
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the USENIX Annual Technical Conference
Monterey, California, USA, June 6-11, 1999

NewsCache – A High Performance
Cache Implementation for Usenet News

_

_

_

Thomas Gschwind and Manfred Hauswirth
Technische Universität Wien

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

NewsCache – A High Performance Cache Implementation for Usenet News�

Thomas Gschwind Manfred Hauswirth
ftom,M.Hauswirth g@infosys.tuwien.ac.at

Distributed Systems Group
Technische Universität Wien
Argentinierstraße 8/E1841

A-1040 Wien, Austria, Europe

Abstract

Usenet News is reaching its limits as current traffic
strains the available infrastructure. News data volume
increases steadily and competition with other Internet
services has intensified. Consequently bandwidth re-
quirements are often beyond that provided by typical
links and the processing power needed exceeds a sin-
gle system’s capabilities. A rapidly growing number of
users, especially attracted by WWW, overloads commu-
nication links and makes bandwidth a scarce resource.
While an elaborate caching infrastructure was adopted
for the WWW, Usenet News still uses most of its orig-
inally defined infrastructure. Caching techniques have
not yet been adopted on a large scale. We believe that
this is due to the lack of efficient cache implementa-
tions. In this paper we present a high performance cache
server for Usenet News that helps to conserve network
bandwidth, computing power, and disk storage and is
compatible with the current infrastructure and standards.
After a thorough comparison of existing news database
formats and replacement strategies we designed and im-
plemented NEWSCACHE to remedy Usenet News bottle-
necks. We present an empirical comparison of different
cache replacement strategies as well as an evaluation of
the use of NEWSCACHE as a news server.

1 Introduction

Usenet News provides a global distributed blackboard
on top of other networks. It consists of a set of hierar-
chical newsgroups which are dedicated to specific top-
ics. Articles or messagesare submitted (posted) to one
or more newsgroups and are replicated to all Usenet sites
holding one of the newsgroups the article was posted to
[1]. The newsgroups that are stored on a news server

�This work was supported in part by a grant from the Hewlett-
Packard European Internet Initiative.

and thus provided to its clients are defined by the news
server’s administrator.

The world-wide set of cooperating news servers makes
up the distribution infrastructure of the News system.
Articles are distributed among news servers using the
Network News Transfer Protocol (NNTP) which is de-
fined in RFC977 [2]. In recent years several exten-
sions have been applied to NNTP. These are currently
available as an Internet draft [3] which will supersede
RFC977 within the next few months. The format of
Usenet messages is defined in [4].

News readers provide the user interface for reading
News and interact with their news server using the Net-
work News Reader Protocol (NNRP). NNRP is actually
the subset of NNTP that is used by news readers. Since
the news reader stores data specific to each news server,
such as article numbers to keep track of read articles, the
user must always connect to the same news server to get
a consistent view.

The number of newsgroups (currently about 550001)and
users is growing steadily. At the infrastructure level
this implies growing amounts of data that need to be
distributed and pushes existing News infrastructure to
its limits [5, 6]. Section 2 gives an introduction to the
current News infrastructure, its problems—which are
mainly caused by the lack of scalability due to News’sn
copy semantics that causes high bandwidth and resource
consumptions—and possible solution strategies.

A news server maintains a set of databases and log files
to store and monitor the news spool which are central
to the performance of the system as a whole. These
databases are explained in Section 3 along with a com-
parison of the organization of these databases as imple-
mented in various well-known news servers and NEWS-
CACHE itself.

1This figure is taken fromnews.tuwien.ac.at and may vary
according to the newsfeed available on a specific news server.

In Section 4 we present the design and implementation
of NEWSCACHE. We explain the replacement strategy
used for NEWSCACHE based on an analysis of various
replacement strategies that can be used for a caching
news server. Besides caching, our NEWSCACHE pro-
vides additional and new features which are described in
Section 5. Section 6 evaluates our implementation and
Section 7 gives an outlook on future work.

Related work is considered in Section 8 followed by our
conclusions in Section 9.

2 News, its Problems, and a Solution

When a user posts an article to a newsgroup, the news
reader transfers it to its news server via NNRP. Then the
article is distributed among the news servers using the
Network News Transfer Protocol (NNTP) [2, 3]. The
news server keeps a copy of the article and forwards
(feeds) it to its “neighboring” news servers that also hold
the newsgroup that the article has been posted to. Those
servers in turn forward it to their neighbors until all news
servers that hold the newsgroup have received a copy of
the article.

No restrictions exist on the topology with which articles
are distributed among the news servers. To prevent du-
plicate delivery of the article two strategies are applied:
each article carries a unique message identifier that al-
lows a news server to identify whether it has already
seen an article; additionally a news server adds its own
name to thepathheader of every article it receives. This
allows a news server to identify which news servers al-
ready have seen this article and feeding to those is not
necessary [7].

This simple infrastructure of News has provided flexi-
ble and reliable service over the past years. The analysis
of logfiles of large news servers, however, shows a dou-
bling of article numbers nearly every 18 months by occa-
sional bursts of growth [5]. In the current infrastructure
these figures can easily be mapped onto network band-
width requirements which are likely to grow at a similar
rate.

A main scalability problem stems from News’sn copy
distribution semantics. As described above each article
is copied to every news server holding the relevant news-
group(s). Since a high percentage of the articles will not
be read by anyone, copying all articles is highly redun-
dant for a leaf node news server. Measurements at our
university’s news server have shown that only 20% of all
available newsgroups are actually read [8].

Currently a typical newsfeed requires the transfer of
about3–5GB of article data per day [6]. For a typ-

ical site connected to the Internet via a T1 link (1.5
MBit/s) News’s bandwidth requirements account for up
to 35% of the total available bandwidth. This is the lower
bound to guarantee news distribution without generating
a backlog. A backlog might not be recoverable due to
limited bandwidth and computing resources. If this oc-
curs, the news service has to be decreased in terms of
fewer available newsgroups and randomly unavailable
articles.

Another problem that has to be accounted for is the I/O
load on the news server caused by the news traffic [9].
To illustrate this, consider our university’s hardware re-
quirements for News:news.tuwien.ac.at is an
UltraSPARC 2 system with 2 168MHz CPUs, 512MB
main memory and uses highly-optimized NFS server
hardware for the spool-directory, i.e. a 100GB RAID4
file server with a file system (WAFL) highly optimized
for directory accesses and big directories, connected via
100MBit FDDI to the UltraSPARC. Even with this ma-
chine the number of newsgroups provided had to be cut
down from about 45000 to 6000 newsgroups. Users can
request additional newsgroups (from a total of 55000
groups at the moment) via a WWW page [8].

News servers are responsible for both article distribu-
tion and providing news service to their clients. Ad-
ditional hardware requirements may be imposed by a
high number of news clients. An architecture that sep-
arates these two functionalities into a distribution back-
bone and an access infrastructure would provide higher
flexibility and scalability. This separation can be imple-
mented by administrative and management measures [6]
or by a new News infrastructure. In [10] we compared
infrastructures for News and came to the following con-
clusions:

� The access infrastructure should be separated from
the distribution infrastructure using cache servers.
This makes it possible to provide a virtual full feed
over a T1 link (1:5MBit/s) or a slower link.

� Leaf node news servers that are not part of the news
distribution infrastructure can be replaced by cache
servers.

� Servers with a full spool should form a distribution
backbone where news articles are exchanged using
multicast. Distribution of News via multicast is dis-
cussed in [11].

� If all clients were able to retrieve articles from sev-
eral news servers, it would not be necessary for ev-
ery news server to store all newsgroups that users
might want to read.

NEWSCACHE is a cache server implementation intended
to access the News infrastructure. Since it only uses
NNRP, it fits seamlessly into the existing infrastruc-
ture without requiring modifications to existing soft-
ware. Each requested article is stored locally by NEWS-
CACHE to satisfy successive requests without having to
contact the news server again. This eliminates additional
transfers, thus conserving bandwidth; decreases load on
the news server; and reduces disk space requirements
since only articles that actually are accessed need to be
stored. Givenni is the number of accesses andszi is
the size of articlei the reduction in bytes can be approx-
imated as

Reduction =
X

(ni � 1) � szi [Bytes]

This formula represents only the upper bound. An ar-
ticle that has been replaced by another will have to be
requested again, if it is again by a user.

Caching is ideally applicable for News because of the
lack of updates: articles do not change over time; they
can only be added to a newsgroup or expire. This sim-
plifies the application of caching considerably.

3 News Database

Each news server maintains a set of databases that store
articles and newsgroups as well as meta-information. In
the following sections we will explain the purpose of
each database, how they are implemented by various
news servers, and the improvements NEWSCACHE of-
fers for each database. We looked at important and wide-
spread news server implementations, such as the NNTP
reference implementation [12], c-news [13] which is
historically important and still has a large number of
users, and INN [7] [14] which is the news server with
the most installations nowadays. We have also included
NNTPCACHE’s organization of the news database [15]—
another cache server for News that was developed in par-
allel with NEWSCACHE.

3.1 Active Database

The active databasestores a list of all the newsgroups
available on the news server along with the number of
the first article (low watermark), the number of the last
article (high watermark), a posting flag, which indicates
the type of the newsgroup, and the creation times of a
newsgroup. Articles are numbered sequentially within
a newsgroup. Articles posted to different newsgroups,
will have several article numbers (one for each news-
group). The article number is site-specific, depending

on the arrival order and must never be reused within a
newsgroup.

For the news server, the active database is necessary
to calculate the article number(s) of newly arriving ar-
ticles within their newsgroup(s). For the news reader,
it provides an overview of the newsgroups available
from the news server, the date the newsgroup has been
created, and allows the news reader to estimate the
total number of articles (total = hi watermark �

lo watermark + 1) and the number of unread articles
(articles unread = total�articles read) within each
newsgroup.

Traditionally the active database is stored in two files
(active andactive.times). One listing the water-
marks and the moderation status and the other one giv-
ing the creation time of the newsgroups (c-news, INN,
NNTP reference implementation).

NEWSCACHE, however, stores all this information in
one memory mapped database including the number of
articles available in each newsgroup and a timestamp
when a newsgroup has been requested the last time from
the news server.

