
An Implementation Study of a Detection-Based

Adaptive Block Replacement Scheme

Jongmoo Choiy Sam H. Nohz Sang Lyul Miny Yookun Choy

yDepartment of Computer Engineering zDepartment of Computer Engineering

Seoul National University Hong-Ik University

Seoul 151-742, Korea Seoul 121-791, Korea

http://ssrnet.snu.ac.kr/~fchoijm,chog http://www.cs.hongik.ac.kr/~noh

http://archi.snu.ac.kr/~symin

Abstract

In this paper, we propose a new adaptive bu�er
management scheme called DEAR (DEtection
based Adaptive Replacement) that automatically
detects the block reference patterns of applications
and applies di�erent replacement policies to di�er-
ent applications based on the detected reference pat-
tern. The proposed DEAR scheme uses a periodic
process. Detection is made by associating block at-
tribute values such as backward distance and fre-
quency gathered at the (i � 1)-th invocation with
forward distances of blocks referenced between the
(i � 1)-th and i-th invocations. We implemented
the DEAR scheme in FreeBSD 2.2.5 and measured
its performance using several real applications. The
results show that compared with the LRU bu�er
management scheme, the proposed scheme reduces
the number of disk I/Os by up to 51% (with an av-
erage of 23%) and the response time by up to 35%
(with an average of 12%) in the case of single ap-
plication executions. For multiple applications, the
proposed scheme reduces the number of disk I/Os
by up to 20% (with an average of 12%) and the over-
all response time by up to 18% (with an average of
8%).

1 Introduction

The speed gap between processors and disks contin-
ues to increase as VLSI technologies advance at an
enormous rate. This speed gap has resulted in disk
I/O becoming a serious performance bottleneck for
many computer systems [1, 2]. Hence, the role of the

bu�er cache located in main memory and managed
by the operating system is becoming increasingly
important. Judicious use of the bu�er cache can
improve the response time of individual applications
and also the throughput of the system by reducing
the number of disk I/Os. To this end, study of ef-
fective block replacement policies has been the focus
of much research both in the systems and database
areas [3, 4, 5, 6, 7, 8].

There also have been a number of studies on predict-
ing future access for prefetching purposes [9, 10, 11].
They make use of past access history to predict �les
or blocks that are likely to be referenced in the near
future. This prediction information is used to issue
prefetch requests in order to hide disk I/O latency.

Recently, bu�er management schemes based on
user-level hints such as application-controlled
�le caching [12] and informed prefetching and
caching [13] have been proposed. User-level hints
in these schemes provide information about which
blocks are good candidates for replacement, allow-
ing di�erent replacement policies to be applied to
di�erent applications.

However, to obtain user-level hints, users need to ac-
curately understand the characteristics of block ref-
erence patterns of applications. This requires con-
siderable e�ort from users limiting its applicability.
For a sequential reference pattern, a simple heuris-
tic method can be used to detect the pattern and
the MRU replacement policy can be used to improve
the bu�er cache performance [14]. Such hints can
also be obtained by the compiler for implicit I/Os
to manage paged virtual memory [15]. As we will
see later, our proposed approach is complementary

to this approach since our approach is targeted for
explicit I/Os.

In this paper, we propose a new bu�er management
scheme that we call DEAR (DEtection based Adap-
tive Replacement). Without any user intervention,
the DEAR scheme detects the reference pattern of
each application and classi�es the pattern as sequen-
tial, looping, temporally-clustered, or probabilistic.
After the detection, the scheme applies an appro-
priate replacement policy to the application. As
the reference pattern of an application may change
during its execution, the DEAR scheme periodically
detects the reference pattern and applies a di�erent
replacement policy, if necessary.

We implemented the DEAR scheme in FreeBSD
2.2.5 and evaluated its performance with several real
applications. The scheme is implemented at the ker-
nel level without any modi�cation to the system call
interface, so the applications may run as-is. Per-
formance measurements with real applications show
that in the case of single application executions the
DEAR scheme reduces the number of disk I/Os by
up to 51% (with an average of 23%) and the re-
sponse time by up to 35% (with an average of 12%),
compared with the LRU bu�er management scheme
in FreeBSD. For multiple applications, the reduction
in the number of disk I/Os is by up to 20% (with an
average of 12%) while the reduction in the overall
response time is by up to 18% (with an average of
8%).

