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Abstract

The dramatic increase of HTTP traffic on the Internet
has resulted in wide-spread use of large caching proxy
servers as critical Internet infrastructure components.
With continued growth the demand for larger caches and
higher performance proxies grows as well. The common
bottleneck of large caching proxy servers is disk I/O. In
this paper we evaluate ways to reduce the amount of re-
quired disk I/O. First we compare the file system inter-
actions of two existing web proxy servers, CERN and
SQUID. Then we show how design adjustments to the
current SQUID cache architecture can dramatically re-
duce disk I/O. Our findings suggest two that strategies
can significantly reduce disk I/O: (1) preserve locality of
the HTTP reference stream while translating these refer-
ences into cache references, and (2) use virtual memory
instead of the file system for objects smaller than the sys-
tem page size. The evaluated techniques reduced disk
I/O by 50% to 70%.

1 Introduction

The dramatic increase of HTTP traffic on the Inter-
net in the last years has lead to the wide use of large,
enterprise-level World-Wide Web proxy servers. The
three main purposes of these web proxy servers are to
control and filter traffic between a corporate network and
the Internet, to reduce user-perceived latency when load-
ing objects from the Internet, and to reduce bandwidth

between the corporate network and the Internet. The lat-
ter two are commonly accomplished by caching objects
on local disks.

Apart from network latencies the bottleneck of Web
cache performance is disk I/O [2, 27]. An easy but ex-
pensive solution would be to just keep the entire cache in
primary memory. However, various studies have shown
that the Web cache hit rate grows in a logarithmic-like
fashion with the amount of traffic and the size of the
client population [16, 11, 8] as well as logarithmic-
proportional to the cache size [3, 15, 8, 31, 16, 25, 9, 11]
(see [6] for a summary and possible explanation). In
practice this results in cache sizes in the order of ten to
hundred gigabytes or more [29]. To install a server with
this much primary memory is in many cases still not fea-
sible.

Until main memory becomes cheap enough, Web caches
will use disks, so there is a strong interest in reducing
the overhead of disk I/O. Some commercial Web proxy
servers come with hardware and a special operating sys-
tem that is optimized for disk I/O. However, these so-
lutions are expensive and in many cases not affordable.
There is a wide interest in portable, low-cost solutions
which require not more than standard off-the-shelf hard-
ware and software. In this paper we are interested in ex-
ploring ways to reduce disk I/O by changing the way a
Web proxy server application utilizes a general-purpose
Unix file system using standard Unix system calls.

In this paper we compare the file system interactions
of two existing web proxy servers, CERN [18] and
SQUID [30]. We show how adjustments to the current



SQUID cache architecture can dramatically reduce disk
I/O. Our findings suggest that two strategies can signifi-
cantly reduce disk I/O: (1) preserve locality of the HTTP
reference stream while translating these references into
cache references, and (2) use virtual memory instead of
the file system for objects smaller than the system page
size. We support our claims using measurements from
actual file systems exercised by a trace driven workload
collected from proxy server log data at a major corporate
Internet gateway.

In the next section we describe the cache architectures
of two widely used web proxy servers and their interac-
tion with the underlying file systems. We then propose a
number of alternative cache architectures. While these
cache architectures assume infinite caches we investi-
gate finite cache management strategies in section 3 fo-
cusing on disk I/O. In section 4 we present the methodol-
ogy we used to evaluate the cache structures and section
5 presents the results of our performance study. After
discussing related work in section 6, we conclude with a
summary and future work in section 7.

2 Cache Architectures of Web Proxy
Servers

We define thecache architectureof a Web proxy server
as the way a proxy server interacts with a file system.
A cache architecture names, stores, and retrieves objects
from a file system, and maintains application-level meta-
data about cached objects. To better understand the im-
pact of cache architectures on file systems we first re-
view the basic design goals of file systems and then de-
scribe the Unix Fast File System (FFS), the standard file
system available on most variants of the UNIX operating
system.

2.1 File systems

Since the speed of disks lags far behind the speed of
main memory the most important factor in I/O perfor-
mance iswhetherdisk I/O occurs at all ([17], page 542).
File systems use memory caches to reduce disk I/O. The
file system provides abuffer cacheand aname cache.
The buffer cache serves as a place to transfer and cache
data to and from the disk. The name cache stores file
and directoryname resolutionswhich associate file and
directory names with file system data structures that oth-
erwise reside on disk.

The Fast File System (FFS) [20] divides disk space into
blocksof uniform size (either 4K or 8K Bytes). These
are the basic units of disk space allocation. These blocks
may be sub-divided intofragmentsof 1K Bytes for small
files or files that require a non-integral number of blocks.
Blocks are grouped intocylinder groupswhich are sets
of typically sixteen adjacent cylinders. These cylinder
groups are used to map file reference locality to phys-
ically adjacent disk space. FFS tries to store each di-
rectory and its content within one cylinder group and
each file into a set of adjacent blocks. The FFS does
not guarantee such file layout but uses a simple set of
heuristics to achieve it. As the file system fills up, the
FFS will increasingly often fail to maintain such a lay-
out and the file system gets increasinglyfragmented. A
fragmented file system stores a large part of its files in
non-adjacent blocks. Reading and writing data from and
to non-adjacent blocks causes longer seek times and can
severely reduce file system throughput.

Each file is described by meta-data in the form ofinodes.
An inode is a fixed length structure that contains infor-
mation about the size and location of the file as well as
up to fifteen pointers to the blocks which store the data of
the file. The first 12 pointers are direct pointers while the
last three pointers refer toindirect blocks, which contain
pointers to additional file blocks or to additional indirect
blocks. The vast majority of files are shorter than 96K
Bytes, so in most cases an inode can directly point to all
blocks of a file, and storing them within the same cylin-
der group further exploits this reference locality.