An advantage of storing the number of articles within
the active database is that articles need not be counted
whenever a newsgroup is selected while still being able
to provide an accurate count of the articles present in the
newsgroup.

NEWSCACHE uses timestamps to synchronize with
its upstream news server. A configurable threshold
value controls the frequency of cache updates (consis-
tency checks) from the server. This is a trade-off be-
tween cache coherence and bandwidth/connections to
the server. A time interval of0 for the update pe-
riod of the database provides a fully coherent view of
the database at the cost of increased connections (band-
width). A bigger value means that articles will be avail-
able to cache users with a slight delay.

As far as we could find out,NNTPCACHE organizes its
active database similar to NEWSCACHE. All the infor-
mation is kept in one memory mapped file.

3.2 Article and Newsgroup Database

The article and newsgroup database stores all the news
articles and maps the articles to the newsgroups which
they have been posted to. Traditionally the newsgroup
hierarchy is mapped onto a directory hierarchy and the
articles are stored in separate files in their newsgroup
directory. If an article is posted to several groups hard
links are used to prevent multiple storing of an article (c-
news, NNTP reference implementation,NNTPCACHE).

INN uses the same format but is able to use soft links
which allows distribution of the News spool over multi-
ple file systems.

However, this approach has some drawbacks due to the
fact that the average size of an article is rather small
(about 2.5KB) [5, 6].

� On filesystems using a limited number of files per
filesystem one can run out of file entries (inodes),
despite enough disk space is available.

� On filesystems with block sizes of1 to 4KB up to
100% of the real data volume can be wasted [5].

� Newsgroups with heavy traffic tend to be bottle-
necks due to a linear lookup of files in the directory
structure.

To overcome the problems of this storage format, the
current version of INN supports two alternatives: the
timehashformat is similar to the traditional format, but
articles are divided into subdirectories based on the ar-
rival timestamp. Thecnfs format uses pre-configured
buffer files of a configurable size for every newsgroup.
Upon reaching the end of the buffer file, new articles are
stored again from the beginning of the file. However, the
disadvantage of this approach is that the article retention
time cannot be controlled since articles get overwritten
automatically when the buffer is full. The installation
manual recommends to use the traditional format. Only
if a full feed has to be maintained,cnfsis recommended.
[14]

Even thoughcnfs seems to be the best choice from a
performance point of view, it cannot be used for a cache
server because the size of the buffer files is fixed and
available file system space cannot be flexibly reallocated
between different newsgroups. Another disadvantage is
that the article retention time cannot be controlled which
is important for caching.

NEWSCACHE in contrast uses a database for each news-
group that stores articles with a size of less than 16KB.
Larger articles are stored in the filesystem to keep the
newsgroup database small and to improve the database’s
caching behavior. The article size threshold is user-
configurable and should be chosen in a way to utilize
the filesystem’s block allocation as efficient as possible
(most filesystems allocate disk space in chunks of2nKB,
wheren is constant).

The advantage of our approach is that it does not suffer
from a limited number of files and the filesystem lookup
is required for big articles (articles bigger than16KB)
only. However, newsgroups with many large articles still
depend on the filesystem’s organization.

Since an article’s unique message identifiers and the per
newsgroup article numbers must not be reused for other
articles, the article itself has a virtually infinite lifetime.
Thus the article itself cannot be changed and thus no
coherency control messages are necessary which makes
the caching of articles efficient and easy.

When an article is submitted to or expired from a news-
group the low and high watermarks of the newsgroup
will change accordingly. This can be easily identified
using NNTP’sgroup command which selects a news-
group and reports the newsgroup’s watermarks.

However, articles can be added to or removed from a
newsgroup not only by submission or expiration but also
via cancellation messages or by article reinstatement
[3, 2]. While the former can be done by every Usenet
user, the latter can only be done by the news server’s ad-
ministrator. Failing to detect article cancellation is only
a minor flaw but failing to detect article reinstatement
has the effect that the user might miss these articles. Re-
instatement of an article conforms to RFC977 [2] but
since it occurs seldomly only few news readers handle it
correctly. Most news readers mark articles not available
on the news server as read which might not be the case
(i.e., tin, xrn, slrn, MS Outlook Express).

NEWSCACHE uses thelistgroup command to ob-
tain a list of all valid article numbers within the current
newsgroup. Based on this list NEWSCACHE can identify
a canceled article (the article exists in the cache but not
on the server) or a reinstated article (the article exists on
the server but not in the cache).

3.3 Overview Database

Theoverview databasestores a short summary for each
article. Using the overview database, a news reader can
provide a faster overview of the articles available in a
newsgroup.

INN stores the overview database for each newsgroup as
a single plain text file. Whenever an article is posted to a
newsgroup, its overview record is appended to this file.
If an article gets deleted or is expired in the newsgroup,
the whole file has to be rewritten.

NNTPCACHE takes the same approach except that the
overview records for one group are split up into sev-
eral files with 512 overview records per file. This is
necessary since otherwise the whole overview database
would have to be rewritten when a new record has to
be inserted at the beginning of the file. This occurs fre-
quently becauseNNTPCACHE has no control of when a
client requests an overview record. Some news read-
ers even request the overview records in reverse order,

to be able to present the newest articles first to the user
while older records are being retrieved (e.g., Netscape).
NNTPCACHEgenerates overview records on the fly if an
article is not available and stores them in the overview
database.

NEWSCACHE always generates overview records for ar-
ticles stored within the newsgroup’s memory mapped
database on the fly. Overview records for other arti-
cles (articles that have not been cached yet or articles
bigger than16KB) are also stored in the newsgroup’s
database. This reduces the disk space necessary for
NEWSCACHE by approximately20%. Additionally, the
overview database has its own memory allocation meth-
ods based on memory mapped files to allow changes
without the need to rewrite the entire file.

A record in the overview database represents a sub-
set of the corresponding article. Thus the same re-
quirements as for the article database account for the
overview database. When a news reader requests an
overview record for a newsgroup, NEWSCACHE imme-
diately prefetches all entries not yet cached since it is the
most frequently used information. Most news readers
will retrieve the overview database of the whole news-
group whenever the newsgroup is selected by the user
(e.g., tin, xrn)

3.4 History Database

The history database stores meta information about arti-
cles and newsgroups. It stores the arrival time and ex-
piration of an article along with its message identifier.
This allows the news server to identify whether an article
is offered again by another news server but has already
been expired on the local server. It stores the creation
and deletion time of newsgroups. The creation time is
necessary to be able to inform news readers of newly
created newsgroups.

Usually, the history database is managed like a log file
(c-news, INN), where new entries are appended at the
end of the file. NEWSCACHE stores the creation times
of the newsgroups within its active database. Storing
the articles’ message identifier is not necessary because
NEWSCACHE does not participate in the distribution of
articles between news servers. It provides an exact im-
age of its upstream news server, thus freeing NEWS-
CACHE from having to identify duplicate articles.

4 Implementation of NewsCache

NEWSCACHE has been designed to be easily extendible
and reusable. For this purpose we implemented a news

server class library that provides an interface to differ-
ent kinds of news databases. The hierarchy is shown in
Figure 1 using the notation presented in [16].

The abstract news server class (NServer) defines the in-
terface that has to be implemented by all the news server
classes and provides a factory method (getgroup())
that lets the user create the news server’s news database.

The local server class (LServer) implements an interface
to a local news database. This class can serve as a base
class for the implementation of a news server trimmed
to the user’s requirements. The remote server class
(RServer) implements an interface to access a database
provided by a news server. It also allows for multiplex-
ing between different news servers on a per newsgroup
basis. The RServer class can be used as the communi-
cation interface to a news server for a new news reader.
The cache server class (CServer) inherits the function-
ality from the LServer and the RServer classes. As a
result, CServer provides an interface to the database of
a news server with the ability to cache messages in the
news database provided by the LServer class.

Each news database is defined by its own interface
(inherited from an abstract class). The access to the
databases is controlled by the news server classes which
means that a reference to the newsgroup databases has
to be requested from the server component before a user
(for NEWSCACHE this is thennrpd class that handles
client requests) of the library can access the newsgroup.

For the databases used by the LServer and CServer
classes, we implemented aNon Volatile Containerclass
library. Instead of using the heap for memory allocation,
the class library provides its own functions for allocat-
ing and freeing memory by using memory mapped files.
Using this memory allocation model we implemented a
set of containers. NVcontainer provides all the meth-
ods necessary for allocating and freeing memory from
the mapped file. This functionality is inherited by all the
subclasses of NVcontainer. At the moment we provide
a list container (NVList), an externally linked hash table
(NVHash), and an array (NVArray). Figure 2 shows the
hierarchy of this library.

Using memory mapped files has several advantages. The
size of the database is not limited by the available virtual
memory. A container’s content need not be written to or
read from the disk explicitly. If the operating system
caches file accesses, this approach has no performance
penalty over the use of main memory. No swap space is
consumed by this container class, since the cached data
will be written back to the file instead of to the oper-
ating system’s swap space. If the database should be
shared by a set of processes, changes are visible to other
processes immediately and no shared memory has to be

NNRPD

Active Databases

ActiveDB

News Servers

NServer Newsgroup

CServer

LServer RServer

VActiveDBNVActiveDB VNewsgroup NVNewsgroup

CNewsgroup

active()
getgroup()
freegroup()

NVHash NVArray

Newsgroup Databases

Class /Abstract Class

Aggregation

Creates

Inheritance

Figure 1: NEWSCACHE’s class hierarchy

Non Volatile Containers

NVArrayNVlist

NVList NVHash

NVActive

NVcontainer

NVNewsgroup

Figure 2: Inheritance hierarchy of theNon Volatile Con-
tainer Classlibrary

allocated. However, memory mapped files also have a
drawback: whenever more memory is necessary than
available, the file has to be resized and remapped to a
possibly different memory location. To reduce the per-
formance penalty of this operation we allocate space in
bigger chunks (64KB at the moment).

For our implementation of the active database, we use
the NVHash container. We use a externally linked hash
table because it is not as complex as a balanced tree and
more efficient as long as the number of elements is pre-
dictable. Since the number of elements can be estimated
a priori for the next few years this is not a big issue.
Currently about 55000 newsgroups exist and up to now
this number doubles every 18 months. Thus a hashtable
with about 20000 entries will be sufficient for the next
two years (about 120000 newsgroups divided by 20000
entries gives between 1 and 6 comparisons per lookup).