We also compared the performance of the DEAR
scheme with that of application-controlled �le
caching [12] through trace-driven simulations with
the same set of application traces used in [12]. The
results showed that the DEAR scheme without any
use-level hints performs comparably to application-
controlled �le caching for the traces considered.

The rest of the paper is organized as follows. In
Section 2, we explain the DEAR scheme in detail.
Then, we describe the implementation of the DEAR
scheme in FreeBSD in Section 3. In Section 4, we
evaluate the performance of the DEAR scheme. Fi-
nally, we conclude with a summary and a discussion
of future work in Section 5.

2 The DEAR Scheme

Recent research has shown that most applications
show regular block reference patterns and that these
patterns vary depending on the nature of the appli-
cation. For example, a large class of scienti�c ap-
plications show a looping reference pattern where
blocks are referenced repeatedly with regular in-
tervals [16]. On the other hand, many database
applications show a probabilistic reference pattern
with di�erent probabilities for index blocks and data
blocks [17]. Unix applications tend to show either a
sequential or a temporally-clustered reference pat-
tern [12, 18]. Applications that deal with continu-
ous media generally show a sequential or a looping
reference pattern [19].

From these observations, we classify an application's
reference pattern into one of the following: sequen-
tial, looping, temporally-clustered, or probabilis-
tic reference pattern [20]. In the proposed DEAR
scheme, the detection of an application's reference
pattern is made by associating attributes of blocks
with their forward distances, which are de�ned as
the time intervals between the current time and the
times of the next references. An attribute of a block
can be anything that can be obtained from its past
reference behavior including backward distance, fre-
quency, inter-reference gap (IRG) [6], and k-th back-
ward distance [4]. In this paper, we consider only
two block attribute types: backward distance, which
is the time interval between the current time and the
time of the last reference1, and frequency, which is
the number of past references to the block.

The detection is performed by a monitoring process
that is invoked periodically. At the time of its i-th
invocation (we denote this time by mi), the moni-
toring process calculates the forward distances (as
seen from the standpoint of mi�1) of the blocks ref-
erenced between mi�1 and mi. From the block at-
tribute values of those blocks, also as seen from the
standpoint of mi�1, the monitoring process builds
two ordered lists using those blocks, one according
to backward distance and the other according to
frequency. Each ordered list is divided into a �xed
number of sublists of equal size. Based on the rela-
tionship between the attribute value of each sublist
and the average forward distance of blocks in the
sublist, the block reference pattern of the applica-
tion is deduced.

1In this paper, we assume that the (virtual) time is incre-

mented at each block reference.

mi-1 mi

i-1m

Detect the reference pattern based on
the relationship between the block
attribute values and the forward distance,
both as seen at .

i-2m i-1m

mi

im
Calculate the forward distance of the
blocks referenced between and .

Update the block attributes of the blocks
mi-1

i-1m

Update the block attributes of the blocks
referenced between and .

referenced between and .

Figure 1: Detection process: two-stage pipeline with one-level look-behind.

After the detection, the block attributes of the
blocks referenced betweenmi�1 andmi are updated
for the next detection at mi+1. As shown in Fig-
ure 1, the detection process is essentially a two-stage
pipeline with one-level look-behind since the detec-
tion atmi is made based on the relationship between
the block attribute values and the forward distance
at mi�1.

As an example, consider Figure 2. Assume that the
period of the monitoring process (i.e., detection pe-
riod) is 10 as measured in the number of block refer-
ences made by the associated application. Also as-
sume that between mi�1 = 40 and mi = 50, blocks
b4, b2, b6, b12, b4, b8, b11, b6, b4, and b6 were ref-
erenced in the given order (see Figure 2-(b)). Note
that there are 10 block references since the detec-
tion period is 10. Finally, assume that at mi�1 the
backward distance and frequency of the six distinct
blocks b4, b2, b6, b12, b8, b11 were 15, 12, 25, 4, 20, 9
and 6, 4, 5, 2, 1, 1, respectively (see Figure 2-(a)).
Note that these distinct blocks have forward dis-
tances of 1, 2, 3, 4, 6, 7, respectively as seen atmi�1.
From the information about the block attribute val-
ues and the forward distance as seen at mi�1, at mi

the DEAR scheme constructs two ordered lists, one
according to backward distance and the other ac-
cording to frequency (see Figure 2-(c)). Each list is
divided into a number of sublists of equal size (3 sub-
lists of size 2, in this example). Then various rules
for detecting reference patterns, which are explained
below, are applied to the two lists. In this particular
example, blocks with higher frequency have smaller
forward distance, which allows us to deduce that
the block reference pattern of the given application
follows a probabilistic reference pattern. The detec-
tion rules for all the reference patterns we consider
are as follows:

Sequential Pattern: A sequential reference pat-
tern has the property that all blocks are ref-
erenced one after the other and never ref-
erenced again. In this pattern, the aver-
age forward distance of all the sublists is 1.
Therefore, a reference pattern is sequential
if Avg fd(sublistbd1) = Avg fd(sublistbd2) =

� � � = Avg fd(sublistfr
1
) = Avg fd(sublistfr

2
)

= � � � = 1 where sublistbdi and sublistfri are
the i-th sublist for the backward distance and
frequency block attribute types, respectively,
andAvg fd(sublist) is the average forward dis-
tance of blocks in sublist.

Looping Pattern: A looping reference pattern
has the property that blocks are referenced
repeatedly with a regular interval. In this
pattern, a block with a larger backward dis-
tance has a smaller forward distance. There-
fore, a reference pattern is looping if the fol-
lowing relationship holds: if i < j then
Avg fd(sublistbdi) > Avg fd(sublistbdj).

Temporally-clustered Pattern: A temporally-
clustered reference pattern has the property
that a block referenced more recently will be
referenced sooner in the future. Thus, a
block with a smaller backward distance has
a smaller forward distance. Therefore, a ref-
erence pattern is temporally-clustered if the
following relationship holds: if i < j then
Avg fd(sublistbdi) < Avg fd(sublistbdj).

Probabilistic Pattern: A probabilistic reference
pattern has a non-uniform block reference be-
havior that can be modeled by the Indepen-
dent Reference Model (IRM) [21]. Each block
bi has a stationary probability pi and all blocks
are independently referenced with the associ-
ated probabilities. Under the stationary and
independent condition, the expected forward

average
forward
distance = 5.5

average
forward
distance = 4.5

average
forward
distance = 1.5

average
forward
distance = 6.5

b
2

b
6

b
8

b
6

b
6

b
4

b
4

b
4

b
2

b
4

b
8

b
6

b
8

b
4

b
2

b
6

(a) (b) (c)

i-1
= 40m i

= 50m

frequency : 6

backward

backward

frequency : 4

backward

frequency : 5

backward

frequency : 2

backward

frequency : 1

backward

frequency : 1

distance : 15

distance : 12

distance : 25

distance : 4

distance : 20

distance : 9b

b
8

b

b
6

b
2

b
4

12

11

time

b b
12 11

sublist sublist

backward distance

sublist

sublistsublistsublist

frequency

b

b b

b
11 12

12 11

bd
1

bd
2

bd
3

fr
1

fr
2

fr
3

average
forward

average
forward

distance = 3 distance = 2

Figure 2: Example of block reference pattern detection.

distance of bi is proportional to 1=pi. Thus,
a block with a higher frequency has a smaller
forward distance. Therefore, a reference pat-
tern is probabilistic if the following relation-
ship holds: if i < j then Avg fd(sublistfri) >

Avg fd(sublistfrj).

In the DEAR scheme, di�erent replacement poli-
cies are used for di�erent applications depending on
the detected reference pattern. For the sequential
and looping reference patterns, the MRU replace-
ment policy is used where the block with the small-
est backward distance is always selected for replace-
ment. For the temporally-clustered reference pat-
tern, the LRU replacement policy, which replaces
the block with the largest backward distance, is
used. Finally, for the probabilistic reference pat-
tern, the LFU replacement policy that replaces the
block with the lowest reference frequency is used.

3 Implementation of the DEAR

Scheme in FreeBSD

Figure 3 shows the overall structure of the bu�er
cache manager for the DEAR scheme as imple-
mented in FreeBSD 2.2.5. The DEAR scheme
applies di�erent replacement policies for di�erent
applications. This requires a split of the bu�er

cache management module into two parts, one for
block allocation and the other for block replace-
ment. The module responsible for block allocation
is the System Cache Manager (SCM). There is one
SCM in the system. The module responsible for
block replacement is the Application Cache Man-
ager (ACM). There is one ACM for each applica-
tion. This organization is similar to that proposed
for application-controlled �le caching [12]. Both of
the modules are located in the VFS (Virtual File
System) layer and collaborate with each other for
bu�er allocation and block replacement.