The design of the FFS reflects assumption about file sys-
tem workloads. These assumptions are based on studies
of workloads generated by workstations [23, 24]. These
workstation workloads and Web cache request work-
loads share many, but not all of the same characteristics.
Because most of their behavior is similar, the file system
works reasonably well for caching Web pages. How-
ever there are differences; and tweaks to the way cache
objects map onto the file system produce significant per-
formance improvements.

We will show in the following sections that some file
system aspects of the workload characteristics gener-
ated by certain cache architectures can differ from usual
workstation workloads. These different workload char-
acteristics lead to poor file system performance. We will
also show that adjustments to cache architectures can
dramatically improve file system performance.
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Figure 1: The dynamic size distribution of cached objects.
The graph shows a cumulative distribution weighted by the
number of objects. For example 74% of all object referenced
have a size of equal or less than 8K Bytes.

2.2 File System Aspects of Web Proxy Server
Cache Workloads

The basic function of a Web proxy server is to receive a
request from a client, check whether the request is autho-
rized, and serve the requested object either from a local
disk or from the Internet. Generally, objects served from
the Internet are also stored on a local disk so that future
requests to the same object can be served locally. This
functionality combined with Web traffic characteristics
implies the following aspects of Web proxy server cache
generated file system loads:

Entire Files Only Web objects are always written or
read in their entirety. Web objects do change, but
this causes the whole object to be rewritten; there
are no incremental updates of cached Web objects.
This is not significantly different than standard file
system workloads where more than 65% of file ac-
cesses either read or write the whole file. Over
90% either read or write sequentially a portion of
a file or the whole file [5]. Since there are no in-
cremental additions to cached objects, it is likely
that disk becomes more fragmented since there are
fewer incremental bits to utilize small contiguous
block segments.

Size Due to the characteristics of Web traffic, 74% of
referenced Web objects are smaller than 8K Bytes.
Figure 1 illustrates this by showing the distribution
of the sizes of cached objects based on our HTTP
traces, which are described later. This distribution
is very similar to file characteristics. 8K Byte is a
common system page size. Modern hardware sup-
ports the efficient transfer of system page sizes be-

tween disk and memory. A number of Unix File
Systems use a file system block size of 8K Bytes
and a fragment size of 1K Bytes. Typically the per-
formance of the file system’s fragment allocation
mechanism has a greater impact on overall perfor-
mance than the block allocation mechanism. In ad-
dition, fragment allocation is often more expensive
than block allocation because fragment allocation
usually involves a best-fit search.

Popularity The popularity of Web objects follows
a Zipf-like distribution 
=i� (where 
 =

(
PN

i=1
1=i�)�1 andi is theith most popular Web

object) [15, 6]. The� values range from 0.64 to
0.83. Traces with homogeneous communities have
a larger� value than traces with more diverse com-
munities. The traces generally do not follow Zipf’s
law which states that� = 1 [33]. The relative pop-
ularity of objects changes slowly (on the order of
days and weeks). This implies that for any given
trace of Web traffic, the first references to popu-
lar objects within a trace tend to occur early in the
trace. The slow migration to new popular items al-
lows for relatively static working set capture algo-
rithms (see for example [28]). It also means that
there is little or no working set behavior attributable
to the majority of the referenced objects. File sys-
tem references exhibit much more temporal local-
ity; allocation and replacement policies need to re-
act rapidly to working set changes.

Data Locality A large number of Web objects include
links to embedded objects that are referenced in
short succession. These references commonly re-
fer to the same server and tend to have the same
URL prefix. This is similar to the locality observed
in workstation workloads which show that files ac-
cessed in short succession tend to be in the same
file directory.

Meta-data Locality The fact that objects with simi-
lar names tend to be accessed in short succession
means that information about those objects will
also be referenced in short succession. If the in-
formation required to validate and access files is
combined in the same manner as the file accesses it
will exhibit temporal locality (many re-references
within a short time period). The hierarchal direc-
tory structure of files systems tends to group related
files together. The meta-data about those files and
their access methods are stored in directory and in-
odes which end up being highly reused when ac-
cessing a group of files. Care is required to properly
map Web objects to preserve the locality of meta-
data.



Read/Write Ratio The hit rate of Web caches is low
(30%-50%, see [15, 1, 31, 4]). Every cache hit
involves a read of the cache meta-data and a read
of the cached data. Every miss involves a read
of the cache meta-data, a write of meta-data, and
a write of the Web object. Since there are typi-
cally more misses than hits, the majority of disk ac-
cesses are writes. File systems typically have many
more reads than writes [23]; writes require addi-
tional work because the file system data must be
properly flushed from memory to disk. The high
fraction of writes also causes the disk to quickly
fragment. Data is written, removed and rewritten
quickly; this makes it difficult to keep contiguous
disk blocks available for fast or large data writes.

Redundancy Cached Web objects are (and should be)
redundant; individual data items are not critical for
the operation of Web proxy caches. If the cached
data is lost, it can always be served from the Inter-
net. This is not the case with file system data. Data
lost before it is securely written to disk is irrecover-
able. With highly reliable Web proxy servers (both
software and hardware) it is acceptable to never ac-
tually store Web objects to disk, or to periodically
store all Web objects to disk in the event of a server
crash. This can significantly reduce the memory
system page replacement cost for Web objects. A
different assessment has to be made for the meta-
data which some web proxy server use for cache
management. In the event of meta-data loss, either
the entire content of the cache is lost or has to be
somehow rebuilt based on data saved on disk. High
accessibility requirements might neither allow the
loss of the entire cache nor time consuming cache
rebuilds. In that case meta-data has to be handled
similarly to file system data. The volume of meta-
data is however much smaller than the volume of
cached data.