Then the size of the hash table should be reconfigured
which takes only a few seconds. Our implementation
stores all information of the active database within the
same database.

For the newsgroup database, each newsgroup uses its
own database to store news articles. Each database is
stored within its own directory. The name of the direc-
tory is derived from the name of the newsgroup (similar
to INN).

Compared to other implementations, we provide a so-
phisticated newsgroup database. Only big articles (arti-
cles bigger than 16KB at the moment) are stored using a
separate file. All other information, be it a small article
or an overview record, are stored in the same database.
This reduces the number of files and keeps related in-
formation together and thus improves caching behavior.
To further reduce disk-space requirements we went one
step beyond and store overview records only for articles
that are stored externally or for articles where only the
overview record has been requested. This performance
penalty (about 20% as we will show in Section 6) is out-
weighed by the disk space reduction, since the overview
database is up to20% of the size of the news database.

4.1 Choice of Replacement Strategy

A key determinant of the performance of cache systems
is the replacement strategy. We have compared the re-
placement strategies applicable to our domain in terms
of the resulting network bandwidth and in their hit rates
respectively. Where meaningful, the replacement strate-
gies were compared on a per article basis and on a per
newsgroup basis (the smallest unit to be removed is an

article or a newsgroup respectively). For the per news-
group replacement strategies it is important to note that
articles will also be removed when they are expired on
the upstream news server. Otherwise the newsgroup will
grow infinitely. A comparison of the strategies is de-
picted in Figure 3 in terms of consumed network band-
width and in Figure 4 in terms of their hit rates. The
replacement strategies have been simulated using access
patterns obtained from NEWSCACHE’s log files (logged
over a 10 days period).

It is interesting to note that a better hit rate does not
necessarily imply less network bandwidth consumption.
For instancebiggest article firsthas nearly always a bet-
ter hit rate thanleast frequently usedbut in some situa-
tions transfers more bytes from its upstream news server.

What we did not expect was that LRU on a per news-
group basis (LRUG) performs better than LRU on a per
article basis (LRUA). We assumed that LRUA has a finer
granularity and thus will perform better. Our interpreta-
tion is that the newsgroup should be seen as a unit and
that an article’s access probability often can be estimated
better by looking at all the articles in the group than by
just looking at one article. Sometimes this generaliza-
tion is not true and the hit rate can degrade even though
the spool size is increased.

We considered the following replacement strategies:

BAF removes the biggest articles first, thus favoring
newsgroups with small articles. This strategy as-
sumes that only a few users read binary news-
groups2 and that those users should be penalized.
This strategy is good when a good hit-rate foror-
dinary News users (users not reading binary news-
groups) should be provided.
However, if many people are reading binary news-
groups, as in our case, the hit rate will be poor.
Thus if the major concern is to reduce the required
network bandwidth BAF does not perform well.

LFUA/LFUG removes the least frequently used arti-
cle (LFUA) or least frequently newsgroup (LFUG)
first. As expected LFUA performs poorly. It favors
older articles that have been read more frequently
and thus have already been read by most users.
LFUG performs considerably better since it takes
the overall interest in the newsgroup into account.
The only problem is that LFU cannot adopt to new
requirements quickly. This seems to be the main
reason why it performs bad on small article spools
and why it oscillates so heavily on small to average

2Newsgroups that mainly distribute programs or other big data like
pictures are usually called binary newsgroups—some people think that
those newsgroups should be banned from Usenet.

sized spool sizes.

LRUA/LRUG removes least recently used articles
(LRUA) or newsgroups (LRUG) first. This strat-
egy assumes that items that have not been accessed
for a long time are no longer of interest. LRUA can
adopt faster to changing requirements than LFUA
because it does not take old accesses into account.
Thus, as we expected the least recently used strat-
egy performs better than LFUA.

LETF removes articles with the least expiration time
first. The drawback of this approach is that it treats
all groups the same and does not take the article’s
access patterns into account. However, it is better
then BAF or LFUA since it takes into account that
older articles are less interesting to Usenet users
and thus are less likely to be accessed in the future.

Initially we used a per newsgroup replacement strategy
because it was the easiest way to implement article re-
placement and imposed the smallest CPU load. Then we
tested a hybrid replacement strategy (LRUA and LRUG
mix) because we assumed that a per article replacement
strategy would perform better. This did not prove true so
we have gone back to LRUG.

5 New and Additional Features

NEWSCACHE’s design rationale is compatibility, scal-
ability, and extendibility. Compatibility with the ex-
isting infrastructure and scalability issues already have
been addressed in previous sections. By extendibility
we mean that we have included new functionality into
NEWSCACHE and its design eases the addition of new
features.

Many news readers can interact with only one news
server, thus tying the user to the server’s newsgroup se-
lection. NEWSCACHE can remedy this situation by its
transparent multiplexingfunctionality: it can simultane-
ously cooperate with a set of news servers and combines
them into one virtual news server for its clients. This
feature can also be utilized for infrastructural improve-
ments: newsgroups can be partitionedamong a set of
news servers and access is done via NEWSCACHE. Done
at an appropriate organizational scale, this can decrease
network bandwidth consumption and I/O load on the
news servers, while users still have access to all news-
groups.

Additionally the multiplexing feature can be used for
the provision oflocal newsgroups. NEWSCACHE can
be setup to multiplex between the newsfeed and a lo-
cal news server that only holds groups of local scope.

35000

40000

45000

50000

55000

60000

0 2 4 6 8 10 12 14 16

by
te

s
tr

an
sf

er
re

d
[M

B
]

spool size [GB]

BAF
LFU

LFUG
LRU

LRUG
LETF

Figure 3: Bandwidth based on replacement strategies with varying spool sizes

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

hi
t r

at
e

[%
]

spool size [GB]

BAF
LFU

LFUG
LRU

LRUG
LETF

Figure 4: Hit rates of replacement strategies with varying spool sizes

Since this functionality requires setting up a local news
server whose functionalities are not exploited in this set-
ting, we plan to include a light-weight news server into
NEWSCACHE for this purpose.

NEWSCACHE also supports access to a virtual fullnews-
feed over limited bandwidth network connections. This
functionality can be combined with aprefetchingstrat-
egy: a set of newsgroups can be retrieved in off-hours
when the network is less loaded and then will be acces-
sible much faster during network peak time. This func-
tionality can also be bestowed to provideoffline news
reading. By using the prefetching functionality news-
groups are in the cache and can then be read offline.
Postings submitted during offline operation are queued
for later submission. However, during offline operation,
NEWSCACHE cannot retrieve articles that have not been
cached. Thus, those articles cannot be presented to the
news reader. Unfortunately, many news readers assume
then that the article has been deleted and marks it as read
and will never present it to the user even if the article
is reinstated by NEWSCACHE when a connection to the
upstream news server is re-established.

6 Evaluation

After developing and implementing NEWSCACHE we
evaluated the success of our design decisions and the va-
lidity of our assumptions about the weaknesses of the
other server’s database organization. We performed the
evaluation in several experimental setups. In the follow-
ing we will present our results that validate our design
decisions. As we will show, however, the results also
indicate that a small performance increase might still be
possible.

Table 1 shows the performance of NEWSCACHE’s News
database compared toNNTPCACHE’s and INN-2.0’s per-
formance. Our test machine was a Pentium 200MHz,
64MB main memory, and 3GB IDE hard disk running
Linux 2.0.35. The cache servers and INN were running
on the same machine since we wanted to know the min-
imal latency involved when retrieving News via each
cache server. It shows that a miss imposes only little
overhead and in the case of a hit NEWSCACHE performs
better than its competitors except for the retrieval of the
active and overview databases where it performs as good
asNNTPCACHE.

Table 2 compares the delay of hits, misses, and direct
connections in a realistic setup. Clients are located on
the same LAN as NEWSCACHE. The LAN is connected
to the news server over a small bandwidth link (i.e.,
56kBit modem line). Table 3 includes a rough calcu-
lation of the performance advantage that will be experi-

enced by users that use NEWSCACHE by combining the
figures in found Table 2 and 3.

Description NEWSCACHE INN
Hit Miss

Active database retrieval 10:1s 120s 110s
Retrieving 1000 articles 27:5s 523s 471s
Overview database of 5
groupsa

40:3s
(41:3s)

373s 331s

Selection of 350 news-
groups

0:7s 43:6s 43:3s

aThe second figure indicates the access time of the overview database
when it is generated on the fly.

Table 2: Accessing News over a slow (56kBit) link with
NEWSCACHE installed locally.

Another interesting thing to note is that the delay of
some operations are masked out compared to Table 1
(i.e., on the fly generation of the overview database) due
to the fact that the client and NEWSCACHE are running
on different machines. Other operations do not profit
from this. We see this as an indication that retrieving
the active database from the server and sending it to the
client can be optimized by interleaving those operations
in a better way.

For a cache not only good performance values but also
good hit rates are viable. Thus, we publicly announced
the availability of NEWSCACHE at our university and
asked people to use and test NEWSCACHE. The hit rates
for this experiment are presented in Table 3. With more
accesses to the cache we expect higher hit rates, espe-
cially when people have to use NEWSCACHE and cannot
access the news server directly. Over a period of 10 days
NEWSCACHE was accessed6350 times from309 hosts.
In total1314 different newsgroups were accessed among
which the top 10 accounted for59% of all accesses. So,
reasonable locality in references to the newsgroups can
be concluded.

total active groups ODBa articles

requests 322934 941 40866 44159 205363
hits 86359 736 3326 10230 42204

27% 78% 8% 23% 21%
perf-gain 18%b 69% 7% 10% 11%

aoverview database.
bweighted average of group selection, active and overview database,

and article retrieval. Other requests have not been considered for this
figure.

Table 3: Hit Statistics (without Prefetching)

Description NEWSCACHE NNTPCACHE INN
Hit Miss Hit Miss

Active database retrieval 3:6s 7:0s 3:6s 8:4s 6:0s
Retrieving 1000 articles 19s 38s 24s 59s 20s
Overview database of 5 groupsa 16:1s (20:8s) 111s 16:1s (128s) 125s 108s
Selection of 350 newsgroups 0:7s 21:8s 5:3s 22:8s 20:6s

aThe second figure indicates the access time of the overview database when it is generated on the fly.