An ACM is allocated to each process when the pro-
cess is forked. When a block is referenced from
the process, the associated ACM is called by the
bread() or bwrite() procedure in the SCM (1) to lo-
cate the information about the referenced block us-
ing a hash table, (2) to update the block attribute
that is changed by the current reference, (3) to place
the block into a linked list that maintains the blocks
referenced in the current detection period, and (4)
to adjust the replacement order according to the
application-speci�c replacement policy. To main-
tain the replacement order, the current implementa-
tion uses the linked list data structure for the LRU
and MRU replacement policies and the heap data
structure for the LFU replacement policy.

After the steps (1)-(4) are performed, a check is
made to see whether the current detection period

.....

1. read()/write()

2. bread()/bwrite()

5. vfs_strategy()

3. getnewbuf()/
brelse()

System Call Interface

Virtual File System

Buffer Cache

4. new_interface

...

Unix File System Network File System Log-structured File System

SCM

ACM

ACM

ACM

Figure 3: Overall structure of the DEAR scheme in
FreeBSD 2.2.5.

is over. If so, the monitoring process explained in
the previous section is invoked to detect the appli-
cation's reference pattern. The detected reference
pattern dictates the replacement policy of the ACM.
If none of the detection conditions previously ex-
plained is satis�ed, the default LRU replacement
policy is used.

The structure of information maintained for
each block by the ACM is <vnode #, block

#, backward distance, frequency, forward

distance, hp, bp, fp, cp>. The pointer hp is
used to place the block into the hash table that is
used to locate the information about the currently
referenced block. The pointers bp and fp are used
to place the block into the ordered lists for the
backward distance and frequency block attribute
types, respectively, which are constructed when the
monitoring process is invoked. Finally, the pointer
cp is used to place the block into the list of blocks
referenced in the current detection period. This
data structure is the main space overhead of the
DEAR scheme.

The main time overhead of the DEAR scheme is
that needed to order the blocks according to each
block attribute value, which has an O(n log n) time
complexity where n is the number of distinct blocks
referenced in the detection period. This operation
is invoked once at the end of each detection period
for each block attribute type. Other time overheads
include those needed to calculate the forward dis-
tance, backward distance, and frequency of blocks
at the end of each detection period, which has a
time complexity of O(n) where n is the number of
distinct blocks referenced in the detection period.

SCM

.....1

ACM ACM

2 ApplicationKApplication

ACM

Application

(2) send a replacement request

using the application-specific block replacement policy
(3) select a victim block

(1) request new buffer space

(5) allocate new buffer space

(4) deallocate buffer space
of the victim block

Figure 4: Interaction between ACM and SCM.

The ACM and SCM interact with each other as de-
picted in Figure 4. When an application misses in
the bu�er cache, the ACM for the application makes
a request to the SCM for additional bu�er space
(step (1) in Figure 4). If the SCM does not have any
free bu�er space, it sends a replacement request to
one of the ACMs (step (2)). This operation is per-
formed in the getnewbuf() procedure in the SCM,
and the selected ACM is the one associated with an
application whose current reference pattern is se-
quential. If there is no such application, the SCM
simply chooses the ACM of the application with the
global LRU block. The selected ACM decides the
victim block to be replaced using its current replace-
ment policy (step (3)) and deallocates its space to
the SCM (step (4)). The SCM allocates this space
to the ACM that requested the space (step (5)).

4 Performance Evaluation

In this section, we present the results of the perfor-
mance evaluation of the DEAR scheme. We �rst
describe the experimental setup. Then, we give
the results of reference pattern detection followed
by the performance measurement results for both
single applications and multiple applications. We
also give results from sensitivity analysis for dif-
ferent cache sizes and detection periods. Finally,
we compare the performance of the DEAR scheme
with that of application-controlled �le caching [12]
through trace-driven simulations with the same set
of application traces used in [12].

Table 1: Characteristics of the applications.

