
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6–11, 1999

Porting Kernel Code to Four BSDs and Linux

Craig Metz
ITT Systems and Sciences Corporation

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Porting Kernel Code to Four BSDs and Linux

Craig Metz

ITT Systems and Sciences Corporation

cmetz@inner.net

Abstract

The U.S. Naval Research Laboratory develops and

maintains a freely available IPv6 and IP Security dis-

tribution. All of the software builds and runs on

BSD/OS, FreeBSD, NetBSD, and OpenBSD, and a

growing portion of the software builds and runs on

Linux. Each of the four BSDs has evolved signi�cantly

from their original 4.4BSD-Lite ancestor, and increas-

ingly more of that evolution is along divergent paths.

Linux shares no signi�cant ancestry with the BSDs,

but is still a POSIX system, which means that many of

the same high-level facilities are available even though

their implementation might be completely di�erent.

This paper discusses many of the di�erences and

many of the similarities we encountered in the inter-

nals of these systems. It also discusses the techniques

and glue software that we developed for isolating and

abstracting the di�erences so that we could build a sig-

ni�cant base of system code that is portable between

all �ve systems.

1 Introduction

1.1 History

The U.S. Naval Research Laboratory's IPv6+IPsec

distribution [1] began its life in 1994 on BSD/386

1.1, which was a 4.3BSD \Net/2" system. When

BSD/386 2.0, which was based on 4.4BSD-Lite, be-

came available, we moved the code to that system.

This was a straightforward change, as the di�erences

in the parts of the two systems that our code inter-

faced with were small. We then added support for

\real" 4.4BSD/sparc. At this point, we ran into our

�rst two experiences with maintaining the same code

in di�erent kernels. First, we had to separate our code

into parts speci�c to each and parts shared between the

two. Second, we found slight di�erences in the way the

systems did things and had to add some ifdef state-

ments to our \shared" tree to cope with these. Still,

these were virtually identical systems. Because a large

portion of our code resided in the netinet directory

and the two systems were virtually identical, we de-

cided to put our modi�cations into the 4.4BSD-Lite2

netinet (IPv4) code and make the needed changes to

port that into BSD/386 and 4.4BSD/sparc.

In 1995, we made the �rst jump to a radically dif-

ferent system. Although most of the research commu-

nity used BSD, Linux was also an interesting system,

so we decided to attempt to port a component of our

software to Linux. One component that was some-

what unique to the NRL software was our PF KEY[2]

interface and implementation, which also had the im-

portant feature of being a fairly self-contained mod-

ule. PF KEY communicates with user space as a new

sockets protocol family and with the rest of the ker-

nel through function calls we de�ned. We felt that it

would be useful to have the PF KEY implementation

running on Linux even if the rest of our code never did,

and that it was a reasonable part of the software to at-

tempt to port. We split our PF KEY implementation

and our debugging framework into a OS-speci�c parts

(such as the sockets interface code) and common parts

(such as the actual message processing code). With

some help from the Linux community and Alan Cox

in particular, we ported our 4.4BSD PF KEY imple-

mentation to to Linux in about three months.

In 1996, we added support for NetBSD, another

4.4BSD-Lite derived system. The NetBSD team had

made a number of changes versus 4.4BSD-Lite that

we had to add ifdefs to handle. NetBSD had also

added a number of new IPv4 features that 4.4BSD-

Lite didn't have; because we were using a common

4.4BSD-Lite netinet implementation, those features

were all removed when we replaced that code.

As time went on, we dropped support for the \real"

4.4BSD/sparc because almost nobody actually had a

copy of it and because NetBSD/sparc was a freely

available system that worked better. Both BSD/386

(renamed to BSD/OS) and NetBSD continued to

evolve, and we had to put more and more ifdefs

into our code to cope with their changes from 4.4BSD.

It became clear that we were actually spending al-

most as much e�ort shoehorning the original 4.4BSD-

Lite netinet code into the newer version of these sys-

tems as it would take to maintain our changes to the

netinet code in each system's native implementation,

and throwing away the native systems' changes was a

problem for some users.

In 1997, we built an implementation of the second

version of our PF KEY interface. We chose to build

this implementation as a ground-up rewrite. Instead

of building this new implementation on one system

and \porting" to the others, we actually developed

this code simultaneously on BSD/OS, NetBSD, and

Linux. By doing this, we were able to �nd and resolve

OS dependencies quickly, and we were able to take ad-

vantage of the debugging strengths of each of these

systems. This was also an opportunity to do many

things di�erently, designing for portability based on

our previous experiences rather than adding portabil-

ity as an afterthought.

In late 1997, BSDI chose to integrate our code into

their source tree for the upcoming BSD/OS 4.0. BSDI

actually did the work of integrating our changes into

their netinet code, which meant that half of the work

of integrating our code into the native netinet code of

our supported systems was done. We also decided to

expend more e�ort on becoming a good choice for in-

tegration into other systems, which meant adding new

ports to OpenBSD 2.3 and FreeBSD 3.0 and integrat-

ing our changes into the native netinet implementa-

tions of each system.