Table 1: Performance of NEWSCACHE

NEWSCACHE has been tested in combination with sev-
eral news readers. Netscape works perfectly with
NEWSCACHE, but we had to optimize thegroup com-
mand, since Netscape issues this command for each
newsgroup to get a better estimation of the number of
articles available within the newsgroups. Gnus, knews,
MS Outlook Express, pine, slrn, tin, XRN also work in
combination with NEWSCACHE. Other news readers
have also been reported to work perfectly in combina-
tion with NEWSCACHE.

The following news servers have been tested in combi-
nation with NEWSCACHE: ANU News (VMS), INN,
MS Internet Services, Netscape Collabra. No problem
has been found so far.

7 Future Work

The active database changes whenever an article is sub-
mitted to a newsgroup or whenever a newsgroup is
added or removed. Article submission and removal
occurs much more frequently than newsgroup addition
or removal. Unfortunately NNTP provides no com-
mand to check which entries of the active database have
been modified since a given time. Only commands for
retrieving the whole active database (list active
[wildmat]) or only the part for newly added news-
groups (newgroups) exist. A wildmatexpression can
be applied to filter newsgroups based on their names.
Thus whenever the active database needs to be updated
the whole active database has to be requested (about
2MB).

Fortunately, the revised NNTP specification [3] is kept
extendible enough to support custom extensions. Ex-
tensions supported by the news server can be re-
trieved using NNTP’sLIST EXTENSIONScommand.
To overcome this problem we propose a slightly
modified list command,list active.modtime
$time [wildmat] , that provides a possibility to re-
trieve entries that have been changed since a given time.
We will analyze the benefits of such a command and pre-

pare a draft for an NNTP extension that defines this com-
mand.

The current implementation of ourNon Volatile Con-
tainer Classlibrary is based on a code inheritance hi-
erarchy. Even though this supports the changing of the
type of container used during runtime it requires a vir-
tual method call whenever the container is accessed. In
future versions we will switch to a design based on tem-
plates similar to the design of STL [17].

At the moment the size of the hash table for the active
database has to be specified when compiling NEWS-
CACHE. This should be a configuration option in
NEWSCACHE’s configuration file. However, this is not
critical and adding this feature should be trivial.

We think that one of the key elements responsible for the
good performance of NEWSCACHE is theNon Volatile
Container Classlibrary. In the future we will try to in-
tegrate this in INN and will evaluate whether INN can
benefit from it.

We plan further analysis and experiments with cache re-
placement policies to find an optimal replacement pol-
icy for News. As our experiments have shown so far
the application of such policies in the setting of News
may yield unexpected results (see Section 4.1) and thus
require further systematic study. News seems to differ
from other cache application areas in a way that assump-
tions from other domains cannot be mapped 1:1 onto
News.

Our measurements for News clients performance gains
have been done indirectly via cache hit rates. While this
provides a good approximation for the overall perfor-
mance gains, it gives only a limited assessment of the
performance gains for a single client. We want to use
instrumented news readers to get such direct measure-
ments. Additionally these results can be related to hit
rates and other performance figures to get a better un-
derstanding of the runtime behavior and access profiles.

The selection process of the articles to be prefetched is
another area of further investigation, i.e. how the infor-

mation that is to be prefetched is chosen. Several sce-
narios seem to be useful besides prefetching based on
the administrator’s preferences: prefetch the newsgroups
with the most user requests (in relation to the article
sizes), thread based prefetching, etc.

8 Related Work

NNTPCACHE is the only system we found so far that is
similar to NEWSCACHE, but no publications about it are
available. The following statements are solely based on
the documentation ofNNTPCACHE’s software distribu-
tion [15] and our tests with it.

NNTPCACHE offers censoring of articles, and forward-
ing of unknown commands. NEWSCACHE currently
does not support these features but on the other hand
offers functionality unknown toNNTPCACHE: prefetch-
ing, offline News reading, andinetd support.

An approach using a server with only a subset of the
theoretically available newsgroups in combination with
a web page where users can request the addition of new
newsgroups available on the news server’s news feed is
explained in [8]. When a user requests a newsgroup via
the web page it is supplied by the news server on the next
day. The author explains that in average only 20% of all
the theoretically available newsgroups are actively being
read. However, this could be solved better using a cache
server. This approach has the advantage that news users
need not request new newsgroups via a web page since
the cache server would offer all available newsgroups
and the newsgroups would be available to the news user
immediately.

Another approach where the News spool is partitioned
among several computers is presented in [6]. While this
cuts down the I/O load on each machine it does not target
the network bandwidth consumption.

9 Conclusion

Despite the fact that consensus exists that caching must
be applied to News in the presence of overloaded net-
works, only few approaches exist to attack this problem.
These approaches alleviate the effects by applying man-
agement policies but do not attack the cause. NEWS-
CACHE, however, attacks this at the access infrastructure
while still being compatible to existing news software.

NEWSCACHE can replace existing leaf node news
servers thus reducing network bandwidth consumptions
and reducing hardware requirements for the provision of
Usenet News since only a fraction of the full News spool

has to be stored while still providing a full feed to news
users. NEWSCACHE can be used to speed up retrieval
of News in environments where only a slow link to the
news server exists. Another advantage of NEWSCACHE

is that it offers news reading functionality only (post-
ings are directly forwarded to the upstream news server)
and needs not allocate resources and computing power
for news distribution. This drastically cuts down on I/O
load.

Even though NEWSCACHE is based on an object-
oriented design whose design is not compromised by
dirty performance hacks, it provides faster access to
news articles than other state of the art news servers
(i.e. INN). This is due to the fact that we did a thor-
ough comparison of the design of the news database in
various other news servers before implementing our own
database.

The news database is based on memory mapped files us-
ing our own memory management. This approach al-
lows us to manipulate persistent complex data structures
as if they were stored on the heap. Other news servers
such as INN might also benefit from this organization.

Another factor that has to be taken into account in the do-
main of caching is the replacement strategy used when
the cache space fills up. We have compared different
replacement strategies that can be employed when the
spool size of the cache server fills up along with an anal-
ysis of the advantages of each. One surprising result was
that when articles need to be replaced, it is better to re-
move older articles on a per newsgroup basis. Our in-
terpretation to this is that the probability that an article
might be accessed can be estimated better by looking at
all the articles in the group than by just looking at one
article.

Additionally, NEWSCACHE makes the life of Usenet ad-
ministrators easier by providing the following new fea-
tures without forcing the administrator to install a news
server with a full newsfeed: provision of local news-
groups, transparent merging of multiple news servers
into one virtual news server, and providing a virtual full
feed over slow links where a full feed would not be pos-
sible.

These factors should make NEWSCACHE popular in the
future. An increasing number of people already use
NEWSCACHE including Internet service providers and
NEWSCACHE is included in the Debian Linux distribu-
tion.

Acknowledgements

Thanks to Mehdi Jazayeri for encouraging us to con-
tinue this work and Michael Gschwind for his help in
the preparation of this article and his comments on ear-
lier drafts.

Availability

NEWSCACHE is available under the terms of the
GNU Public License (GPL) fromhttp://www
.infosys.tuwien.ac.at/NewsCache/ . Addi-
tionally, you can also test the current NEWSCACHE

release by pointing your newsreader to the news
servernewscache.infosys.tuwien.ac.at on
the standardNNTPport (119). NEWSCACHE is also dis-
tributed as a part of the Debian Linux distribution.

References

[1] Chip Salzenberg, Gene Spafford, and Mark
Moraes. What is Usenet? ftp://rtfm.mit.edu
/pub/usenet-by-group/news.admin.misc
/What is Usenet%3F, November 1998.

[2] Brian Kantor and Phil Lapsley. Network News
Transfer Protocol - A proposed standard for the
stream-based transmission of news. RFC977,
February 1986.

[3] Stan Barber. Network News Transport Protocol.
Internet draft, December 1998. draft-ietf-nntpext-
base-07.txt.

[4] Mark Horton and R. Adams. Standard for Inter-
change of USENET Messages. RFC1036, Decem-
ber 1987.

[5] Karl L. Swartz. Forecasting disk resource require-
ments for a Usenet server. InProceedings of the
Seventh System Administration Conference (LISA
’93), pages 195–202. USENIX, November 1993.

[6] Nick Christenson, David Beckemeyer, and Trent
Baker. A scalable news architecture on a single
spool. ;login:, 22(3):41–45, June 1997.

[7] Rich Salz. InternetNews: Usenet Transport for In-
ternet Sites. InProceedings of the Summer 1992
USENIX Conference. USENIX, June 1992.

[8] Martin G. Rathmayer. Realisierung eines Bestell-
systems f¨ur Newsgruppen an der TU Wien.
Pipeline, (23), October 1997.

[9] James Fidell, Dale Ghent, Nathan J. Mehl, Chris
van den Berg, and Stephen Zedalis. Frequently
Asked Questions about the INN (InterNetNews)
NNTP Server. http://www.blank.org/innfaq/.

[10] Thomas Gschwind. A Cache Server for
News. Master’s thesis, Technische Universit¨at
Wien, April 1997. http://www.infosys.tuwien.ac
.at/NewsCache/.

[11] Heiko W. Rupp. A Protocol for the Transmission of
Net News Articles over IP multicast, March 1998.
Internet Draft, draft-rfced-exp-rupp-04.txt.

[12] Stan Barber. NNTP Reference Implemen-
tation. ftp://ftp.academ.com/pub/nntp1.5
/nntp.1.5.12.2.tar.Z, January 1996.

[13] Geoff Collyer and Henry Spencer. News Need
Not Be Slow. InProceedings of the Winter 1987
USENIX Technical Conference, 1987.

[14] Internet Software Consortium. The InterNet-
News NNTP Server. ftp://ftp.isc.org/isc/inn/inn-
2.0.tar.gz, June 1998.

[15] Julian Assange and Luke Bowker.NNTPCache.
http://www.nntpcache.org/.

[16] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns, Elements
of Reusable Object-Oriented Software. Addison-
Wesley, October 1994.