Application Description Input data (MB)

cscope C examination tool C code (9)

glimpse information retrieval tool text �les (50)

sort UNIX sort utility text �les (4.5)

link UNIX link editor object �les (2.5)

cpp C preprocessor C code (11)

gnuplot GNU plotting utility numeric data (8)

postgres1 relational DB system two relations

postgres2 relational DB system four relations

4.1 Experimental Setup

The experiments were conducted with FreeBSD
2.2.5 on a 166MHZ Intel Pentium PC with 64MB
RAM and a 2.1GB Quantum Fireball hard disk.
The applications we used are described below and
are summarized in Table 1.

cscope Cscope is an interactive C-source exami-
nation tool. It creates an index �le named
cscope.out from C sources and answers interac-
tive queries like searching C symbols or �nding
speci�c functions or identi�ers. We used cscope
on kernel sources of roughly 9MB in size and
executed queries that search for �ve literals.

glimpse Glimpse is a text information retrieval
utility. It builds indexes for words and allows
fast searching. Text �les of roughly 50MB in
size were indexed resulting in about 5MB of in-
dexes. A search was done for lines that contain
the keywords multithread, realtime, DSM, con-

tinuous media, and diskspace.

sort Sort is a utility that sorts lines of text �les. A
4.5MB text �le was used as input, and this �le
was sorted numerically using the �rst �eld as
the key.

link Link is the UNIX link-editor. We used this
application to build the FreeBSD kernel from
about 2.5MB of object �les.

cpp Cpp is the GNU C-compatible compiler pre-
processor. The kernel source was used as input
with the size of header �les and C-source �les
of about 1MB and 10MB, respectively.

gnuplot Gnuplot is a command-line driven inter-
active plotting program. Using 8MB raw data,
we plotted three-dimensional plots four times
with di�erent points of view.

postgres1 and postgres2 Postgres is a relational
database system from the University of Cal-
ifornia at Berkeley. PostgresSQL version
6.2 and relations from a scaled-up Wiscon-
sin benchmark such as thoustup and tent-
houstup were used. Postgres1 is a join between
the hundredthoustup and twohundredthoustup
relations while postgres2 is a join among
four relations, namely, �vehundredup, twot-
houstup, twentythoustup, and twohundredt-
houstup. The sizes of �vehundredup, twot-
houstup, twentythoustup, hundredthoustup,
and twohundredthoustup are approximately
50KB, 150KB, 1.5MB, 7.5MB, and 15MB, re-
spectively.

4.2 Detection Results

Figure 5 shows the results of the detection by the
DEAR scheme for the cscope and cpp applications.
In each graph, the x-axis is the virtual time and the
y-axis is the logical block numbers of those refer-
enced at the given time. The detection results are
given at the top of the graph assuming a detection
period of 500 references. For cscope, the DEAR
scheme initially detects a sequential reference pat-
tern but changes its detection to a looping reference
pattern after the sequentially referenced blocks are
re-accessed. This results from cscope always read-
ing the �le cscope.out sequentially whenever it re-
ceives a query about the C source. For cpp, the
DEAR scheme detects a probabilistic reference pat-
tern throughout the execution since as we can see
from the graph, some blocks are more frequently
accessed than others. This reference pattern results
from the characteristic of cpp that header �les are
more frequently referenced than C �les.

Figure 6 shows the detection results of the other
applications. Although the result shows that the
DEAR scheme performs reasonably well for the
other applications, it also reveals the limitation of
the current DEAR scheme, notably for the sort and
postgres2 applications. They have either parallel or
nested reference streams, which indicates a need for
the proposed DEAR scheme to address more general
reference patterns with arbitrary control structures
such as parallel, sequence, and nested.

seq seq loop loop loop loopseq loop loop

Detection Result

prob prob prob prob prob probprob prob prob

Detection Result

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

lo
gi

ca
l b

lo
ck

 n
um

be
r

virtual time

(a) cscope

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

lo
gi

ca
l b

lo
ck

 n
um

be
r

virtual time

(b) cpp

Figure 5: Block reference patterns and detection results for cscope and cpp.

4.3 Performance Measurements: Single
Applications

We compared the performance of each application
under the DEAR scheme with not only that under
the LRU scheme in FreeBSD but also with those
under the LFU and MRU schemes. For this pur-
pose, we implemented the DEAR scheme as well as
the LFU and MRU schemes in FreeBSD. We mea-
sured both the number of disk I/Os and the re-
sponse time of each application for a 6MB bu�er
cache with block size set to 8KB. For the DEAR
scheme, we set the length of the detection period
to 500 and the number of sublists in the ordered
lists to 5 for both the backward distance and fre-
quency block attribute types. The performance of
the DEAR scheme for di�erent cache sizes, di�erent
detection periods, and di�erent numbers of sublists
in the ordered lists is discussed in Section 4.5.