The OpenBSD port was surprisingly straightforward

because of its shared ancestry with NetBSD; most

of the di�erences between 4.4BSD-Lite and NetBSD

could also be found in OpenBSD. The majority of the

work we ended up doing for this port was integrat-

ing our code into the OpenBSD netinet code, which

then got us most of the way to also having our code

integrated into the NetBSD netinet code.

The other port we added was to a snapshot of

FreeBSD 3.0. This port was much more di�cult,

because FreeBSD had made many more substantial

changes from 4.4BSD-Lite than the other BSD sys-

tems we supported. Working with a snapshot turned

out to create problems, too. The system had bugs that

we ran into, and many of the system's debugging fa-

cilities didn't work at all. We also had more work to

do when we moved from the snapshot to the real 3.0

release, as there were signi�cant new changes versus

4.4BSD-Lite that we had to handle.

As both the OpenBSD and FreeBSD ports were

starting, we had some level of support for �ve oper-

ating systems and we were maintaining much more

OS-speci�c code than we were before because we were

modifying each of the BSD systems' native netinet

code. We decided to do a major reorganization of

our source tree, separating it into seven modules: an

OS-speci�c piece for each of the �ve systems, a BSD-

common piece shared between all of the BSD systems,

and a common piece shared between all of the sys-

tems. With some added scripts and tools, we were

able to create an organization of \overlays" such that

the common pieces could be symlinked to appear in

the OS-speci�c directories, and such that the more-

speci�c pieces could override the less-speci�c pieces.

This new organization made it much easier for us to

maintain our software on all of these systems while

trying to balance duplication of e�ort with close inte-

gration into the supported systems.

While we were doing the ports to OpenBSD and

FreeBSD, we were also rewriting large portions of our

IPsec implementation. Because we knew that it was

a direction we wanted to eventually move to, we built

a framework to allow the new code to be ported to

Linux. After all of the BSD ports and the rewrite of

the IPsec code were �nished and released, we began

the task of porting our IPsec code to Linux, which is

currently a work in progress.

1.2 Observations

In the course of building our software and adding sup-

port for all of these systems, we learned many things

about how to build and maintain portable kernel code.

Many of the lessons that we learned didn't have to be

learned the hard way. Large blocks of code are shared

between the various BSD systems, especially code for

new networking features and device drivers. There are

also some cases of software that had been ported from

BSD to Linux (for example, the NCR SCSI driver) and

from Linux to BSD (for example, the GPL x87 math

emulator). Perhaps the best known example of port-

ing kernel code is the BSD network stack, which can be

seen running in all sorts of systems that are de�nitely

not BSD UNIX. However, we are not aware of anyone

who has ported code to the various BSD and Linux

systems and really documented what they discovered

while doing it.

The rest of this paper has two major parts. In the

�rst part, we will document our high-level discoveries

about building and maintaining portable kernel code.

These are general observations about how to struc-

ture such code, how to go about building such code,

and { possibly more important { what we discovered

that you should not do. In the second part, we will

document many of the speci�c mechanisms we devel-

oped for making code portable. These range from sim-

ple wrapper macros to major new compatibility data

structures.

2 High-Level Discoveries

2.1 Should You Port It?

Probably the most important thing to consider be-

fore getting to far into thinking about porting kernel

code is whether something really should or shouldn't

be ported.

Given enough time and e�ort, any piece of system

code can be ported to any other system. However,

for many pieces of code, that will mean either porting

a large chunk of the original OS with it or otherwise

dramatically changing the target OS to be more like

the original OS. Generally speaking, this is not a good

thing to do.

Some code is so dependent on the system that the

problem that the code solves might not exist in other

systems or the solution approach might not work in

other systems. Or maybe someone else is already doing

a good enough job of solving the problem on another

system that you don't need to port your code there.

This is a lesson we learned, though not the hard way.

While we were getting our IPv6 implementation for

4.4BSD and NetBSD more stable, Pedro Marques and

a few other developers were working on an IPv6 im-

plementation for Linux. An IPv6 kernel implementa-

tion requires extensive changes to the existing system

to generalize IPv4-dependent code, and these changes

are very system dependent. Since that represents the

majority of the e�ort required to build an IPv6 im-

plementation, it didn't make sense for us to port our

kernel implementation to Linux, since we would have

to do most of the work from scratch only to be dupli-

cating the e�ort of another group.

Note also that some systems are architecturally sim-

ilar and some are very di�erent, and it makes a lot less

sense to try to port kernel code between very di�erent

systems than very similar systems. For example, both

4.4BSD and Linux are UNIX-like systems, and they

both have sockets-based IP network stacks. So, while

the implementation of network code might be very dif-

ferent between the two systems, there are still a lot

of high-level similarities because they are constrained

in their architectures by the standardized interfaces

they present (POSIX, sockets, IP). In contrast, porting

code from the Linux kernel network stack to the Win95

kernel network stack might be a lost cause because the

systems don't share enough architectural similarities.