[17] Bjarne Stroustrup.The C++ Programming Lan-
guage. Addison-Wesley, 3rd edition, July 1997.

NewsCache – A High Performance Cache Implementation for Usenet News�

Thomas Gschwind Manfred Hauswirth
ftom,M.Hauswirth g@infosys.tuwien.ac.at

Distributed Systems Group
Technische Universität Wien
Argentinierstraße 8/E1841

A-1040 Wien, Austria, Europe

Abstract

Usenet News is reaching its limits as current traffic
strains the available infrastructure. News data volume
increases steadily and competition with other Internet
services has intensified. Consequently bandwidth re-
quirements are often beyond that provided by typical
links and the processing power needed exceeds a sin-
gle system’s capabilities. A rapidly growing number of
users, especially attracted by WWW, overloads commu-
nication links and makes bandwidth a scarce resource.
While an elaborate caching infrastructure was adopted
for the WWW, Usenet News still uses most of its orig-
inally defined infrastructure. Caching techniques have
not yet been adopted on a large scale. We believe that
this is due to the lack of efficient cache implementa-
tions. In this paper we present a high performance cache
server for Usenet News that helps to conserve network
bandwidth, computing power, and disk storage and is
compatible with the current infrastructure and standards.
After a thorough comparison of existing news database
formats and replacement strategies we designed and im-
plemented NEWSCACHE to remedy Usenet News bottle-
necks. We present an empirical comparison of different
cache replacement strategies as well as an evaluation of
the use of NEWSCACHE as a news server.

1 Introduction

Usenet News provides a global distributed blackboard
on top of other networks. It consists of a set of hierar-
chical newsgroups which are dedicated to specific top-
ics. Articles or messagesare submitted (posted) to one
or more newsgroups and are replicated to all Usenet sites
holding one of the newsgroups the article was posted to
[1]. The newsgroups that are stored on a news server

�This work was supported in part by a grant from the Hewlett-
Packard European Internet Initiative.

and thus provided to its clients are defined by the news
server’s administrator.

The world-wide set of cooperating news servers makes
up the distribution infrastructure of the News system.
Articles are distributed among news servers using the
Network News Transfer Protocol (NNTP) which is de-
fined in RFC977 [2]. In recent years several exten-
sions have been applied to NNTP. These are currently
available as an Internet draft [3] which will supersede
RFC977 within the next few months. The format of
Usenet messages is defined in [4].

News readers provide the user interface for reading
News and interact with their news server using the Net-
work News Reader Protocol (NNRP). NNRP is actually
the subset of NNTP that is used by news readers. Since
the news reader stores data specific to each news server,
such as article numbers to keep track of read articles, the
user must always connect to the same news server to get
a consistent view.

The number of newsgroups (currently about 550001)and
users is growing steadily. At the infrastructure level
this implies growing amounts of data that need to be
distributed and pushes existing News infrastructure to
its limits [5, 6]. Section 2 gives an introduction to the
current News infrastructure, its problems—which are
mainly caused by the lack of scalability due to News’sn
copy semantics that causes high bandwidth and resource
consumptions—and possible solution strategies.

A news server maintains a set of databases and log files
to store and monitor the news spool which are central
to the performance of the system as a whole. These
databases are explained in Section 3 along with a com-
parison of the organization of these databases as imple-
mented in various well-known news servers and NEWS-
CACHE itself.

1This figure is taken fromnews.tuwien.ac.at and may vary
according to the newsfeed available on a specific news server.

In Section 4 we present the design and implementation
of NEWSCACHE. We explain the replacement strategy
used for NEWSCACHE based on an analysis of various
replacement strategies that can be used for a caching
news server. Besides caching, our NEWSCACHE pro-
vides additional and new features which are described in
Section 5. Section 6 evaluates our implementation and
Section 7 gives an outlook on future work.

Related work is considered in Section 8 followed by our
conclusions in Section 9.

2 News, its Problems, and a Solution

When a user posts an article to a newsgroup, the news
reader transfers it to its news server via NNRP. Then the
article is distributed among the news servers using the
Network News Transfer Protocol (NNTP) [2, 3]. The
news server keeps a copy of the article and forwards
(feeds) it to its “neighboring” news servers that also hold
the newsgroup that the article has been posted to. Those
servers in turn forward it to their neighbors until all news
servers that hold the newsgroup have received a copy of
the article.

No restrictions exist on the topology with which articles
are distributed among the news servers. To prevent du-
plicate delivery of the article two strategies are applied:
each article carries a unique message identifier that al-
lows a news server to identify whether it has already
seen an article; additionally a news server adds its own
name to thepathheader of every article it receives. This
allows a news server to identify which news servers al-
ready have seen this article and feeding to those is not
necessary [7].

This simple infrastructure of News has provided flexi-
ble and reliable service over the past years. The analysis
of logfiles of large news servers, however, shows a dou-
bling of article numbers nearly every 18 months by occa-
sional bursts of growth [5]. In the current infrastructure
these figures can easily be mapped onto network band-
width requirements which are likely to grow at a similar
rate.

A main scalability problem stems from News’sn copy
distribution semantics. As described above each article
is copied to every news server holding the relevant news-
group(s). Since a high percentage of the articles will not
be read by anyone, copying all articles is highly redun-
dant for a leaf node news server. Measurements at our
university’s news server have shown that only 20% of all
available newsgroups are actually read [8].

Currently a typical newsfeed requires the transfer of
about3–5GB of article data per day [6]. For a typ-

ical site connected to the Internet via a T1 link (1.5
MBit/s) News’s bandwidth requirements account for up
to 35% of the total available bandwidth. This is the lower
bound to guarantee news distribution without generating
a backlog. A backlog might not be recoverable due to
limited bandwidth and computing resources. If this oc-
curs, the news service has to be decreased in terms of
fewer available newsgroups and randomly unavailable
articles.

Another problem that has to be accounted for is the I/O
load on the news server caused by the news traffic [9].
To illustrate this, consider our university’s hardware re-
quirements for News:news.tuwien.ac.at is an
UltraSPARC 2 system with 2 168MHz CPUs, 512MB
main memory and uses highly-optimized NFS server
hardware for the spool-directory, i.e. a 100GB RAID4
file server with a file system (WAFL) highly optimized
for directory accesses and big directories, connected via
100MBit FDDI to the UltraSPARC. Even with this ma-
chine the number of newsgroups provided had to be cut
down from about 45000 to 6000 newsgroups. Users can
request additional newsgroups (from a total of 55000
groups at the moment) via a WWW page [8].

News servers are responsible for both article distribu-
tion and providing news service to their clients. Ad-
ditional hardware requirements may be imposed by a
high number of news clients. An architecture that sep-
arates these two functionalities into a distribution back-
bone and an access infrastructure would provide higher
flexibility and scalability. This separation can be imple-
mented by administrative and management measures [6]
or by a new News infrastructure. In [10] we compared
infrastructures for News and came to the following con-
clusions:

� The access infrastructure should be separated from
the distribution infrastructure using cache servers.
This makes it possible to provide a virtual full feed
over a T1 link (1:5MBit/s) or a slower link.

� Leaf node news servers that are not part of the news
distribution infrastructure can be replaced by cache
servers.

� Servers with a full spool should form a distribution
backbone where news articles are exchanged using
multicast. Distribution of News via multicast is dis-
cussed in [11].

� If all clients were able to retrieve articles from sev-
eral news servers, it would not be necessary for ev-
ery news server to store all newsgroups that users
might want to read.

NEWSCACHE is a cache server implementation intended
to access the News infrastructure. Since it only uses
NNRP, it fits seamlessly into the existing infrastruc-
ture without requiring modifications to existing soft-
ware. Each requested article is stored locally by NEWS-
CACHE to satisfy successive requests without having to
contact the news server again. This eliminates additional
transfers, thus conserving bandwidth; decreases load on
the news server; and reduces disk space requirements
since only articles that actually are accessed need to be
stored. Givenni is the number of accesses andszi is
the size of articlei the reduction in bytes can be approx-
imated as

Reduction =
X

(ni � 1) � szi [Bytes]

This formula represents only the upper bound. An ar-
ticle that has been replaced by another will have to be
requested again, if it is again by a user.

Caching is ideally applicable for News because of the
lack of updates: articles do not change over time; they
can only be added to a newsgroup or expire. This sim-
plifies the application of caching considerably.

3 News Database

Each news server maintains a set of databases that store
articles and newsgroups as well as meta-information. In
the following sections we will explain the purpose of
each database, how they are implemented by various
news servers, and the improvements NEWSCACHE of-
fers for each database. We looked at important and wide-
spread news server implementations, such as the NNTP
reference implementation [12], c-news [13] which is
historically important and still has a large number of
users, and INN [7] [14] which is the news server with
the most installations nowadays. We have also included
NNTPCACHE’s organization of the news database [15]—
another cache server for News that was developed in par-
allel with NEWSCACHE.

3.1 Active Database

The active databasestores a list of all the newsgroups
available on the news server along with the number of
the first article (low watermark), the number of the last
article (high watermark), a posting flag, which indicates
the type of the newsgroup, and the creation times of a
newsgroup. Articles are numbered sequentially within
a newsgroup. Articles posted to different newsgroups,
will have several article numbers (one for each news-
group). The article number is site-specific, depending

on the arrival order and must never be reused within a
newsgroup.

For the news server, the active database is necessary
to calculate the article number(s) of newly arriving ar-
ticles within their newsgroup(s). For the news reader,
it provides an overview of the newsgroups available
from the news server, the date the newsgroup has been
created, and allows the news reader to estimate the
total number of articles (total = hi watermark �

lo watermark + 1) and the number of unread articles
(articles unread = total�articles read) within each
newsgroup.

Traditionally the active database is stored in two files
(active andactive.times). One listing the water-
marks and the moderation status and the other one giv-
ing the creation time of the newsgroups (c-news, INN,
NNTP reference implementation).

NEWSCACHE, however, stores all this information in
one memory mapped database including the number of
articles available in each newsgroup and a timestamp
when a newsgroup has been requested the last time from
the news server.

An advantage of storing the number of articles within
the active database is that articles need not be counted
whenever a newsgroup is selected while still being able
to provide an accurate count of the articles present in the
newsgroup.