2.3 Cache Architectures of Existing Web
Proxy Servers

The following describes the cache architectures we are
investigating in this paper. The first two describe the ar-
chitectures of two widely used web proxy servers, CERN

and SQUID. We then describe how the SQUID architec-
ture could be changed to improve performance. All ar-
chitectures assume infinite cache sizes. We discuss the
management of finite caches in section 3.

2.3.1 CERN

The original web serverhttpd was developed at
CERN and served as early reference implementation for
World-Wide Web service.httpd can also be used as a
web proxy server [18]. We refer to this function of httpd
as “CERN”.

CERN forks a new process for each request and termi-
nates it after the request is served. The forked processes
of CERN use the file system not only to store cached
copies of Web objects but also to share meta-information
about the content of the cache and to coordinate access
to the cache. To find out whether a request can be served
from the cache, CERN first translates the URL of the re-
quest into a URL directory and checks whether alock
file for the requested URL exists. The path of the URL
directory is the result of mapping URL components to
directories such that the length of the file path depends
on the number of URL components. The check for a
lock file requires the translation of each path component
of the URL directory into an inode. Each translation can
cause a miss in the file system’s name cache in which
case the translation requires information from the disk.

The existence of a lock file indicates that another CERN

process is currently inserting the requested object into
the cache. Locked objects are not served from the cache
but fetched from the Internet without updating the cache.
If no lock file exists, CERN tries to open a meta-data
file in the URL directory. A failure to do so indicates a
cache miss in which case CERN fetches the object from
the Internet and inserts it into the cache thereby creat-
ing the necessary directories, temporary lock files, and
meta-data file updates. All these operations require ad-
ditional disk I/O in the case of misses in the file system’s
name and buffer cache. If the meta-data file exists and
it lists the object file name as not expired, CERN serves
the request from the cache.

2.3.2 SQUID

The SQUID proxy [30] uses a single process to elimi-
nate CERN’s overhead of process creation and termina-
tion. The process keeps meta-data about the cache con-
tents in main memory. Each entry of the the meta-data
maps a URL to aunique file numberand contains data
about the “freshness” of the cached object. If the meta-
data does not contain an entry for the requested URL
or the entry indicates that the cached copy is stale, the
object is fetched from the Internet and inserted into the
cache. Thus, with in-memory meta-data the disk is never



touched to find out whether a request is a Web cache
miss or a Web cache hit.

A unique file numbern maps to a two-level file path that
contains the cached object. The file path follows from
the unique file number using the formula

(x; y; z) = (n mod l1; n=l1 mod l2; n)

where(x; y; z) maps to the file path “x/y/z”, andl1 and
l2 are the numbers of first and second level directories.
Unique file numbers for new objects are generated by ei-
ther incrementing a global variable or reusing numbers
from expired objects. This naming scheme ensures that
the resulting directory tree is balanced. The number of
first and second level directories are configurable to en-
sure that directories do not become too large. If directory
objects exceed the size of a file block, directory look-up
times increase.

2.4 Variations on the SQUID Cache Architec-
ture

The main difference between CERN and SQUID is that
CERN stores all state on disk while SQUID keeps a rep-
resentation of the content of its cache (the meta-data)
in main memory. It would seem straightforward to as-
sume that CERN’s architecture causes more disk I/O than
SQUID’s architecture. However, as we showed in [19],
CERN’s and SQUID’s disk I/O are surprisingly similar
for the same workload.

Our conjecture was that this is due to the fact that
CERN’s cache architecture preserves some of the lo-
cality of the HTTP reference stream, while SQUID’s
unique numbering scheme destroys locality. Although
the CERN cache has a high file system overhead, the
preservation of the spatial locality seen in the HTTP ref-
erence stream leads to a disk I/O performance compara-
ble to the SQUID cache.

We have designed two alternative cache architectures
for the SQUID cache that improve reference locality.
We also investigated the benefits of circumventing the
common file system abstractions for storing and retriev-
ing objects by implementingmemory-mappedcaches.
Memory mapped caches can reduce the number of file-
system calls and effectively use large primary memories.
However, memory-mapped caches also introduce more
complexity for placement and replacement policies. We
will examine several such allocation policies.
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Figure 2: The locality ofserver namesin an HTTP request
stream. The data is based on an HTTP request stream with
495,662 requests (minus the first 100,000 to warm up the
cache).

2.4.1 SQUIDL

We designed a modified SQUID cache architecture,
SQUIDL, to determine whether a locality-preserving
translation of an HTTP reference stream into a file sys-
tem access stream reduces disk I/O. The only difference
between SQUID and SQUIDL is that SQUIDL derives the
URL directory name from the URL’s host name instead
of calculating a unique number. The modified formula
for the file path of a cached object is now

(x; y; z) = (h(s) ^ml1 ; h(s) ^ml2 ; n)

wheres is the host name of the requested URL,h is a
hash function,̂ is the bitwise conjunction,ml1 a bit
mask for the first level directories, andml2 for the sec-
ond level directories.

The rationale of this design is based on observation of
the data shown in figure 2 (based on our HTTP traces,
see below): the temporal locality of server names in
HTTP references is high. One explanation for this is the
fact that a large portion of HTTP requests are for objects
that are embedded in the rendition of a requested HTML
object. HTTP clients request these “in-lined” objects im-
mediately after they parsed the HTML object. In most
HTML objects all in-lined objects are from the same
server. Since SQUIDL stores cached objects of the same
server in the same directory, cache references to linked
objects will tend to access the same directory. This leads
to a burst of requests to the same directory and therefore
increases the temporal locality of file system requests.