Figure 7 shows the number of disk I/Os and the
response time of the four schemes. The values re-
ported here are the average of three separate exe-
cutions and before each execution, the system was
rebooted. From the results we observe the following:

� The DEAR scheme performs almost as good as
the best of the other three schemes for all the
applications we considered. Also, when com-
pared with the LRU scheme in FreeBSD, the
number of disk I/Os is reduced by up to 51%
(for the cscope application) with an average of
23% and the response time by up to 35% (also

for the cscope application) with an average of
12%.

� For the link application, there is no perfor-
mance di�erence among the four schemes. This
is because the input data to the link applica-
tion is small (2.5MB), and thus all the blocks
reside in the bu�er cache after they are initially
loaded.

� Postgres1 and postgres2 do not show as much
improvement in the response time as that in
the number of disk I/Os when using the DEAR
scheme. This is because of the constant syn-
chronization between the client (the psql utility
that provides the user interface) and the server
(the postgres process that performs the query
processing and database management). For the
gnuplot application, much time was spent for
user mode computation and thus reduction in
the number of disk I/Os also has a limited im-
pact on the response time.

� Except for the above three applications, the ra-
tio between the reduction in the number of disk
I/Os and that in the response time is consis-
tent. This indicates that the DEAR scheme
incurs little extra overhead compared to those
in the other schemes.

The last point is more evident in Figure 8 where
the response time is divided into three components:
I/O stall time, system time, and user time. For
the LRU scheme of FreeBSD, the system time con-
sists of VFS processing time, bu�er cache manage-

Detection Result

seq seq loop loop loop loop loopseqloop

Detection Result

seq seq seq loopundetect loop

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

lo
gi

ca
l b

lo
ck

 n
um

be
r

virtual time

(a) glimpse

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

lo
gi

ca
l b

lo
ck

 n
um

be
r

virtual time

(b) sort

Detection Result

seq seq loop loopseq loop looploop

Detection Result

seq loop loop loop loop looploop

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

lo
gi

ca
l b

lo
ck

 n
um

be
r

virtual time

(c) link

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

lo
gi

ca
l b

lo
ck

 n
um

be
r

virtual time

(d) gnuplot

Detection Result

seq seq loop loop loop loop loop loop loop prob prob

Detection Result

prob seq prob loop prob probprobundetect

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000 10000

lo
gi

ca
l b

lo
ck

 n
um

be
r

virtual time

(e) postgres1

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000

lo
gi

ca
l b

lo
ck

 n
um

be
r

virtual time

(f) postgres2

Figure 6: Block reference patterns and detection results for the other applications.

PP

RPPPRPPP

TPPPTPPP

VPPPVPPP

XPPPXPPP

QPPPPQPPPP

QRPPPQRPPP

QTPPPQTPPP

a�����������a�����������

n
�
�
�
�
�@
�
�@
d
��
�
@i
Oo

�

lrulru

lfulfu

mrumru

deardear

������� ��������Q ��������R@@@��� ������������� @@���� @@����

(a) Number of Disk I/Os

PP

RPRP

TPTP

VPVP

XPXP

QPPQPP

QRPQRP

QTPQTP

QVPQVP

a�����������

r
�
�
�
�
�
�
�
@t
��

�
@H
�
�
�
�
�
�
�
I

lru

lfu

mru

dear

������ @@���� ������� ��������Q ��������R@@@���@@�����������

(b) Response Time

Figure 7: Single application performance.

P

RP

TP

VP

XP

QPP

l
r
u

d
e
a
r

l
r
u

d
e
a
r

l
r
u

d
e
a
r

l
r
u

d
e
a
r

l
r
u

d
e
a
r

l
r
u

d
e
a
r

l
r
u

d
e
a
r

l
r
u

d
e
a
r

a�����������

r
�
�
�
�
�
�
�
@t
��

�
@H
s
�
�
�
�
�
�
I

iOo@�����@����

������@����

����@����

��������R������� ������������� ���� ��������Q�������

Figure 8: Decomposition of response time.

ment time, disk driver processing time, disk inter-
rupt handling time and, data copy time from bu�er
cache to user space. On top of those, the DEAR
scheme requires additional processing time such as
those for sorting blocks according to block attribute
values and maintaining block attribute values and
forward distances. From Figure 8, we can notice
that the system times of the two schemes are com-
parable meaning that the DEAR scheme incurs little
additional overheads.