NEWSCACHE uses timestamps to synchronize with
its upstream news server. A configurable threshold
value controls the frequency of cache updates (consis-
tency checks) from the server. This is a trade-off be-
tween cache coherence and bandwidth/connections to
the server. A time interval of0 for the update pe-
riod of the database provides a fully coherent view of
the database at the cost of increased connections (band-
width). A bigger value means that articles will be avail-
able to cache users with a slight delay.

As far as we could find out,NNTPCACHE organizes its
active database similar to NEWSCACHE. All the infor-
mation is kept in one memory mapped file.

3.2 Article and Newsgroup Database

The article and newsgroup database stores all the news
articles and maps the articles to the newsgroups which
they have been posted to. Traditionally the newsgroup
hierarchy is mapped onto a directory hierarchy and the
articles are stored in separate files in their newsgroup
directory. If an article is posted to several groups hard
links are used to prevent multiple storing of an article (c-
news, NNTP reference implementation,NNTPCACHE).

INN uses the same format but is able to use soft links
which allows distribution of the News spool over multi-
ple file systems.

However, this approach has some drawbacks due to the
fact that the average size of an article is rather small
(about 2.5KB) [5, 6].

� On filesystems using a limited number of files per
filesystem one can run out of file entries (inodes),
despite enough disk space is available.

� On filesystems with block sizes of1 to 4KB up to
100% of the real data volume can be wasted [5].

� Newsgroups with heavy traffic tend to be bottle-
necks due to a linear lookup of files in the directory
structure.

To overcome the problems of this storage format, the
current version of INN supports two alternatives: the
timehashformat is similar to the traditional format, but
articles are divided into subdirectories based on the ar-
rival timestamp. Thecnfs format uses pre-configured
buffer files of a configurable size for every newsgroup.
Upon reaching the end of the buffer file, new articles are
stored again from the beginning of the file. However, the
disadvantage of this approach is that the article retention
time cannot be controlled since articles get overwritten
automatically when the buffer is full. The installation
manual recommends to use the traditional format. Only
if a full feed has to be maintained,cnfsis recommended.
[14]

Even thoughcnfs seems to be the best choice from a
performance point of view, it cannot be used for a cache
server because the size of the buffer files is fixed and
available file system space cannot be flexibly reallocated
between different newsgroups. Another disadvantage is
that the article retention time cannot be controlled which
is important for caching.

NEWSCACHE in contrast uses a database for each news-
group that stores articles with a size of less than 16KB.
Larger articles are stored in the filesystem to keep the
newsgroup database small and to improve the database’s
caching behavior. The article size threshold is user-
configurable and should be chosen in a way to utilize
the filesystem’s block allocation as efficient as possible
(most filesystems allocate disk space in chunks of2nKB,
wheren is constant).

The advantage of our approach is that it does not suffer
from a limited number of files and the filesystem lookup
is required for big articles (articles bigger than16KB)
only. However, newsgroups with many large articles still
depend on the filesystem’s organization.

Since an article’s unique message identifiers and the per
newsgroup article numbers must not be reused for other
articles, the article itself has a virtually infinite lifetime.
Thus the article itself cannot be changed and thus no
coherency control messages are necessary which makes
the caching of articles efficient and easy.

When an article is submitted to or expired from a news-
group the low and high watermarks of the newsgroup
will change accordingly. This can be easily identified
using NNTP’sgroup command which selects a news-
group and reports the newsgroup’s watermarks.

However, articles can be added to or removed from a
newsgroup not only by submission or expiration but also
via cancellation messages or by article reinstatement
[3, 2]. While the former can be done by every Usenet
user, the latter can only be done by the news server’s ad-
ministrator. Failing to detect article cancellation is only
a minor flaw but failing to detect article reinstatement
has the effect that the user might miss these articles. Re-
instatement of an article conforms to RFC977 [2] but
since it occurs seldomly only few news readers handle it
correctly. Most news readers mark articles not available
on the news server as read which might not be the case
(i.e., tin, xrn, slrn, MS Outlook Express).

NEWSCACHE uses thelistgroup command to ob-
tain a list of all valid article numbers within the current
newsgroup. Based on this list NEWSCACHE can identify
a canceled article (the article exists in the cache but not
on the server) or a reinstated article (the article exists on
the server but not in the cache).

3.3 Overview Database

Theoverview databasestores a short summary for each
article. Using the overview database, a news reader can
provide a faster overview of the articles available in a
newsgroup.

INN stores the overview database for each newsgroup as
a single plain text file. Whenever an article is posted to a
newsgroup, its overview record is appended to this file.
If an article gets deleted or is expired in the newsgroup,
the whole file has to be rewritten.

NNTPCACHE takes the same approach except that the
overview records for one group are split up into sev-
eral files with 512 overview records per file. This is
necessary since otherwise the whole overview database
would have to be rewritten when a new record has to
be inserted at the beginning of the file. This occurs fre-
quently becauseNNTPCACHE has no control of when a
client requests an overview record. Some news read-
ers even request the overview records in reverse order,

to be able to present the newest articles first to the user
while older records are being retrieved (e.g., Netscape).
NNTPCACHEgenerates overview records on the fly if an
article is not available and stores them in the overview
database.

NEWSCACHE always generates overview records for ar-
ticles stored within the newsgroup’s memory mapped
database on the fly. Overview records for other arti-
cles (articles that have not been cached yet or articles
bigger than16KB) are also stored in the newsgroup’s
database. This reduces the disk space necessary for
NEWSCACHE by approximately20%. Additionally, the
overview database has its own memory allocation meth-
ods based on memory mapped files to allow changes
without the need to rewrite the entire file.

A record in the overview database represents a sub-
set of the corresponding article. Thus the same re-
quirements as for the article database account for the
overview database. When a news reader requests an
overview record for a newsgroup, NEWSCACHE imme-
diately prefetches all entries not yet cached since it is the
most frequently used information. Most news readers
will retrieve the overview database of the whole news-
group whenever the newsgroup is selected by the user
(e.g., tin, xrn)

3.4 History Database

The history database stores meta information about arti-
cles and newsgroups. It stores the arrival time and ex-
piration of an article along with its message identifier.
This allows the news server to identify whether an article
is offered again by another news server but has already
been expired on the local server. It stores the creation
and deletion time of newsgroups. The creation time is
necessary to be able to inform news readers of newly
created newsgroups.

Usually, the history database is managed like a log file
(c-news, INN), where new entries are appended at the
end of the file. NEWSCACHE stores the creation times
of the newsgroups within its active database. Storing
the articles’ message identifier is not necessary because
NEWSCACHE does not participate in the distribution of
articles between news servers. It provides an exact im-
age of its upstream news server, thus freeing NEWS-
CACHE from having to identify duplicate articles.

4 Implementation of NewsCache

NEWSCACHE has been designed to be easily extendible
and reusable. For this purpose we implemented a news

server class library that provides an interface to differ-
ent kinds of news databases. The hierarchy is shown in
Figure 1 using the notation presented in [16].

The abstract news server class (NServer) defines the in-
terface that has to be implemented by all the news server
classes and provides a factory method (getgroup())
that lets the user create the news server’s news database.

The local server class (LServer) implements an interface
to a local news database. This class can serve as a base
class for the implementation of a news server trimmed
to the user’s requirements. The remote server class
(RServer) implements an interface to access a database
provided by a news server. It also allows for multiplex-
ing between different news servers on a per newsgroup
basis. The RServer class can be used as the communi-
cation interface to a news server for a new news reader.
The cache server class (CServer) inherits the function-
ality from the LServer and the RServer classes. As a
result, CServer provides an interface to the database of
a news server with the ability to cache messages in the
news database provided by the LServer class.

Each news database is defined by its own interface
(inherited from an abstract class). The access to the
databases is controlled by the news server classes which
means that a reference to the newsgroup databases has
to be requested from the server component before a user
(for NEWSCACHE this is thennrpd class that handles
client requests) of the library can access the newsgroup.

For the databases used by the LServer and CServer
classes, we implemented aNon Volatile Containerclass
library. Instead of using the heap for memory allocation,
the class library provides its own functions for allocat-
ing and freeing memory by using memory mapped files.
Using this memory allocation model we implemented a
set of containers. NVcontainer provides all the meth-
ods necessary for allocating and freeing memory from
the mapped file. This functionality is inherited by all the
subclasses of NVcontainer. At the moment we provide
a list container (NVList), an externally linked hash table
(NVHash), and an array (NVArray). Figure 2 shows the
hierarchy of this library.

Using memory mapped files has several advantages. The
size of the database is not limited by the available virtual
memory. A container’s content need not be written to or
read from the disk explicitly. If the operating system
caches file accesses, this approach has no performance
penalty over the use of main memory. No swap space is
consumed by this container class, since the cached data
will be written back to the file instead of to the oper-
ating system’s swap space. If the database should be
shared by a set of processes, changes are visible to other
processes immediately and no shared memory has to be

NNRPD

Active Databases

ActiveDB

News Servers

NServer Newsgroup

CServer

LServer RServer

VActiveDBNVActiveDB VNewsgroup NVNewsgroup

CNewsgroup

active()
getgroup()
freegroup()

NVHash NVArray

Newsgroup Databases

Class /Abstract Class

Aggregation

Creates

Inheritance

Figure 1: NEWSCACHE’s class hierarchy

Non Volatile Containers

NVArrayNVlist

NVList NVHash

NVActive

NVcontainer

NVNewsgroup

Figure 2: Inheritance hierarchy of theNon Volatile Con-
tainer Classlibrary

allocated. However, memory mapped files also have a
drawback: whenever more memory is necessary than
available, the file has to be resized and remapped to a
possibly different memory location. To reduce the per-
formance penalty of this operation we allocate space in
bigger chunks (64KB at the moment).

For our implementation of the active database, we use
the NVHash container. We use a externally linked hash
table because it is not as complex as a balanced tree and
more efficient as long as the number of elements is pre-
dictable. Since the number of elements can be estimated
a priori for the next few years this is not a big issue.
Currently about 55000 newsgroups exist and up to now
this number doubles every 18 months. Thus a hashtable
with about 20000 entries will be sufficient for the next
two years (about 120000 newsgroups divided by 20000
entries gives between 1 and 6 comparisons per lookup).