One drawback of SQUIDL is that a single directory may
store many objects from a popular server. This can
lead to directories with many entries which results in
directory objects spanning multiple data blocks. Di-



rectory lookups in directory objects that are larger than
one block can take significantly longer than directory
lookups in single block directory objects [21]. If the disk
cache is distributed across multiple file systems, directo-
ries of popular servers can put some file systems under a
significantly higher workload than others. The SQUIDL
architecture does produce a few directories with many
files; for our workload only about 30 directories con-
tained more than 1000 files. Although this skewed ac-
cess pattern was not a problem for our system configu-
ration, recent changes to SQUID version 2.0 [10, 13] im-
plements a strategy that may be useful for large config-
urations. The changes balance file system load and size
by allocating at mostk files to a given directory. Once
a directory reaches this user-configured number of files,
SQUID switches to a different directory. The indexing
function for this strategy can be expressed by

(x; y; z) = (n=(k � l2); n=k mod l2; n mod k)

wherek is specified by the cache administrator. Notice
that this formula poses an upper limit ofmax objs =
l1 � l2 � k objects that can be stored in the cache. Exten-
sions to this formula could produce relatively balanced
locality-preserving directory structures.

2.4.2 SQUIDM

One approach to reduce disk I/O is to circumvent the
file system abstractions and store objects into a large
memory-mapped file [22]. Disk space of the memory-
mapped file is allocated once and access to the file are
entirely managed by the virtual memory system. This
has the following advantages:

Naming Stored objects are identified by the offset into
the memory-mapped file which directly translates
into a virtual memory address. This by-passes the
overhead of translating file names into inodes and
maintaining and storing those inodes.

Allocation The memory-mapped file is allocated once.
If the file is created on a new file system, the al-
located disk space is minimally fragmented which
allows high utilization of disk bandwidth. As long
as the file does not change in size, the allocated disk
space will remain unfragmented. This one-time al-
location also by-passes file system block and frag-
ment allocation overhead1. Notice that memory-

1This assumes that the underlying file system is not a log structured
file system. File systems that log updates to data need to continually
allocate new blocks and obliterate old blocks, thereby introducing frag-
mentation over time.

mapped files does not preventinternal fragmenta-
tion, i.e. the possible fragmentation of the content
of the memory-mapped file due to application-level
data management of the data stored in memory-
mapped files. Since we assume infinite caches,
internal fragmentation is not an issue here. See
section 3 for the management of finite memory-
mapped caches.

Paging Disk I/O is managed by virtual memory which
takes advantage of hardware optimized for paging.
The smallest unit of disk I/O is a system page in-
stead of the size of the smallest stored object.

Thus, we expect that memory-mapping will benefit us
primarily in the access of small objects by eliminating
the opening and closing of small files. Most operat-
ing systems have limits on the size of memory-mapped
files, and care must be taken to appropriately choose the
objects to store in the limited space available. In the
cache architecture SQUIDM we therefore chose the sys-
tem page size (8K Byte) as upper limit. Over 70% of all
object references are less or equal than 8K bytes (see fig-
ure 1 which is based on our HTTP traces). Objects larger
than 8K Bytes are cached the same way as in SQUID.

To retrieve an object from a memory-mapped file we
need to have its offset into the memory-mapped file and
its size. In SQUIDM offset and size of each object are
stored in in-memory meta-data. Instead of keeping track
of the actual size of an object we defined fivesegment
sizes(512, 1024, 2048, 4,096, or 8,192 Bytes). This
reduces the size information from thirteen bits down to
three bits. Each object is padded to the smallest segment
size. In section 3 we will show more advantages of man-
aging segments instead of object sizes.

These padded objects are contiguously written into the
mapped virtual memory area in the order in which they
are first referenced (and thus missed). Our conjecture
was that this strategy would translate the temporal local-
ity of the HTTP reference stream into spatial locality of
virtual memory references.

We will show that this strategy also tends to concen-
trate very popular objects in the first few pages of the
memory-mapped file; truly popular objects will be ref-
erenced frequently enough to be at the beginning of
any reference stream. Clustering popular objects sig-
nificantly reduces the number of page faults since those
pages tend to stay in main memory. Over time, the set
of popular references may change, increasing the page
fault rate.



Algorithm 1 Algorithm to pack objects without crossing sys-
tem page boundaries. The algorithm accepts a list of objects
sizes of� 8192 Bytes and outputs a list of offsets for packing
each object without crossing system page boundaries (the size
of a system page is 8192 Bytes).

proc packer(list object sizes) �
One offset pointer for each segment size:
512, 1024, 2048, 4096, 8192
freelist := [0; 0; 0; 0; 0];

offset list := [];

for i := 0 to length(list of object sizes)� 1 do
size := list of object sizes[i];
Determine segment size that fits object
for segment:= 0 to 4 do

if size� 29+segmentthen exit fi od;
Find smallest available segment that fits
for free seg := segmentto 4 do

if freelist[free seg] > 0 _ free seg= 4

then offset := freelist[free seg];
if free seg= 4

Set 8192-pointer to next system page
otherwise mark free segment as taken
then freelist[4] := offset+ 8192

elsefreelist[free seg] := 0 fi;
Update freelist with what is left
for restseg := segmentto free seg� 1 do

new offset := offset+ 29+rest seg;
freelist[rest seg] := new offset od;

exit fi od;
append(offset; offset list)

od;
offset list .

2.4.3 SQUIDML

The SQUIDML architecture uses a combination of
SQUIDM for objects smaller than 8K Byte and SQUIDL
for all other objects.