Another important note is to observe the distinc-

tion between kernel space and user space. While it is

sometimes possible to take a module written for ker-

nel space and move it to user space or vice versa, most

code written for use in kernel space is that way for

good reasons. As a general rule, don't try to move

code through the kernel/user barrier.

2.2 Portability Techniques

Writing really portable code is not hard, but it is

tricky. Almost all of the same approaches, tricks, and

traps that you encounter porting user-space code ap-

plies to kernel-space code, too. One of the unfortunate

problems resulting from increased standardization of

systems is that a lot of people have never ported code

fromone radically di�erent system to another, so many

people really don't know how to take code and make

it portable.

As a general rule, a good approach to making code

portable is to add new abstractions. For substantially

similar operations that just work a little di�erently

on di�erent systems, this approach works really well {

replace the concrete code with an abstract macro that

expands into di�erent code on di�erent systems. You

might also consider giving up some of the
exibility

that particular systems give you. For example, BSD

systems have a function malloc(size, type, wait),

while Linux has a function kmalloc(size, flags).

We abstracted these into a single OSDEP MALLOC(size)

function, which does what we really need each to do.

We created a lot of OSDEP xmacros to abstract away

minor system-dependencies in our code, and we found

that this approach works very well for small di�er-

ences. Another common approach to the same prob-

lem is to use conditionals around blocks of code, and

to provide an alternative for each system. Figure 1

shows an example of the code that results from this

approach. For small di�erences, we believe that ab-

stracting leads to more readable code and makes it

harder for system-speci�c code to get out of sync.

Abstracting is also far more convenient for debug-

ging than conditionals. The code in Figure 1a might

expand to end up the same as the code in Fig-

ure 1b. But, when built with debugging enabled,

OSDEP MALLOC() actually gets de�ned as a call to our

malloc() debugger code, and OSDEP RETURN ERROR()

actually gets de�ned as a set of statements that tell us

what line threw the error. Changing the code in this

way is easy to do with macro abstractions, but would

be painful to do with code surrounded by conditionals.

One of the serious dangers of conditionals is the

temptation to make them either-or statements. For

example, our earlier code contained conditionals that

evaluated to one block on Linux systems and another

block on non-Linux systems. This hard-codes a very

dangerous assumption: that you won't be adding new

ports to the mix that will make life less simple. We

have been bitten a number of times by conditionals of

this form when adding new ports, and we learned the

hard way to be very careful with the preprocessor's

else directive.

An important side note is that macros are strongly

preferable to functions in kernel space. For applica-

a.

if (!(pfkeyv2_socket = OSDEP_MALLOC(sizeof(struct pfkeyv2_socket))))

OSDEP_RETURN_ERROR(ENOMEM);

b.

#if __bsdi__ || __NetBSD__ || __OpenBSD__ || __FreeBSD__

if (!(pfkeyv2_socket = malloc(sizeof(struct pfkeyv2_socket), M_TEMP, M_DONTWAIT)))

return ENOMEM;

#endif /* __bsdi__ || __NetBSD__ || __OpenBSD__ || __FreeBSD__ */

#if __linux__

if (!(pfkeyv2_socket = kmalloc(sizeof(struct pfkeyv2_socket), GFP_ATOMIC)))

return -ENOMEM;

#endif /* __linux */

Figure 1: Two Approaches to Minor Di�erences: (a) abstracting (b) conditionalizing

tion code, the overhead of a function call is a small

price to pay for compatibility. In kernel space, perfor-

mance and memory usage (both in terms of code size

and stack use) is much more important, and so adding

function calls that contain little code is probably a bad

thing to do. In the more general sense, whether to put

things in functions or to inline them as macros is still

a judgment call the programmer has to make.

For larger di�erences, abstraction takes much di�er-

ent form. There, large functions or sets of functions, all

surrounded by conditionals, is probably a reasonable

approach. For example, a large part of our PF KEY

implementation is the interface between our messag-

ing code and the system's socket layer. The di�erent

systems' socket layers required radically di�erent in-

terface functions and data structures to be provided.

Since the organization and structure of what had to be

done varied so much between the systems, we provided

separate versions of these functions for Linux and for

the BSDs, with more conditionals surrounding some

of the di�erences among the BSD functions. However,

the sockets interface code provides a uniform interface

to the rest of our PF KEY code, so the same mes-

saging code can send up a message through the Linux

sockets layer, the FreeBSD sockets layer, or the BSDI

sockets layer, and the messages have essentially the

same format.

Another large di�erence that needs abstraction is

signi�cant data structures. BSD systems use a chain

of struct mbufs to hold the contents of packets, while

Linux systems use struct sk buffs. These are very

di�erent structures, so abstraction of signi�cant ac-

cesses to these structures won't work... at least, not

without either making assumptions or serious perfor-

mance degradation. In our PF KEY code, we were

relatively lucky in that we were able to simply de�ne

macro functions that copy blocks of data into and out

of the systems' native bu�ers and were done.