Then the size of the hash table should be reconfigured
which takes only a few seconds. Our implementation
stores all information of the active database within the
same database.

For the newsgroup database, each newsgroup uses its
own database to store news articles. Each database is
stored within its own directory. The name of the direc-
tory is derived from the name of the newsgroup (similar
to INN).

Compared to other implementations, we provide a so-
phisticated newsgroup database. Only big articles (arti-
cles bigger than 16KB at the moment) are stored using a
separate file. All other information, be it a small article
or an overview record, are stored in the same database.
This reduces the number of files and keeps related in-
formation together and thus improves caching behavior.
To further reduce disk-space requirements we went one
step beyond and store overview records only for articles
that are stored externally or for articles where only the
overview record has been requested. This performance
penalty (about 20% as we will show in Section 6) is out-
weighed by the disk space reduction, since the overview
database is up to20% of the size of the news database.

4.1 Choice of Replacement Strategy

A key determinant of the performance of cache systems
is the replacement strategy. We have compared the re-
placement strategies applicable to our domain in terms
of the resulting network bandwidth and in their hit rates
respectively. Where meaningful, the replacement strate-
gies were compared on a per article basis and on a per
newsgroup basis (the smallest unit to be removed is an

article or a newsgroup respectively). For the per news-
group replacement strategies it is important to note that
articles will also be removed when they are expired on
the upstream news server. Otherwise the newsgroup will
grow infinitely. A comparison of the strategies is de-
picted in Figure 3 in terms of consumed network band-
width and in Figure 4 in terms of their hit rates. The
replacement strategies have been simulated using access
patterns obtained from NEWSCACHE’s log files (logged
over a 10 days period).

It is interesting to note that a better hit rate does not
necessarily imply less network bandwidth consumption.
For instancebiggest article firsthas nearly always a bet-
ter hit rate thanleast frequently usedbut in some situa-
tions transfers more bytes from its upstream news server.

What we did not expect was that LRU on a per news-
group basis (LRUG) performs better than LRU on a per
article basis (LRUA). We assumed that LRUA has a finer
granularity and thus will perform better. Our interpreta-
tion is that the newsgroup should be seen as a unit and
that an article’s access probability often can be estimated
better by looking at all the articles in the group than by
just looking at one article. Sometimes this generaliza-
tion is not true and the hit rate can degrade even though
the spool size is increased.

We considered the following replacement strategies:

BAF removes the biggest articles first, thus favoring
newsgroups with small articles. This strategy as-
sumes that only a few users read binary news-
groups2 and that those users should be penalized.
This strategy is good when a good hit-rate foror-
dinary News users (users not reading binary news-
groups) should be provided.
However, if many people are reading binary news-
groups, as in our case, the hit rate will be poor.
Thus if the major concern is to reduce the required
network bandwidth BAF does not perform well.

LFUA/LFUG removes the least frequently used arti-
cle (LFUA) or least frequently newsgroup (LFUG)
first. As expected LFUA performs poorly. It favors
older articles that have been read more frequently
and thus have already been read by most users.
LFUG performs considerably better since it takes
the overall interest in the newsgroup into account.
The only problem is that LFU cannot adopt to new
requirements quickly. This seems to be the main
reason why it performs bad on small article spools
and why it oscillates so heavily on small to average

2Newsgroups that mainly distribute programs or other big data like
pictures are usually called binary newsgroups—some people think that
those newsgroups should be banned from Usenet.

sized spool sizes.

LRUA/LRUG removes least recently used articles
(LRUA) or newsgroups (LRUG) first. This strat-
egy assumes that items that have not been accessed
for a long time are no longer of interest. LRUA can
adopt faster to changing requirements than LFUA
because it does not take old accesses into account.
Thus, as we expected the least recently used strat-
egy performs better than LFUA.

LETF removes articles with the least expiration time
first. The drawback of this approach is that it treats
all groups the same and does not take the article’s
access patterns into account. However, it is better
then BAF or LFUA since it takes into account that
older articles are less interesting to Usenet users
and thus are less likely to be accessed in the future.

Initially we used a per newsgroup replacement strategy
because it was the easiest way to implement article re-
placement and imposed the smallest CPU load. Then we
tested a hybrid replacement strategy (LRUA and LRUG
mix) because we assumed that a per article replacement
strategy would perform better. This did not prove true so
we have gone back to LRUG.

5 New and Additional Features

NEWSCACHE’s design rationale is compatibility, scal-
ability, and extendibility. Compatibility with the ex-
isting infrastructure and scalability issues already have
been addressed in previous sections. By extendibility
we mean that we have included new functionality into
NEWSCACHE and its design eases the addition of new
features.

Many news readers can interact with only one news
server, thus tying the user to the server’s newsgroup se-
lection. NEWSCACHE can remedy this situation by its
transparent multiplexingfunctionality: it can simultane-
ously cooperate with a set of news servers and combines
them into one virtual news server for its clients. This
feature can also be utilized for infrastructural improve-
ments: newsgroups can be partitionedamong a set of
news servers and access is done via NEWSCACHE. Done
at an appropriate organizational scale, this can decrease
network bandwidth consumption and I/O load on the
news servers, while users still have access to all news-
groups.

Additionally the multiplexing feature can be used for
the provision oflocal newsgroups. NEWSCACHE can
be setup to multiplex between the newsfeed and a lo-
cal news server that only holds groups of local scope.

35000

40000

45000

50000

55000

60000

0 2 4 6 8 10 12 14 16

by
te

s
tr

an
sf

er
re

d
[M

B
]

spool size [GB]

BAF
LFU

LFUG
LRU

LRUG
LETF

Figure 3: Bandwidth based on replacement strategies with varying spool sizes

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

hi
t r

at
e

[%
]

spool size [GB]

BAF
LFU

LFUG
LRU

LRUG
LETF

Figure 4: Hit rates of replacement strategies with varying spool sizes

Since this functionality requires setting up a local news
server whose functionalities are not exploited in this set-
ting, we plan to include a light-weight news server into
NEWSCACHE for this purpose.

NEWSCACHE also supports access to a virtual fullnews-
feed over limited bandwidth network connections. This
functionality can be combined with aprefetchingstrat-
egy: a set of newsgroups can be retrieved in off-hours
when the network is less loaded and then will be acces-
sible much faster during network peak time. This func-
tionality can also be bestowed to provideoffline news
reading. By using the prefetching functionality news-
groups are in the cache and can then be read offline.
Postings submitted during offline operation are queued
for later submission. However, during offline operation,
NEWSCACHE cannot retrieve articles that have not been
cached. Thus, those articles cannot be presented to the
news reader. Unfortunately, many news readers assume
then that the article has been deleted and marks it as read
and will never present it to the user even if the article
is reinstated by NEWSCACHE when a connection to the
upstream news server is re-established.

6 Evaluation

After developing and implementing NEWSCACHE we
evaluated the success of our design decisions and the va-
lidity of our assumptions about the weaknesses of the
other server’s database organization. We performed the
evaluation in several experimental setups. In the follow-
ing we will present our results that validate our design
decisions. As we will show, however, the results also
indicate that a small performance increase might still be
possible.

Table 1 shows the performance of NEWSCACHE’s News
database compared toNNTPCACHE’s and INN-2.0’s per-
formance. Our test machine was a Pentium 200MHz,
64MB main memory, and 3GB IDE hard disk running
Linux 2.0.35. The cache servers and INN were running
on the same machine since we wanted to know the min-
imal latency involved when retrieving News via each
cache server. It shows that a miss imposes only little
overhead and in the case of a hit NEWSCACHE performs
better than its competitors except for the retrieval of the
active and overview databases where it performs as good
asNNTPCACHE.

Table 2 compares the delay of hits, misses, and direct
connections in a realistic setup. Clients are located on
the same LAN as NEWSCACHE. The LAN is connected
to the news server over a small bandwidth link (i.e.,
56kBit modem line). Table 3 includes a rough calcu-
lation of the performance advantage that will be experi-

enced by users that use NEWSCACHE by combining the
figures in found Table 2 and 3.

Description NEWSCACHE INN
Hit Miss

Active database retrieval 10:1s 120s 110s
Retrieving 1000 articles 27:5s 523s 471s
Overview database of 5
groupsa

40:3s
(41:3s)

373s 331s

Selection of 350 news-
groups

0:7s 43:6s 43:3s

aThe second figure indicates the access time of the overview database
when it is generated on the fly.

Table 2: Accessing News over a slow (56kBit) link with
NEWSCACHE installed locally.

Another interesting thing to note is that the delay of
some operations are masked out compared to Table 1
(i.e., on the fly generation of the overview database) due
to the fact that the client and NEWSCACHE are running
on different machines. Other operations do not profit
from this. We see this as an indication that retrieving
the active database from the server and sending it to the
client can be optimized by interleaving those operations
in a better way.

For a cache not only good performance values but also
good hit rates are viable. Thus, we publicly announced
the availability of NEWSCACHE at our university and
asked people to use and test NEWSCACHE. The hit rates
for this experiment are presented in Table 3. With more
accesses to the cache we expect higher hit rates, espe-
cially when people have to use NEWSCACHE and cannot
access the news server directly. Over a period of 10 days
NEWSCACHE was accessed6350 times from309 hosts.
In total1314 different newsgroups were accessed among
which the top 10 accounted for59% of all accesses. So,
reasonable locality in references to the newsgroups can
be concluded.

total active groups ODBa articles

requests 322934 941 40866 44159 205363
hits 86359 736 3326 10230 42204

27% 78% 8% 23% 21%
perf-gain 18%b 69% 7% 10% 11%

aoverview database.
bweighted average of group selection, active and overview database,

and article retrieval. Other requests have not been considered for this
figure.

Table 3: Hit Statistics (without Prefetching)

Description NEWSCACHE NNTPCACHE INN
Hit Miss Hit Miss

Active database retrieval 3:6s 7:0s 3:6s 8:4s 6:0s
Retrieving 1000 articles 19s 38s 24s 59s 20s
Overview database of 5 groupsa 16:1s (20:8s) 111s 16:1s (128s) 125s 108s
Selection of 350 newsgroups 0:7s 21:8s 5:3s 22:8s 20:6s

aThe second figure indicates the access time of the overview database when it is generated on the fly.

