows this philos-

ophy, allowing the user to describe and access the

document as free text, as structured text, or any

combination of the two.

Sam [21] combines an interactive editor with a com-

mand language that manipulates regions matching

regular expressions. Regular expressions can be pipe-

lined to automatically process multiline structure

in ways that line-oriented systems cannot. Unlike

LAPIS, however, Sam does not provide mechanisms

for naming, composing, and reusing the structure

described by its regular expressions.

Also related are recent e�orts to build structure-

aware user interfaces, such as Cyberdesk [7] and

Apple Data Detectors [18]. These systems associate

actions with text structure, so that URLs might be

associated with the \open in browser" action, and

email addresses with \compose a message" or \look

up phone number." When a URL or email address

is selected by the user, its associated actions be-

come available in the user interface. Action asso-

ciation is a useful tool that might be incorporated

in LAPIS, but unlike LAPIS, these other systems

use traditional structure description languages like

context-free grammars and regular expressions.

7 Future Work

This work is part of the �rst author's PhD thesis

research, and continues to evolve. This section de-

scribes some of the directions in which the work will

be taken in the coming months.

LAPIS will be extended with new matchers, parsers,

and tools. A more useful matcher for literals would

optionally ignore alphabetic case, optionally match

only full words, match spaces in the literal expres-

sion against any background character, and option-

ally do simple stemming. Parser support would be



improved by allowing parsers to operate on lim-

ited parts of the document { for example, apply-

ing an HTML parser only to Java documentation

comments, which may contain HTML tags. Useful

new tools would include computing statistics on re-

gion sets (such as counts, sums, and averages) and

reformatting text by template substitution.

Another fruitful area for research is integration of

lightweight structured text processing into other ap-

plications, in particular an extensible text editor

such as EMACS. Integration with a text editor poses

at least two challenges: the interface problem of us-

ing named region sets uidly in direct-manipulation

text editing, and the implementation problem of up-

dating region sets cheaply as the user edits.

The text constraint language has room for improve-

ment. It should be possible to count (e.g. 2nd Line

in Table) and use numeric operators (e.g. Toolkit

contains Price < 100). Constraint systems should

support recursive or mutually recursive de�nitions.

It would also be useful to precede a constraint ex-

pression by a fuzzy quali�er, such as always, usual-

ly, rarely, or never. A fuzzy quali�er describes

how important it is for a matching region to sat-

isfy the constraint. Finally, it will be important to

determine the conditions under which our text con-

traints implementation (tandem tree intersection)

runs in linear time.

8 Conclusions

This paper has described lightweight structured text

processing, a technique for allowing users to de-

�ne and manipulate text structure interactively. A

prototype system, LAPIS, was described and evalu-

ated on example applications, including web pages,

source code, and plain text. LAPIS includes a struc-

ture description language called text constraints,

which can express text structure in terms of rela-

tionships among regions.

The LAPIS prototype has several important advan-

tages over other systems. First is the ability to

handle custom structure with a simple language ac-

cessible to users. The second advantage is inter-

active speci�cation, which allows users to see pat-

tern matches in context and de�ne text structure

by the most convenient combination of manual se-

lection and pattern matching. Finally, LAPIS sup-

ports external parsers, giving the user leverage over

standard text formats, supporting existing parsers

without recoding them in a new grammar language,

and allowing the user to write patterns that refer to

multiple parse trees at once.

Availability

The LAPIS prototype described in this paper, in-

cluding Java source code, is available free from

http://www.cs.cmu.edu/~rcm/lapis/.

Acknowledgements

For help with this paper, the authors would like

to thank David Garlan, Laura Cassenti, and the

anonymous referees.

This research was partially supported by a USENIX

Student Research Grant, and partially by a National

Defense Science and Engineering Graduate Fellow-

ship. The views and conclusions contained in this

document are those of the authors and should not

be interpreted as representing the o�cial policies,

either expressed or implied of the U.S. Government.

References

[1] Aho, A.V., Kernighan, B.W., and Wein-

berger, P.J. The AWK Programming Language.

Addison-Wesley, 1988.

[2] Allen, J. \Time Intervals." Communications of

the ACM, v26 n11, 1983, pp 822-843.

[3] Baeza-Yates, R. and Navarro, G. \Integrating

contents and structure in text retrieval." ACM

SIGMOD Record, v25 n1, March 1996, pp 67-

79.