In our IPsec code, however, we were not nearly so

lucky { now we need to take a packet in the native

bu�er, operate on it, and return a result in the na-

tive bu�er, and doing that by copies is not reasonable

because it uses too much extra memory and costs too

much for acceptable performance. So we de�ned an ab-

stract bu�er structure { the struct nbuf (see Section

3.3 for more details) { and de�ned \border functions"

that take a native bu�er and turn it into a nbuf, or

take a nbuf and turn it into a native bu�er. Those

border functions are designed to use certain tricks and

to check for useful cases that avoid copying the actual

bu�er contents in the common case, so the cost of us-

ing the abstract nbuf rather than the system-native

structure is only that of the nbuf header itself and the

cost of going through the border functions, both of

which are small costs. The bene�t is, in our opinion,

huge. We now have a uniform, reasonable bu�er that

we can work with regardless of the system and a set

of known properties of that bu�er we can use to write

simpler and faster code.

Which portability approach to take is basically a

trade-o�, and knowing which of the available options

to take is basically a matter of experience and intu-

ition. There is almost always more than one way that

you can do it, and you can always go �x things later

if you decide that you made the wrong choice.

2.3 Debugging

Each of the �ve systems that we support has di�er-

ent debugging capabilities. Many of them have the

same facilities available (e.g., kgdb, kdebug, ddb, core

dumps, display of trap information), but the reliability

and net utility of those functions varies dramatically

from system to system and among hardware platforms

on the same system. I've never met an experienced

kernel programmer who won't admit that all kernel de-

bugging facilities are at best a mixed blessing: handy

when they work, but they don't always work when

you need them to. When your code has bugs that go

trashing things in kernel space, it's not too hard for

it to trash things that debugging facility needs (or the

debugging facility itself, for that matter!).

There are several rather immortalized Linus Tor-

valds quotes about kernel debugging, but the summary

of them is pretty simple and exactly agrees with our

experience: The best approach to debugging kernel

code is to read it, and read it carefully. Debuggers are

a wonderful thing, but they tend to entice you into an

interactive mode of programming where more time is

spent trying to �gure out if the code you have does

the right thing than trying to �gure out if the code

you have is right. Especially when you're running on

systems you just ported your code to and aren't as

experienced with, reading your code and reading the

system-native code you call is a useful thing to do when

you're having trouble.

Though it's certainly a lot less convenient way to

do things, we've found that the one relatively con-

stant thing across the kernels we support is good old

printf() (well, Linux calls it printk(), but a simple

preprocessor define statement solves that problem).

With only one exception (4.4BSD/sparc at high soft-

ware priority levels), you can always use it to print

data out to a console. By inserting printf statements

in interesting places, you can binary search for the

trouble spot and display the contents of variables that

are interesting to the trouble code. This is a lot slower

way to do things than attaching a debugger and single-

stepping, but there are a lot fewer things that can go

wrong and it seems to work on all systems. Using

printf() also tends to change the execution proper-

ties of code being observed much less than kernel de-

buggers, which is important for certain classes of bugs.

Code that starts working �ne when under a debugger

is not fun to debug.

Another set of tools that are commonly available

and handy are the object tools. One technique we use

all the time is to take the instruction pointer and stack

contents from a trap, run nm | sort -n on the ker-

nel binary to get the addresses of functions and data

structures, and to �gure out what function was exe-

cuting, what functions called it, and what global data

structures it was working with. If you built a kernel

with debugging symbols, more detailed execution in-

formation can be gotten by running gdb on the image,

listing the function you found was executing, and us-

ing the info line command to binary search for the

actual line of code. Systems with the GNU toolchain

have a command addr2line that does this for you,

which is quite handy. Note that trap information can

be misleading for certain types of bugs, so be suspi-

cious if the information you get doesn't make sense.

For example, we have found bugs where code trashes

the stack frame and the function's return will cause

execution to jump o� into space; the trap address in

that case can be all sorts of interesting values, none of

which tell you where the bug is.

3 Detailed Discoveries

3.1 Di�erences Between BSDs

BSD/OS, FreeBSD, NetBSD, and OpenBSD are all

derivatives of the 4.4BSD-Lite released from the Uni-

versity of California, Berkeley (most if not all of

them have been updated to incorporate the patches

in 4.4BSD-Lite2). In this paper, I don't have enough

space to do justice to these systems' evolutions beyond

this common ancestry, but I think it's important to de-

scribe some of the di�erences that a�ected our code.

These are almost all local to the network stack.

In my opinion, BSD/OS has remained the closed to

the shared ancestor, followed by OpenBSD and then

NetBSD, with FreeBSD most aggressively changing

from the common base. Many of the changes that

the systems have made are not clearly good or bad,

but are design trade-o�s. The same set of changes is

frequently considered evolution by some and devolu-

tion by others. From the point of view of portability,

however, extraneous di�erences are bad because they

require more abstractions or conditionals. In discus-

sions with some of the systems' maintainers, this is not

considered to be a problem, because portability of ker-

nel code is not a priority. Hopefully, the maintainers

of systems will reconsider this in the future.