Table 1: Performance of NEWSCACHE

NEWSCACHE has been tested in combination with sev-
eral news readers. Netscape works perfectly with
NEWSCACHE, but we had to optimize thegroup com-
mand, since Netscape issues this command for each
newsgroup to get a better estimation of the number of
articles available within the newsgroups. Gnus, knews,
MS Outlook Express, pine, slrn, tin, XRN also work in
combination with NEWSCACHE. Other news readers
have also been reported to work perfectly in combina-
tion with NEWSCACHE.

The following news servers have been tested in combi-
nation with NEWSCACHE: ANU News (VMS), INN,
MS Internet Services, Netscape Collabra. No problem
has been found so far.

7 Future Work

The active database changes whenever an article is sub-
mitted to a newsgroup or whenever a newsgroup is
added or removed. Article submission and removal
occurs much more frequently than newsgroup addition
or removal. Unfortunately NNTP provides no com-
mand to check which entries of the active database have
been modified since a given time. Only commands for
retrieving the whole active database (list active
[wildmat]) or only the part for newly added news-
groups (newgroups) exist. A wildmatexpression can
be applied to filter newsgroups based on their names.
Thus whenever the active database needs to be updated
the whole active database has to be requested (about
2MB).

Fortunately, the revised NNTP specification [3] is kept
extendible enough to support custom extensions. Ex-
tensions supported by the news server can be re-
trieved using NNTP’sLIST EXTENSIONScommand.
To overcome this problem we propose a slightly
modified list command,list active.modtime
$time [wildmat] , that provides a possibility to re-
trieve entries that have been changed since a given time.
We will analyze the benefits of such a command and pre-

pare a draft for an NNTP extension that defines this com-
mand.

The current implementation of ourNon Volatile Con-
tainer Classlibrary is based on a code inheritance hi-
erarchy. Even though this supports the changing of the
type of container used during runtime it requires a vir-
tual method call whenever the container is accessed. In
future versions we will switch to a design based on tem-
plates similar to the design of STL [17].

At the moment the size of the hash table for the active
database has to be specified when compiling NEWS-
CACHE. This should be a configuration option in
NEWSCACHE’s configuration file. However, this is not
critical and adding this feature should be trivial.

We think that one of the key elements responsible for the
good performance of NEWSCACHE is theNon Volatile
Container Classlibrary. In the future we will try to in-
tegrate this in INN and will evaluate whether INN can
benefit from it.

We plan further analysis and experiments with cache re-
placement policies to find an optimal replacement pol-
icy for News. As our experiments have shown so far
the application of such policies in the setting of News
may yield unexpected results (see Section 4.1) and thus
require further systematic study. News seems to differ
from other cache application areas in a way that assump-
tions from other domains cannot be mapped 1:1 onto
News.

Our measurements for News clients performance gains
have been done indirectly via cache hit rates. While this
provides a good approximation for the overall perfor-
mance gains, it gives only a limited assessment of the
performance gains for a single client. We want to use
instrumented news readers to get such direct measure-
ments. Additionally these results can be related to hit
rates and other performance figures to get a better un-
derstanding of the runtime behavior and access profiles.

The selection process of the articles to be prefetched is
another area of further investigation, i.e. how the infor-

mation that is to be prefetched is chosen. Several sce-
narios seem to be useful besides prefetching based on
the administrator’s preferences: prefetch the newsgroups
with the most user requests (in relation to the article
sizes), thread based prefetching, etc.

8 Related Work

NNTPCACHE is the only system we found so far that is
similar to NEWSCACHE, but no publications about it are
available. The following statements are solely based on
the documentation ofNNTPCACHE’s software distribu-
tion [15] and our tests with it.

NNTPCACHE offers censoring of articles, and forward-
ing of unknown commands. NEWSCACHE currently
does not support these features but on the other hand
offers functionality unknown toNNTPCACHE: prefetch-
ing, offline News reading, andinetd support.

An approach using a server with only a subset of the
theoretically available newsgroups in combination with
a web page where users can request the addition of new
newsgroups available on the news server’s news feed is
explained in [8]. When a user requests a newsgroup via
the web page it is supplied by the news server on the next
day. The author explains that in average only 20% of all
the theoretically available newsgroups are actively being
read. However, this could be solved better using a cache
server. This approach has the advantage that news users
need not request new newsgroups via a web page since
the cache server would offer all available newsgroups
and the newsgroups would be available to the news user
immediately.

Another approach where the News spool is partitioned
among several computers is presented in [6]. While this
cuts down the I/O load on each machine it does not target
the network bandwidth consumption.

9 Conclusion

Despite the fact that consensus exists that caching must
be applied to News in the presence of overloaded net-
works, only few approaches exist to attack this problem.
These approaches alleviate the effects by applying man-
agement policies but do not attack the cause. NEWS-
CACHE, however, attacks this at the access infrastructure
while still being compatible to existing news software.

NEWSCACHE can replace existing leaf node news
servers thus reducing network bandwidth consumptions
and reducing hardware requirements for the provision of
Usenet News since only a fraction of the full News spool

has to be stored while still providing a full feed to news
users. NEWSCACHE can be used to speed up retrieval
of News in environments where only a slow link to the
news server exists. Another advantage of NEWSCACHE

is that it offers news reading functionality only (post-
ings are directly forwarded to the upstream news server)
and needs not allocate resources and computing power
for news distribution. This drastically cuts down on I/O
load.

Even though NEWSCACHE is based on an object-
oriented design whose design is not compromised by
dirty performance hacks, it provides faster access to
news articles than other state of the art news servers
(i.e. INN). This is due to the fact that we did a thor-
ough comparison of the design of the news database in
various other news servers before implementing our own
database.

The news database is based on memory mapped files us-
ing our own memory management. This approach al-
lows us to manipulate persistent complex data structures
as if they were stored on the heap. Other news servers
such as INN might also benefit from this organization.

Another factor that has to be taken into account in the do-
main of caching is the replacement strategy used when
the cache space fills up. We have compared different
replacement strategies that can be employed when the
spool size of the cache server fills up along with an anal-
ysis of the advantages of each. One surprising result was
that when articles need to be replaced, it is better to re-
move older articles on a per newsgroup basis. Our in-
terpretation to this is that the probability that an article
might be accessed can be estimated better by looking at
all the articles in the group than by just looking at one
article.

Additionally, NEWSCACHE makes the life of Usenet ad-
ministrators easier by providing the following new fea-
tures without forcing the administrator to install a news
server with a full newsfeed: provision of local news-
groups, transparent merging of multiple news servers
into one virtual news server, and providing a virtual full
feed over slow links where a full feed would not be pos-
sible.

These factors should make NEWSCACHE popular in the
future. An increasing number of people already use
NEWSCACHE including Internet service providers and
NEWSCACHE is included in the Debian Linux distribu-
tion.

Acknowledgements

Thanks to Mehdi Jazayeri for encouraging us to con-
tinue this work and Michael Gschwind for his help in
the preparation of this article and his comments on ear-
lier drafts.

Availability

NEWSCACHE is available under the terms of the
GNU Public License (GPL) fromhttp://www
.infosys.tuwien.ac.at/NewsCache/ . Addi-
tionally, you can also test the current NEWSCACHE

release by pointing your newsreader to the news
servernewscache.infosys.tuwien.ac.at on
the standardNNTPport (119). NEWSCACHE is also dis-
tributed as a part of the Debian Linux distribution.

References

[1] Chip Salzenberg, Gene Spafford, and Mark
Moraes. What is Usenet? ftp://rtfm.mit.edu
/pub/usenet-by-group/news.admin.misc
/What is Usenet%3F, November 1998.

[2] Brian Kantor and Phil Lapsley. Network News
Transfer Protocol - A proposed standard for the
stream-based transmission of news. RFC977,
February 1986.

[3] Stan Barber. Network News Transport Protocol.
Internet draft, December 1998. draft-ietf-nntpext-
base-07.txt.

[4] Mark Horton and R. Adams. Standard for Inter-
change of USENET Messages. RFC1036, Decem-
ber 1987.

[5] Karl L. Swartz. Forecasting disk resource require-
ments for a Usenet server. InProceedings of the
Seventh System Administration Conference (LISA
’93), pages 195–202. USENIX, November 1993.

[6] Nick Christenson, David Beckemeyer, and Trent
Baker. A scalable news architecture on a single
spool. ;login:, 22(3):41–45, June 1997.

[7] Rich Salz. InternetNews: Usenet Transport for In-
ternet Sites. InProceedings of the Summer 1992
USENIX Conference. USENIX, June 1992.

[8] Martin G. Rathmayer. Realisierung eines Bestell-
systems f¨ur Newsgruppen an der TU Wien.
Pipeline, (23), October 1997.

[9] James Fidell, Dale Ghent, Nathan J. Mehl, Chris
van den Berg, and Stephen Zedalis. Frequently
Asked Questions about the INN (InterNetNews)
NNTP Server. http://www.blank.org/innfaq/.

[10] Thomas Gschwind. A Cache Server for
News. Master’s thesis, Technische Universit¨at
Wien, April 1997. http://www.infosys.tuwien.ac
.at/NewsCache/.

[11] Heiko W. Rupp. A Protocol for the Transmission of
Net News Articles over IP multicast, March 1998.
Internet Draft, draft-rfced-exp-rupp-04.txt.

[12] Stan Barber. NNTP Reference Implemen-
tation. ftp://ftp.academ.com/pub/nntp1.5
/nntp.1.5.12.2.tar.Z, January 1996.

[13] Geoff Collyer and Henry Spencer. News Need
Not Be Slow. InProceedings of the Winter 1987
USENIX Technical Conference, 1987.

[14] Internet Software Consortium. The InterNet-
News NNTP Server. ftp://ftp.isc.org/isc/inn/inn-
2.0.tar.gz, June 1998.

[15] Julian Assange and Luke Bowker.NNTPCache.
http://www.nntpcache.org/.

[16] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns, Elements
of Reusable Object-Oriented Software. Addison-
Wesley, October 1994.

[17] Bjarne Stroustrup.The C++ Programming Lan-
guage. Addison-Wesley, 3rd edition, July 1997.