[4] Beckmann, N., Kriegel, H-P., Schneider, R.,

and Seeger, B. \The R*-tree: an e�cient and

robust access method for points and rectan-

gles." ACM SIGMOD Intl Conf on Managment

of Data, 1990, pp 322-331.

[5] Clarke, C.L.A., Cormack, G.V., Burkowski,

F.J. \An algebra for structured text search

and a framework for its implementation." The

Computer Journal, v38 n1, 1995, pp 43-56.

[6] Crew, R. F. \ASTLOG: a language for exam-

ining abstract syntax trees." Proceedings of the



USENIX Conference on Domain-Speci�c Lan-

guages, October 1997, pp 229-242.

[7] Dey, A.K., Abowd, G.A., and Wood, A.

\CyberDesk: a framework for providing self-

integrating ubiquitous software services." Pro-

ceedings of Intelligent User Interfaces '98, Jan-

uary 1998.

[8] Gonnet, G. H. and Tompa, F. W. \Mind your

grammar: a new approach to modelling text."

Proceedings 13th VLDB Conference, 1987, pp

339-345.

[9] Guttman, A. \R-Tree: a dynamic index struc-

ture for spatial searching." ACM SIGMOD Intl

Conf on Managment of Data, 1984, pp 47-57.

[10] Habermann, N. and Notkin, D. \Gandalf: Soft-

ware development environments." IEEE Trans-

actions on Software Engineering. v12 n12, De-

cember 1986, pp 1117-1127.

[11] Hopcroft, J.E. and Ullman, J.D. Introduction

to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, 1979.

[12] Jaakkola, J. and Kilpelainen, P. Using sgrep

for querying structured text �les. University of

Helsinki, Department of Computer Science, Re-

port C-1996-83, November 1996.

[13] Kilpelainen, P. and Mannila, H. \Retrieval

from hierarchical texts by partial patterns."

Proceedings SIGIR '93, pp 214-222, 1993.

[14] Kistler, T. and Marais, H. \WebL - a pro-

gramming language for the Web." In Computer

Networks and ISDN Systems (Proceedings of

the WWW7 Conference), v30, April 1998, pp

259-270. Also appeared as DEC SRC Technical

Note 1997-029.

[15] Landauer, J. and Hirakawa, M. \Vi-

sual AWK: a model for text process-

ing by demonstration." Proceedings 11th

International IEEE Symposium on Vi-

sual Languages '95, September 1995.

http://www.computer.org/conferen/vl95

/talks/T32.html

[16] MacLeod, I. \A query language for retrieving

information from hierarchic text structures."

The Computer Journal, v34 n3, 1991, pp 254-

264.

[17] Myers, B.A. User Interface Software Tools.

http://www.cs.cmu.edu/~bam/toolnames.

html

[18] Nardi, B.A., Miller, J.R., and Wright,

D.J. \Collaborative, programmable intelligent

agents." Communications of the ACM, v41 n3,

March 1998, pp 96-104.

[19] Navarro, G. and Baeza-Yates, R. \A language

for queries on structure and contents of textual

databases." Proceedings SIGIR'95, pp 93-101.

[20] Original Reusable Objects, Inc. OROMatcher.

http://www.oroinc.com/

[21] Pike, R. \The Text Editor sam." Software

Practice & Experience, v17 n11, Nov 1987, pp

813-845.

[22] Quint, V. and Vatton, I. \Grif: an interac-

tive system for structured document manipu-

lation." Text Processing and Document Manip-

ulation, Proceedings of the International Con-

ference, Cambridge University Press, 1986, pp

200-213.

[23] Salminen, A. and Tompa, F. W. PAT expres-

sions: an algebra for text search. UW Centre

for the New Oxford English Dictionary and

Text Research Report OED-92-02, 1992.

[24] Samet, H. The Design and Analysis of Spa-

tial Data Structures. Addison-Wesley, Reading,

MA, 1990.

[25] Stallman, R.M. \EMACS - the extensible,

customizable self-documenting display editor."

SIGPLAN Notices, v16 n6, June 1981, pp 147-

56.

[26] Sun Microsystems, Inc. JavaCC. http://www.

suntest.com/JavaCC/

[27] Wall, L., Christiansen, T., and Schwartz, R.L.

Programming Perl, 2nd ed. O'Reilly & Asso-

ciates, 1996.