One of the most mundane yet more prevalent

changes the systems made is to make linked lists use

the BSD sys/queue.h TAILQ macros rather than each

having di�erent implementations. Between the four

BSD systems we support, there are three di�erent ways

this ended up getting done. For example, the interface

address lists (struct ifaddr) are done in FreeBSD as

TAILQs in with a �eld named ifa link, NetBSD and

OpenBSD as TAILQs with a �eld named ifa list,

and in BSD/OS as a normal linked list implemented

explicitly. The main reason I mention this change is

that it's so simple, everyone is basically doing the same

thing, yet three di�erent cases have to be handled.

This happens often between the BSD systems (and

between them and Linux, too, though not as often)

{ the same exact thing is done slightly di�erently by

di�erent systems. It would be really helpful if more

e�ort were put into converging such things; this would

make it a good bit easier to port code between kernels.

Another common change is that NetBSD and

OpenBSD made protocol input or output functions

use varargs rather than �xed parameters (as is still

the case in BSD/OS and FreeBSD). This is good in

that it allows certain I/O functions to have more pa-

rameters added without requiring every input or out-

put function on the entire system to have its argument

list adjusted to carry a dummy argument or the type

system to be defeated using casts (an unfortunate side

e�ect of the use of a single struct protosw for all pro-

tocol families). But this is bad in that it introduces

a new opportunity for bugs. Arguments expected by

the function aren't passed by a caller, so whatever hap-

pens to be on the stack becomes the parameter. Also,

it is not always so easy to determine when a particular

input or output function might not be called (the won-

ders of function pointers), and using a function pointer

to call functions that expect di�erent arguments in the

same place creates a bad problem. NetBSD uses the

flags argument to ip output() to determine which

of a few optional arguments are present; this approach

might lead to a reasonable solution to the problems I

found with using varargs.

There are also post-4.4BSD features that the sys-

tems have added, where each system did some-

thing di�erent. A great example of this is the sys-

tems' choices for addressing TCP SYN
ood attacks.

BSD/OS implements a SYN cache and leaves the

PCBs alone, NetBSD implements a SYN compressed

state engine, PCB hash tables, and separate-case PCB

lookups, OpenBSD implements SYN cookies and sim-

pler PCB hash tables, and FreeBSD implements PCB

hash tables and separate-case PCB lookups. Each

change both tcp input's handling of new connections

and the way PCBs lookups are done in signi�cant and

di�erent ways, and each requires a special case.

Another interesting change is that NetBSD and

FreeBSD pass a struct proc around inside the net-

working stack, from which socket privilege decisions

are made, while the old way of doing things as in

OpenBSD, BSD/OS is to make that decision when

the socket is created and set the SS PRIV
ag. The

appearance is that this change was made so that sock-

ets lose their privileged status when the process that

holds them loses that status; the proc that is passed

around currently always seems to end up being set to

curproc. This change has security implications, and

was probably made to solve a security problem { but

it may create other security problems as side-e�ects.

Neither way appears to be clearly better. But, again,

a lot of conditionals get created by this change to carry

around this extra argument.

3.2 Between BSDs and Linux

Linux is very di�erent than the BSDs. Frequently,

either the same thing or a similar thing is done, and

these di�erences aren't so bad to work with.

For example, there are a lot of things between BSD

and Linux where almost exactly the same thing has a

di�erent name. Linux names its exact-bit types one

way { e.g., u32 { and BSD names its exact-bit types

another way { e.g., u int32 t. These types do ex-

actly the same thing. In this case, I have tried to con-

vince the systems' maintainers (with limited success)

to make de�nitions available in kernel space for the

POSIX standard names of these types { e.g., uint32 t

{ which would help writers of portable kernel code

avoid this particular problem. Another example of this

is Linux's struct iphdr and BSD's struct ip, which

have di�erent �eld names, but both de�ne exactly the

same data structure. It would be helpful for portability

of system maintainers were to agree either to converge

on a single de�nition for these things or to provide a

common de�nition along with a system-speci�c de�-

nition with another name. Until this happens, these

di�erences can be worked around by using preproces-

sor define statements to do a search and replace.

There are also a lot of things between BSD and

Linux that work similarly enough to be interchange-

able, especially if you don't need all the functional-

ity that the systems can provide. A great example of

this is the di�erence between Linux's kmalloc(size,

flags) and BSD's malloc(size, type, waitflag).

Both provide a more
exible version of the standard

C malloc(size) function. By abstracting both into a

single OSDEP MALLOC(size) function, they can be used

interchangeably on their respective systems.

Another example of this is how the systems

handle \fast" critical sections by preventing

higher priority interrupt-driven functions from

running. Linux uses save flags(flags); cli() and

restore flags(flags) for this, which actually turns

o� CPU interrupts, while BSD uses s=splnet() and

splx(s) to provide this sort of exclusion for network

code (other priority levels are used for other types of

code), which turns o� some software interrupts. For

small sections of code which can't delay interrupts

long enough to be a problem, these are reasonably

equivalent (for longer blocks of code, arguably,

neither should be used, and we should really use

locks). By abstracting these into OSDEP CRITICALDCL,

OSDEP CRITICALSTART(), and OSDEP CRITICALEND(),

again, these reasonably equivalent things can be used

interchangeably on their respective systems.