2.4.4 SQUIDMLA

The SQUIDMLA architecture combines the SQUIDML
architecture with an algorithm toalign objects in the
memory mapped file such that no object crosses a page
boundary. An important requirement of such an algo-
rithm is that it preserves reference locality. We use a
packing algorithm, shown in Algorithm 1 that for the
given traces only slightly modifies the order in which
objects are stored in the memory-mapped file. The algo-
rithm insures that no object crosses page boundaries.

3 Management of Memory-mapped Web
Caches

In the previous section we reasoned that storing small
objects in a memory-mapped file can significantly re-
duce disk I/O. We assumed infinite cache size and there-
fore did not address replacement strategies. In this sec-
tion we explore the effect of replacement strategies on
disk I/O of finite cache architectures which use memory-
mapped files.

Cache architectures which use the file system to cache
objects to either individual files or one memory-mapped
file are really two-level cache architectures: the first-
level cache is the buffer cache in the primary memory
and the second-level cache is the disk. However, stan-
dard operating systems generally do not support suf-
ficient user-level control on buffer cache management
to control primary memory replacement. This leaves
us with the problem of replacing objects in secondary
memory in such a way that disk I/O is minimized.

In the following sections we first review relevant as-
pects of system-level management of memory-mapped
files. We then introduce three replacement algorithms
and evaluate their performance.

3.1 Memory-mapped Files

A memory-mapped file is represented in the virtual
memory system as a virtual memory object associated
with apager. A pager is responsible for filling and clean-
ing pages from and to a file. In older Unix systems the
pager would operate on top of the file system. Because
the virtual memory system and the file system used to
be two independent systems, this led to the duplication
of each page of a memory-mapped file. One copy would
be stored in a buffer managed by the buffer cache and
another in a page frame managed by the virtual mem-
ory. This duplication is not only wasteful but also leads
to cache inconsistencies. Newer Unix implementations
have a “unified buffer cache” where loaded virtual mem-
ory pages and buffer cache buffers can refer to the same
physical memory location.

If access to a virtual memory address causes a page
fault, the page fault handler is selecting atarget page
and passes control to the pager which is responsible for
filling the page with the appropriate data. Apagertrans-
lates the virtual memory address which caused the page
fault into the memory-mapped file offset and retrieves



the corresponding data from disk.

In the context of memory-mapped files, a page isdirty if
it contains information that differs from the correspond-
ing part of the file stored on disk. A page isclean if
its information matches the information on the associ-
ated part of the file on disk. We call the process of writ-
ing dirty pages to diskcleaning. If the target page of a
page fault is dirty it needs to be cleaned before it can be
handed to the pager. Dirty pages are also cleaned peri-
odically, typically every 30 seconds.

The latency of a disk transaction does not depend on the
amount of data transferred but on disk arm reposition-
ing and rotational delays. The file system as well as disk
drivers and disk hardware are designed to minimize disk
arm repositioning and rotational delays for a given ac-
cess stream by reordering access requests depending on
the current position of the disk arm and the current disk
sector. However, reordering can only occur to a limited
extent. Disk arm repositioning and rotational delays are
still mainly dependent on the access pattern of the access
stream and the disk layout.

Studies on file systems (e.g. [23]) have shown that the
majority of file system access is a sequential access of
logically adjacent data blocks. File systems therefore es-
tablish disk layout which is optimized for sequential ac-
cess by placing logically adjacent blocks into physically
adjacent sectors of the same cylinder whenever possible
[21]. Thus, a sequential access stream minimizes disk
arm repositioning and rotational delays and therefore re-
duces the latency of disk transactions.

If the entire memory-mapped file fits into primary mem-
ory, the only disk I/O is caused by periodic page clean-
ing and depends on the number of dirty pages per peri-
odic page cleaning and the length of the period between
page cleaning. The smaller the fraction of the memory-
mapped file which fits into primary memory, the higher
the number of page faults. Each page fault will cause
extra disk I/O. If page faults occur randomly through-
out the file, each page fault will require a separate disk
I/O transaction. The larger the number of dirty pages
the higher the likelihood that the page fault handler will
choose dirty target pages which need to be cleaned be-
fore being replaced. Cleaning target pages will further
increase disk I/O.

The challenge of using memory-mapped files as caches
is to find replacement strategies that keep the number of
page faults as low as possible, and that create an access
stream as sequential as possible.

3.2 Cache Management

We are looking for cache management strategies which
optimize hit rate but minimize disk I/O. We first intro-
duce a strategy that requires knowledge of the entire
trace. Even though this strategy is not practical it serves
as an illustration on how to ideally avoid disk I/O. We
then investigate the use of the most common replace-
ment strategy, LRU and discuss its possible drawbacks.
This motivates the design of a third replacement strategy
which uses a combination of cyclic and frequency-based
replacement.

3.3 Replacement strategies

Before we look at specific replacement algorithms it
is useful to review an object replacement in terms of
disk I/O. All replacement strategies are extensions of the
SQUIDMLA cache architecture except the ”future look-
ing” strategy which is an extension of SQUIDML. The
replacement strategies act on segments. Thus the size
of an object is either 512, 1K, 2K, 4K, or 8K Bytes.
For simplicity an object can replace another object of
the same segment size only. We call objects to be re-
placed thetarget objectand the page on which the target
object resides, thetarget object’s page. Notice that this
is not the same as thetarget pagewhich is the page to
be replaced in a page fault. What disk I/O is caused by a
object replacement depends on the following factors:

Whether the target object’s page is loadedIf the tar-
get object’s page is already loaded in primary mem-
ory, no immediate disk I/O is necessary. Like in
all other cases the replacement dirties the target ob-
ject’s page. All following factors assume that the
target object’s page is not loaded.