4.4 Performance Measurements: Multi-
ple Applications

In real systems, multiple applications execute con-
currently competing for limited bu�er space. To
test the DEAR scheme in such an environment, we

ran several combinations of two or more of the ap-
plications with a bu�er cache of 6MB and measured
the total number of disk I/Os and the overall re-
sponse time for both the DEAR scheme and the
LRU scheme in FreeBSD. Again, we set the length
of the detection period to 500 and the number of
sublists in the ordered lists to 5.

The results in Figure 9 show that the number
of disk I/Os is reduced by up to 20% (for the
cscope+sort+link case) with an average of 12% and
the overall response time by up to 18% (for the
glimpse+link case) with an average of 8%.

In the multiple application case, there are two possi-
ble bene�ts from using the proposed DEAR scheme.
The �rst is from applying di�erent replacement poli-
cies to di�erent applications based on their detected
reference patterns. The second is from giving prefer-
ence to blocks that belong to an application with the
sequential reference pattern when a replacement is
needed. To quantify these bene�ts, we performed an
experiment where even the LRU replacement policy
gives preference to blocks belonging to an applica-
tion with the sequential reference pattern, which we
call the LRU-SEQ replacement policy.

Table 2: Performance comparison between the
LRU-SEQ and the DEAR schemes.

Scheme Response Time (seconds)

cs+sort gli+link cs+wc gli+wc

LRU 70.96 89.87 81.27 89.97

LRU-SEQ 70.72 87.24 71.75 86.88

DEAR 66.61 74.29 62.88 82.36

P

RPPP

TPPP

VPPP

XPPP

QPPPP

QRPPP

QTPPP

QVPPP

QXPPP

RPPPP

��K���� ���K���� ���K��Q ���K��R ��K����K���� ���K����K���

a�����������a�����������

n
�
�
�
�
�@
�
�@
d
��
�
@i
Oo

�
n
�
�
�
�
�@
�
�@
d
��
�
@i
Oo

�

lrulru

deardear

(a) Number of Disk I/Os

P

UP

QPP

QUP

RPP

RUP

SPP

��K���� ���K���� ���K��Q ���K��R ��K����K���� ���K����K���

a�����������a�����������

o
�
�
��
��
@r

�
�
�
�
�
�
�
@t
��

�
@H
s
�
�
�
�
�
�
I

o
�
�
��
��
@r

�
�
�
�
�
�
�
@t
��

�
@H
s
�
�
�
�
�
�
I

lrulru

deardear

(b) Overall response time

Figure 9: Multiple application performance.

Table 2 shows the results of the LRU-SEQ scheme
for the 6MB bu�er cache size. In the case of
cscope+sort and glimpse+link, there is little di�er-
ence between the LRU and the LRU-SEQ schemes,
since the reference pattern of the four component
applications is not sequential in the steady state.
Wc is a utility that displays the numbers of lines,
words, and characters in a �le. Its steady state ref-
erence pattern is sequential. Replacing sort and link
with wc, produces a signi�cant di�erence in the re-
sponse time between the LRU and the LRU-SEQ
schemes. This results from the LRU-SEQ scheme
allocating more bu�er space to cscope (or glimpse)
by replacing blocks of the wc application earlier than
the usual LRU order. Still, there is a substantial dif-
ference in the response time between the LRU-SEQ
scheme and the DEAR scheme indicating that the
bene�t from applying di�erent replacement polices
tailored for di�erent applications is signi�cant.

4.5 Sensitivity Analysis

4.5.1 Cache Size

Tables 3 and 4 compare the performance of the
DEAR scheme against the LRU scheme for various
bu�er cache sizes for the single and multiple ap-
plication cases, respectively. The results from the
single application case show that as long as the to-
tal number of distinct blocks accessed by an ap-
plication is greater than the number of blocks in
the bu�er cache, there is a substantial di�erence in
the response time between the DEAR and the LRU

schemes. However, when the number of distinct
blocks of an application is smaller than the num-
ber of blocks in the bu�er cache, all the blocks are
cached in the bu�er cache and the two schemes show
similar performance. The latter behavior is most
visible for the link application that has the small-
est number of distinct blocks (about 310 blocks).
For link, the DEAR and the LRU schemes provide
similar response times.