Then there are a lot of things that are similar at a

high level but not so interchangeable. An example of

this is Linux's sk buff and BSD's mbuf. We actually

took two di�erent approaches to this particular di�er-

ence, each based on di�erent requirements of di�er-

ent blocks of code. In our PF KEY implementation,

we needed to form messages in our own data struc-

tures and then generate native bu�ers to pass to the

sockets layer, and we also need to take native bu�ers

passed from the sockets layer and formmessages in our

own data structures. Also, performance is not critical

in this code. So we created interchangeable higher-

level functions that copied data into and out of the

system-native bu�ers and performed certain speci�c

operations on those bu�ers. Examples of these are

OSDEP DATATOPACKET(), OSDEP ZEROPACKET(), and

OSDEP FREEPACKET(). In our IPsec implementation,

we had to work with the bu�ers without copies, and

that required a di�erent approach.

3.3 nbufs

One of the really new things that we developed in the

course of making our code portable was struct nbuf,

which is a portable packet bu�er structure. We set the

design goals of the nbuf based on what we considered

to be the best features of the Linux sk buff:

� Packet data is contiguous in memory

� Payload data is copied into its �nal place and the

headers are assembled around it in the bu�er's

\slack space," which helps avoid copies

And we also included what we considered to be the

best features of the BSD mbuf:

� Small header size

� Few extraneous �elds

We also imposed two more requirement, special to how

this bu�er will be used:

� Converting system-native bu�ers to nbufs must

be fast in the common case

� Converting back bu�ers that were so converted

must be fast in the common case

Note that the second requirement is not \converting

nbufs to system-native bu�ers must be fast in the com-

mon case." This is an important optimization for re-

duced code complexity that we can make because all

of the performance-sensitive paths in our IPsec code

take a system-native bu�er, convert it to a nbuf, work

on that, and then convert it back into a system-native

bu�er. Since we never currently start with a nbuf and

convert that to a system-native bu�er, we don't need

to that to be a fast operation. Future uses of the nbuf

might need that, and we have ideas as to how to do

that, but the current implementation does not support

that as a fast operation.

The arrangement of the data bu�er itself and the

contents of the bu�er are very similar to that of the

Linux sk buff. Both consist of a block of space, with

a portion in the middle used for packet data and some

Packet
Data

Slack

Slack

nbuf_head
nbuf_end
nbuf_start

nbuf_tail
nbuf_encap
nbuf_os.nbos_sock

...
sk
...
head
data
tail
end
...

Figure 3: Encapsulation of a sk buff in a nbuf

space before and after that left for expansion and/or

padding. There are pointers to the start of the bu�er

(nbuf start), to the end of the bu�er (nbuf end), to

the head of the packet data (nbuf head), and to the

tail of the packet data (nbuf tail).

There are also two special �elds used by the border

functions. The �rst, nbuf encap, is a pointer to an

\encapsulated" system-native bu�er. In border cases

that don't involve copies, a nbuf header is simply al-

located and its �elds point into the native bu�er, in

which case a pointer to the native bu�er is kept to

make it easy to \convert" back to the native bu�er by

simply updating the native bu�er's �elds, freeing the

nbuf header, and returning the original bu�er. The

second special �eld, nbuf os, is a structure that con-

tains system-speci�c �elds that must be copied in the

\slow-path" cases where the system-native bu�er data

is copied to the nbuf and the original bu�er is de-

stroyed. When the nbuf is converted back, most �elds

in the system-native bu�ers can be �lled in with rea-

sonable default values without problems, but a few

non-data �elds must be �lled in with the \right" orig-

inal values. The nbuf os structure allows us to ensure

that we don't lose those values in the conversions.

Under Linux, conversion from a sk buff to a nbuf is

a fast path operation so long as enough \slack space"

is available for the operations that are about to be per-

formed on the nbuf. The Linux network stack already

arranges for enough such space to be present in the

sk buff, and we extend that to include the overhead

of the operations our code performs on the packets, so

this fast path conversion should always happen in prac-

tice. Figure 3 shows what a nbuf looks like on Linux

when a sk buff has been encapsulated as part of a

fast path conversion. There are some slight di�erences

in the �eld names, but the �elds in each structure are

very similar, which makes the mapping between the

two very easy.

Size Typical Values Typical Arrangement

0 .. MHLEN 0 .. 100 One mbuf

MHLEN+1 .. MCLMINSIZE-1 101 .. 208 Two mbufs or one cluster mbuf

MCLMINSIZE .. MCLBYTES 209 .. 2048 One cluster mbuf

MCLBYTES+1 .. 1 2049 .. 1 Multiple cluster mbufs

Figure 2: Typical BSD mbuf Arrangements for Various Sizes

m_next = NULL
m_nextpkt
m_data
m_len
m_type
m_flags
m_pkthdr.rcvif
m_pkthdr.len

Packet
Data

Slack

Slack

nbuf_start
nbuf_end
nbuf_head
nbuf_tail
nbuf_encap
nbuf_os.nbos_rcvif
nbuf_os.nbos_flags