Object’s size Objects of size 8K Bytes replace the en-
tire content of the object’s target page. If the object
is of a smaller segment size the target object’s page
needs to be faulted into memory to correctly initial-
ize primary memory.

Whether the target page is dirty If the target object’s
page needs to be loaded, it is written to a memory
location of a target page (we assume the steady-
state where loading a page requires to clear out a
target page). If the target page is dirty it needs to be
written to disk before it can be replaced.

The best case for a replacement is when the target ob-
ject’s page is already loaded. In the worst case a replace-



ment case causes two disk I/O transactions: one to write
a dirty page to disk, and another to fault in the target ob-
ject’s page for an object of a segment size smaller than
8K Bytes.

Beside the synchronous disk I/O there is also disk I/O
caused by the periodic page cleaning of the operating
system. If a replacement strategy creates a large number
of dirty pages, the disk I/O of page cleaning is significant
and can delay read and write system calls.

3.4 “Future-looking” Replacement

Our “future looking” strategy modifies the SQUIDML
architecture to use a pre-computed placement table that
is derived fromthe entire trace, including all future ref-
erences. The intent is to build a “near optimal” alloca-
tion policy, while avoiding the computational complex-
ity of implementing a perfect bin-packing algorithm,
which would take non-polynomial time. The placement
table is used to determine whether a reference is a miss
or a hit, whether an object should be cached, and where
it should be placed in the cache. We use the following
heuristics to build the placement table:

1. All objects that occur in the workload are sorted by
their popularity and all objects that are only refer-
enced once are discarded, since these would never
be re-referenced in the cache.

2. The remaining objects are sorted by descending or-
der of their popularity. The packer algorithm of
SQUIDMLA (see algorithm 1) is then used to gen-
erate offsets until objects cannot be packed without
exceeding the cache size.

3. Objects which do not fit into the cache during the
second step are then placed such that they replace
the most popular object, and the time period be-
tween the first and last reference of the new object
does not overlap with the time period between the
first and last reference of the replaced object.

The goal of the third step is to place objects in pages
that are likely to be memory resident but without caus-
ing extra misses. Objects that cannot be placed into the
cache without generating extra misses to cached objects
are dropped on the assumption that their low popularity
will not justify extra misses to more popular objects.

3.5 LRU Replacement

The LRU strategy combines SQUIDMLA with LRU re-
placement for objects stored in the memory-mapped file.
The advantage of this strategy is that it keeps popular ob-
jects in the cache. The disadvantage of LRU in the con-
text of memory-mapped files is that it has no concept
of collocating popular objects on one page and there-
fore tends to choose target objects on pages that are very
likely not loaded. This has two effects: First it causes a
lot of page faults since a large percentage of target ob-
jects are of smaller segment size than 8K. Second, the
large number of page faults creates a large number of
dirty pages which causes significant page cleaning over-
head and also increases the likelihood of the worst case
where a replacement causes two disk I/O transactions. A
third disadvantage of LRU replacement is that the selec-
tion of a target page is likely to generate a mostly ran-
dom access stream instead of a more sequential access
stream.

3.6 Frequency-based Cyclic (FBC) Replace-
ment

We now introduce a new strategy we call Frequency-
based Cyclic (FBC) replacement. FBC maintains ac-
cess frequency counts of each cached object and a target
pointer that points to the first object that it considers for
replacement. Which object actually gets replaced de-
pends on the reference frequency of that object. If the
reference frequency is equal or greater thanCmax, the
target pointer is advanced to the next object of the same
segment size. If the reference frequency is less than
Cmax, the object becomes the target object for replace-
ment. After replacing the object the target pointer is ad-
vanced to the next object. If the target pointer reaches
the end of the cache it is reset to the beginning. Fre-
quency counts are aged whenever the average reference
count of all objects becomes greater thanAmax. If the
average value reaches this value, each frequency count
c is reduced todc=2e. Thus, in the steady state the sum
of all reference counts stay betweenN � Amax=2 and
N �Amax (whereN is the number of cached objects).
The ceiling function is necessary because we maintain a
minimum reference count of one. This aging mechanism
follows the approach mentioned in [26, 12].

Since Web caching has a low hit rate, most cached ob-
jects are never referenced again. This in turns means
that most of the time, the first object to which the target
pointer points becomes the target object. The result is an



almost sequential creation of dirty pages and page faults
which is likely to produce a sequential access stream.
Skipping popular pages has two effects. Firstly, it avoids
replacing popular objects, and secondly the combination
of cyclic replacement and aging factors out references to
objects that are only popular for a short time. Short-term
popularity is likely to age away within a few replacement
cycles.

The two parameters of FBC,Cmax and Amax have
the following intuitive meaning.Cmax determines the
threshold below which a page is replaced if cyclic re-
placement points to it (otherwise it is skipped). For
highCmax the hit rate suffers because more popular ob-
jects are being replaced. For lowCmax more objects
are skipped and the access stream becomes less sequen-
tial. With the Zipf-like distribution of object popularity,
most objects are only accessed once. This allows low
values forCmax without disturbing sequential access.
Amax determines how often objects are aged. For high
Amax aging takes place at a low frequency which leaves
short-term-popular objects with high reference counts
for a longer period of time. LowAmax values culls out
short-term popularity more quickly but also make pop-
ular objects with a low but stable reference frequency
look indistinguishable from less popular objects. Be-
cause of the Zipf-like distribution of object popularity,
a highAmax will introduce only a relatively small set
of objects that are popular for a short term only.

4 Experimental Methodology

In order to test these cache architectures we built adisk
workload generatorthat simulates the part of a Web
cache that accesses the file system or the virtual memory.
With minor differences, the simulator performs the same
disk I/O activity that would be requested by the proxy.
However, by using a simulator, we simplified the task of
implementing the different allocation and replacement
policies and greatly simplified our experiments. Using a
simulator rather than a proxy allows us to use traces of
actual cache requests without having to mimic the full
Internet. Thus, we could run repeatable measurements
on the cache component we were studying – the disk
I/O system.

The workload generators are driven by actual HTTP
Web proxy server traces. Each trace entry consists of
a URL and the size of the referenced object. During an
experiment a workload generator sequentially processes
each trace entry – the generator first determines whether

a cached object exists and then either “misses” the ob-
ject into the cache by writing data of the specified size to
the appropriate location or “hits” the object by reading
the corresponding data. Our workload generators pro-
cess requests sequentially and thus our experiments do
not account for the fact that the CERN and SQUID archi-
tecture allow multiple files to be open at the same time
and that access to files can be interleaved. Unfortunately
this hides possible file system locking issues.

We ran all infinite cache experiments on a dedicated
Digital Alpha Station 250 4/266 with 512M Byte main
memory. We used two 4G Byte disks and one 2G Byte
disk to store cached objects. We used the UFS file sys-
tem that comes with Digital Unix 4.0 for all experiments
except those that calibrate the experiments in this paper
to those in earlier work. The UFS file system uses a
block size of 8192 Bytes and a fragment size of 1024
Bytes. For the comparison of SQUID and CERN we used
Digital’s Advanced File System (AdvFS) to validate our
experiments with the results reported in [19].

UFS cannot span multiple disks so we needed a sep-
arate file system for each disk. All UFS experiments
measured SQUID derived architectures with 16 first-
level directories and 256 second-level directories. These
4096 directories were distributed over the three file sys-
tems, 820 directories on the 2G Byte disk and 1638 di-
rectories on each of the 4G Byte disks. When using
memory-mapped caches, we placed 2048 directories on
each 4G Byte disk and used the 2G Byte disk exclu-
sively for the memory-mapped file. This also allowed us
to measure memory-mapped-based caching separately
from file-system-based caching.

We ran all finite cache experiments on a dedicated Dig-
ital Alpha Station 3000 with 64M Byte main memory
and a 1.6G Byte disk. We set the size of the memory-
mapped file to 160M Bytes. This size ensures ample
exercise of the Web cache replacement strategies we are
testing. The size is also roughly six times the size of the
amount of primary memory used for memory-mapping
(about 24M Bytes; the workload generator used 173M
Bytes of virtual memory and the resident size stabilized
at 37M Bytes). This creates sufficient pressure on pri-
mary memory to see the influence of the tested replace-
ment strategies on buffer cache performance.

For the infinite cache experiments we used traces from
Digital’s corporate gateway in Palo Alto, CA, which
runs two Web proxy servers that share the load by using
round-robin DNS. We picked two consecutive weekdays
of one proxy server and removed every non-HTTP re-
quest, every HTTP request with a reply code other than



200 (“OK”), and every HTTP request which contain “?”
or “cgi-bin”. The resulting trace data consists of 522,376
requests of the first weekday and 495,664 requests of the
second weekday. Assuming an infinite cache, the trace
leads to a hit rate of 59%. This is a high hit rate for a Web
proxy trace; it is due to the omission of non-cacheable
material and the fact that we ignore object staleness.

For the finite cache experiments we used the same
traces. Because we are only interested in the perfor-
mance of memory-mapped files, we removed from the
traces all references to objects larger than 8K Bytes since
these would be stored as individual files and not in the
memory-mapped file. As parameters for FBC we used
Cmax = 3 andAmax = 100.

Each experiment consisted of two phases: the first
warmupphase started with a newly initialized file sys-
tem and newly formatted disks on which the workload
generator ran the requests of the first day. The second
measurementphase consisted of processing the requests
of the following day using the main-memory and disk
state that resulted from the first phase. All measurements
are taken during the second phase using the trace data of
the second weekday. Thus, we can directly compare the
performance of each mimicked cache architecture by the
absolute values of disk I/O.

We measured the disk I/O of the simulations using Ad-
vFS with a tool calledadvfsstat using the command
advfsstat -i 1 -v 0 cache domain , which
lists the number of reads and writes for every disk asso-
ciated with the file domain. For the disk I/O of the simu-
lations using UFS we usediostat . We usediostat
rz3 rz5 rz6 1 , which lists the bytes and transfers
for the three disks once per second. Unfortunately,io-
stat does not segregate the number of reads and writes.

5 Results

We first compared the results of our cache simulator
to our prior work to determine that the simulator exer-
cised the disk subsystem with similar results to the ac-
tual proxy caches. We measured the disk I/O of the two
workload generators that mimic CERN and SQUID to see
whether the generator approach reproduces the same rel-
ative disk I/O as observed on the real counterparts [19].
As Figure 3 shows, the disk I/O is similar when using
the CERN and SQUID workload generators. This agrees
with our earlier measurements showing that CERN and
SQUID make similar use of the disk subsystem. The
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Figure 3: Disk I/O of the workload generators mimicking
CERN and Squid. The measurements were taken from an
AdvFS. In [19] we observed that The disk I/O of CERN and
SQUID is surprisingly similar considering that SQUID main-
tains in-memory meta-data about its cache content and CERN

does not. Our workload generators reproduce this phenomena.

measurements were taken using the AdvFS file system
because the Web proxy servers measured in [19] used
that file system. The AdvFS utilities allowed us to dis-
tinguish between reads and writes. The data shows that
only a third of all disk I/O are reads even though the
cache hit rate is 59%.

Our traces referenced less than 8G Bytes of data, and
thus we could conduct measurements for “infinite”
caches with the experimental hardware. Figure 4 shows
the number of disk I/O transactions and the duration of
each trace execution for each of the architectures.