Figure 4: Encapsulation of a normal mbuf in a nbuf

Under BSD, conversion from a mbuf to a nbuf is a

fast path operation so long as enough \slack space" is

available and as long as all of the packet is contained

in one mbuf. In 4.4BSD systems, the arrangement of

the packet in bu�ers typically depends on the packet's

size as shown in Figure 2. Typically seen IP packets

tend to be either fairly small (about 44 bytes) or fairly

big (about 552, 576, or 1500 bytes) [3]. The key ob-

servation we made is that, for the typical path MTU

range of 576..1500 bytes, both typically seen categories

are contained in one mbuf. Even allowing for the ex-

tra packet headers we add on output, we can make a

fast path mapping between mbufs and nbufs for most

actually seen packets. This is very important for good

common-case performance on BSD systems.

Figure 4 shows how we encapsulate a normal mbuf

in a nbuf. The nature of a normal mbuf packet header

makes the locations nbuf start and nbuf end val-

ues �xed with respect to the start of the mbuf. The

nbuf head �eld is equivalent to the value of m data,

while the nbuf tail �eld is equivalent to the value of

m data+m len.

Figure 5 shows how we encapsulate a cluster mbuf

in a nbuf. The nbuf head and nbuf tail �elds re-

late to the m data and m len �elds as with a nor-

mal mbuf. But now, the values of nbuf start and

nbuf end are not �xed with respect to the mbuf;

they are instead equivalent to m ext.ext buf and

m ext.ext buf+m ext.ext size, respectively. Note

that the data bu�er attached to a cluster mbuf is al-

ways a size of MCLBYTES on the systems we care about,

but we use the value in the �eld in case that changes.

nbufs have so far turned out to be very helpful in al-

lowing us to make our IPsec implementation portable

without sacri�cing common-case performance. We

have been looking at other possible uses for them, such

as using them on systems di�erent than both BSD and

Linux and using them as a graceful transition mech-

anism between mbufs and a di�erent bu�er structure

for the BSD network stack.

4 Results

4.1 Breakdown of Our Tree

Figures 6 and 7, and give some summary statistics

about the portability methods we use in our source

tree. These should give you a feel for what might be

reasonable to expect out of porting kernel code. I in-

terpret these statistics as providing cautious support

for the idea of porting code between di�erent kernels.

Figure 7 in particular deserves some extra explana-

tion. Much of the work required for our IPv6 imple-

mentation is to \clean up" parts of the the BSD net-

working stack that were written to be IPv4 only (not

an unreasonable assumption, but one that doesn't hold

when we add IPv6). The result is that there are a lot

of one line changes, which is why the ratio between

changed lines and changed blocks is so close to one.

Still, these are all system-speci�c changes. While the

nature of the changes is similar among the di�erent

BSD systems, they must be done separately, by hand,

and all kept synchronized. This is a lot of work, but the

nature of the problem basically requires this approach.

We tried to avoid maintaining these separately by us-

ing a common netinet tree, but that approach had its

own problems. The lesson to be learned here is that

there will always be a signi�cant amount of system-

nbuf_start

Packet
Data

Slack

Slack

nbuf_end
nbuf_head
nbuf_tail
nbuf_encap
nbuf_os.nbos_rcvif
nbuf_os.nbos_flags

m_next = NULL
m_nextpkt
m_data
m_len
m_type
m_flags
m_pkthdr.rcvif
m_pkthdr.len
m_ext.ext_buf
m_ext.ext_size

Figure 5: Encapsulation of a cluster mbuf in a nbuf

Category Blocks Lines % Lines

Independent N/A 14261 45.19

BSD only N/A 13760 43.60

BSD/OS 28 102 0.32

NetBSD 30 71 0.22

OpenBSD 58 160 0.51

FreeBSD 156 931 2.95

Compound 371 1525 4.83

Linux1 44 735 2.33

Figure 6: Conditional code in shared trees

System Blocks Lines

BSD/OS2 1434 2410

FreeBSD 5388 5575

NetBSD 5080 5247

OpenBSD 4820 4951

Linux1 372 563

Figure 7: Changes to the systems' trees

speci�c code, and certain problems will naturally tend

to require more of that.

The good news here is that we have a source tree

total of 22270 lines (44.28%) of system-speci�c code,

13760 lines (27.36%) of BSD-speci�c code, and 14261

lines (28.36%) of system-independent code. Consid-

ering that this counts several copies of e�ectively the

same thing, the nature of the IPv6 changes, and that

most of the IPv6 code gets classi�ed as BSD-speci�c

1Our Linux support is a work in progress, for IPsec only, and

does not include IPv6. The metrics presented for Linux are for

example and aren't directly comparable to the other systems.
2Some of our code is already integrated into BSD/OS, which

reduces the system-speci�c changes for that tree.

rather than system-independent, this is pretty good.

More than a quarter of our code is portable, and more

than a quarter of our code at least runs on all of the

BSDs we support.