Comparing the performance of SQUID and SQUIDL
shows that simply changing the function used to index
the URL reduces the disk I/O by� 50%.

By comparing SQUID and SQUIDM we can observe that
memory mapping all small objects not only improves
locality but produces a greater overall improvement in
disk activity: SQUIDM produces 60% fewer disk I/O.
Recall that SQUIDM stores all objects of size� 8192 in
a memory-mapped file and all larger objects in the same
way as SQUID. As shown in Figure 1, about 70% of
all references are to objects� 8192. Thus, the remain-
ing 30% of all references go to objects stored using the
SQUID caching architecture. If we assume that these lat-
ter references account for roughly the same disk I/O in
SQUIDM as in SQUID, none of the benefits come from
these 30% of references. This means that there is an 85%
savings generated off of the remaining 70% of SQUID’s
original disk I/O. Much of the savings occurs because
writes to the cache are not immediately committed to
the disk, allowing larger disk transfers.

An analogous observation can be made by comparing
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Figure 4: Disk I/O of SQUID derived architectures. Graph (a) breaks down the disk I/O into file system traffic and memory-
mapped file traffic. Graph (b) compares compares the duration of the measurement phase of each experiment

SQUIDML with SQUIDL. Here, using memory-mapping
cache saves about 63% of SQUIDL’s original disk I/O
for objects of size� 8192. The disk I/O savings of
SQUIDM and SQUIDML are largely due to larger disk
transfers that occur less frequently. The average I/O
transfer size for SQUIDM and SQUIDML is 21K Bytes
to the memory-mapped file, while the average transfer
sizes to SQUID and SQUIDL style files are 8K Bytes and
10K Bytes, respectively.

The SQUIDMLA architecture strictly aligns segments to
page boundaries such that no object spans two mem-
ory pages. This optimization would be important for
purely disk-based caches, since it reduces the number
of “read-modify-write” disk transactions and the num-
ber of transactions to different blocks. The results show
that this alignment has no discernible impact on disk I/O.
We found that SQUIDM and SQUIDML places 32% of
the cached objects across page boundaries (30% of the
cache hits were to objects that are crossing page bound-
aries).

Figure 5 confirms our conjecture that popular objects
tend to be missed early. 70% of the references go to 25%
of the pages to which the cache file is memory-mapped.
Placing objects in the order of misses leads therefore to
a higher page hit rate.

We evaluate the performance of each replacement strat-
egy by the amount of disk I/O and the cache hit rate.
As expected, the LRU replacement policy causes the
highest number of disk transactions during the measure-
ment phase. The future-looking policy shows that the
actual working set at any point in time is small, and that
accurate predictions of page reuse patterns would pro-
duce high hit rates on physical memory sized caches.
Figure 6 show that the frequency-based cyclic replace-
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Figure 5:The cumulative hit distribution over the virtual ad-
dress space of the memory-mapped cache file. 70% of the hits
occur in the first quarter of the memory-mapped cache file.

ment causes less disk I/O than LRU replacement with-
out changing the hit rate. The figure also shows the time
savings caused by reduced disk I/O. The time savings are
greater than the disk I/O savings which indicates a more
sequential access stream where more transactions access
the same cylinder and therefore do not require disk arm
repositioning.

6 Related Work

There exist a large body of research work on application-
level buffer control mechanisms. The external pager in
Mach [32] allow users to implement paging between pri-
mary memory and disk. Caoet al. investigate a mecha-
nism to allow users to manage page replacement without
degrading overall performance in a multi-programmed
system [7].

Glass and Cao propose and evaluate in [14] a kernel-
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Figure 6:Disk I/O and hit rate tradeoffs of different replace-
ment strategies. The graph (a) plots disk I/O against hit rate of
the three replacement experiments. Note thatlower x-values
are better than higher ones. The graph (b) shows the duration
of each experiment.

level page replacement strategy SEQ that detects long
sequences of page faults and applies most-recently-used
replacement to those sequences. The frequency-based
cyclic web cache replacement strategy proposed above
is specifically designed to generate more sequential page
faults. We are currently investigating the combined per-
formance of SEQ buffer caches and cyclic-frequency-
based web caches.

7 Conclusions and Future Research

We showed that some design adjustments to the SQUID

architecture can result in a significant reduction of disk
I/O. Web workloads exhibit much of the same refer-
ence characteristics as file system workloads. As with
any high performance application it is important to map
file system access patterns so that they mimic traditional
workloads to exploit existing operating caching features.
Merely maintaining the first level directory reference hi-
erarchy and locality when mapping web objects to the
file system improved system the meta-data caching and
reduced the number of disk I/O’s by 50%.

The size and reuse patterns for web objects are also sim-
ilar. The most popular pages are small. Caching small
objects in memory mapped files allows most of the hits
to be captured with no disk I/O at all. Using the com-
bination of locality-preserving file paths and memory-
mapped files our simulations resulted in disk I/O savings
of over 70%.

Very large memory mapped caches significantly reduce
the number of disk I/O requests and produce high cache
hit rates. Future work will concentrate on replacement
techniques that further reduce I/O from memory mapped

caches while maintaining high hit rates. Our experience
with the future-looking algorithm shows that there is an
additional 10% reduction possible. Our experience with
the LRU algorithm suggests that managing small mem-
ory mapped caches requires a tighter synchronization
with the operating system memory management system.
Possibilities include extensions that allow application
management of pages, or knowledge of the current state
of page allocation.

Our experiments do not account for overhead due to stal-
eness of cached objects and cache replacement strate-
gies. However, our results should be encouraging
enough to motivate an implementation of some of the
described cache architectures in an experimental version
of SQUID.
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