The source tree totals penalize system-speci�c code

more heavily when more systems are considered; if

I simply omitted all support for a system, the per-

centage of system-independent and BSD-speci�c code

would go up, and those percentages would give the

illusion that more things are portable, even though re-

moval of support for a system means the opposite is

really true. Another way to look at these results that

doesn't have this problem is to consider the breakdown

of the code that goes into actual systems. Figure 8

shows the results of such a breakdown. On the BSD

systems, the portable components make up about 40%

each of the lines of code, with the system-speci�c com-

ponents only being about 20%. On Linux, where we

only support IPsec, the portable components make up

83.48%of the lines and the system-speci�c components

make up 16.52%.

4.2 Conclusions

Based on these statistics, I conclude that, for code that

can be reasonably ported, about one to two �fths of the

source code will need to be written as system-speci�c

code for each port and about three to four �fths of

the source code can be made portable. That's still

much better than half in common, and I believe that

this provides cautious support for the idea that porting

kernel code between signi�cantly di�erent systems can

be a very practical and worthwhile thing to do.

Certain things are going to be inherently more or

less system-speci�c. In our case, we had one thing that

was not inherently very system speci�c (IPsec) and one

thing that was more inherently system speci�c (IPv6).

Even with the latter, we still achieved a good amount

of portability. This is promising in that it suggests

Lines (%) of Code

System System-speci�c BSD-speci�c System-independent

BSD/OS2 4037 (12.59) 13760 (42.92) 14261 (44.48)

FreeBSD 8031 (22.28) 13760 (38.17) 14261 (39.56)

NetBSD 6843 (19.63) 13760 (39.47) 14261 (40.90)

OpenBSD 6505 (18.84) 13760 (39.85) 14261 (41.31)

Linux1 2823 (16.52) N/A 14261 (83.48)

Figure 8: Breakdown of Code by System3

that a broad class of things could be practical to make

portable.

The �ve systems that we support are di�erent, yet

they are still very similar. Proponents of some of these

systems will try hard to deny this, especially in the

case of the di�erences between BSD and Linux, but

code doesn't lie. At least, not as much.

5 Acknowledgments

The NRL IPv6+IPsec distribution is the result of years

of work from a lot of people. Other than myself, the

implementation team includes or has included Ran-

dall Atkinson, Ken Chin, Daniel McDonald, Ronald

Lee, Bao Phan, Chris Telfer, and Chris Winters. The

software's evolution and a lot of our portability e�orts

were the combined result of everyone's e�ort, and they

are each at least as deserving of credit as I am.

The most recent portability work, including our cur-

rent source tree organization and nbufs, was done by

myself, Ronald Lee, Chris Telfer, and Chris Winters.

I'd like to thank those members of the communities

surrounding the systems we support who have helped

us. In particular, David Borman, Alan Cox, Theo de

Raadt, and Perry Metzger. If it weren't for their help,

we wouldn't be able to currently support the systems

we do.

And, of course, we all must not forget to thank the

developers of the systems that we run on, especially

for the free systems. It's a lot of work to develop and

maintain an entire operating system. It's amazing that

small groups of people can do this, frequently in their

\spare time," and produce such high-quality results.

If they didn't do this and make the source so easily

available (if not free), my group at NRL, and many

more like us, might not have systems to develop on, or

we might not be able to give our results away freely.

Ronald Lee and Angelos Keromytis provided helpful

feedback on earlier drafts of this paper.

3\Complex" system-speci�c blocks are counted as if they

were included as system-speci�c blocks in all systems. This

slightly under-represents the portable components.

The work described in this paper was done at the

Center for High Assurance Computer Systems at the

U.S. Naval Research Laboratory. This work was spon-

sored by the Information Technology O�ce, Defense

Advanced Research Projects Agency (DARPA/ITO)

as part of our Internet Security Technology project

and by the Security Program O�ce (PMW-161),

U.S. Space and Naval Warfare Systems Command

(SPAWAR). I and my co-workers really appreciate

their sponsorship of NRL's network security e�orts

and their continued support of IPsec development.

Without that support, this paper, and this software,

would not exist.

References

[1] Randall J. Atkinson, Ken E. Chin, Bao G. Phan,

Daniel L. McDonald, and Craig Metz. Imple-

mentation of IPv6 in 4.4BSD. Proceedings of the

1996 Usenix Annual Technical Conference, Jan-

uary 1996.

[2] D. L. McDonald, C. W. Metz, and B. G. Phan.

PF KEY Key Management API, Version 2, RFC

2367, July 1998.

[3] K. Cla�y, Greg Miller, and Kevin Thompson. The

Nature of the Beast: Recent Tra�c Measurements

From an Internet Backbone. Proceedings of INET

'98, July 1998.

In addition to formal references, this work and this

paper refers heavily to the source code for the �ve sys-

tems. For more information on each, go to:

BSD/OS http://www.bsdi.com

FreeBSD http://www.freebsd.org

NetBSD http://www.netbsd.org

OpenBSD http://www.openbsd.org

Linux http://www.linux.org

For more information about the NRL IPv6+IPsec dis-

tribution, or to obtain the code, go to:

http://www.ipv6.nrl.navy.mil