Table 3: Single application performance for various
bu�er cache sizes.

Application Scheme Response Time (seconds)

2MB 4MB 6MB 8MB

cscope DEAR 16.99 14.90 12.87 11.17

LRU 19.79 19.79 19.77 19.77

glimpse DEAR 39.12 35.68 33.73 32.87

LRU 40.70 39.72 39.55 37.49

sort DEAR 18.16 15.54 13.60 12.10

LRU 18.50 17.45 16.59 14.68

link DEAR 28.19 23.38 23.38 23.38

LRU 29.65 23.35 23.35 23.35

cpp DEAR 132.94 94.42 91.61 91.36

LRU 159.59 97.94 93.39 91.82

gnuplot DEAR 43.54 42.26 41.39 41.19

LRU 44.30 44.30 44.30 44.30

postgres1 DEAR 38.37 36.16 34.22 32.17

LRU 39.72 38.91 38.82 38.76

postgres2 DEAR 74.57 72.51 71.15 68.45

LRU 82.93 74.93 74.75 73.93

For the multiple application case, the case where
the total number of distinct blocks accessed by the
component applications is smaller than the number

Table 5: The e�ect of the detection period on the performance of the DEAR scheme for the single application
case.

Scheme Detection Response Time (seconds)

Period cscope glimpse sort cpp gnuplot postgres1 postgres2

100 12.85 33.70 13.72 98.81 40.92 34.62 76.56

250 12.79 33.68 13.30 91.54 40.93 34.13 72.30

DEAR 500 12.87 33.73 13.60 91.61 41.39 34.22 71.15

1000 13.52 36.26 13.88 91.78 41.66 34.53 72.41

2000 15.20 36.45 15.77 91.99 42.36 34.84 72.53

LRU N/A 19.77 39.55 16.59 93.39 44.30 38.82 74.75

Table 4: Multiple application performance for vari-
ous bu�er cache sizes.

Applications Scheme Response Time (seconds)

4MB 6MB 8MB 10MB

cs+sort DEAR 70.4 66.6 62.9 53.5

LRU 71.5 70.9 69.9 67.3

gli+link DEAR 79.1 74.2 71.6 70.1

LRU 94.5 89.8 79.1 77.9

cpp+ps1 DEAR 222.2 216.7 209.8 202.4

LRU 236.5 229.9 226.6 226.1

gli+ps2 DEAR 145.6 139.8 132.5 128.3

LRU 165.5 155.2 146.7 138.8

cs+sort+link DEAR 116.1 112.7 106.7 101.8

LRU 121.3 118.0 112.8 105.3

gli+sort+cpp DEAR 245.9 235.5 215.8 207.2

LRU 246.3 245.3 225.9 222.9

of blocks in the bu�er cache does not occur and
the DEAR scheme shows consistently better perfor-
mance than the LRU scheme.

4.5.2 Detection Period and the number of

Sublists

Determining the length of the detection period is an
important design issue that requires a trade-o�. If
the detection period is too long, the scheme will not
be adaptive to possible changes of the reference pat-
tern within a detection period. On the other hand,
if the period is too short, the scheme would incur
too much overhead to be practical. Moreover, if the
period is too short, a short burst of references may
mislead the detection. For example, a probabilistic
reference pattern may be mistaken for a looping ref-
erence pattern when a small number of blocks are
repeatedly accessed over two detection periods while
satisfying the detection condition for a looping ref-
erence pattern.

The above trade-o� relationship is evident in Ta-
ble 5 that gives the response time of all but the link
application as the detection period varies from 100
to 2000. We exclude the link application since as
we mentioned earlier all of its blocks �t into the
bu�er cache. Thus di�erent detection periods do
not make any di�erence. For most applications, the
best performance was obtained when the detection
period is either 250 or 500. The results also show
that even with detection periods that are consid-
erably smaller or larger than these optimal values,
the DEAR scheme performs better than the LRU
scheme in FreeBSD. The exceptions are with the cpp
and postgres2 applications when the detection pe-
riod is 100. In the two cases, the performance degra-
dation is considerably larger than the others at the
detection period of 100. A careful inspection of the
results revealed that when the detection period is
100 the DEAR scheme mistakenly detects both ap-
plications to have a looping reference pattern when
in reality it was part of a probabilistic reference pat-
tern. The multiple application case shows a similar
e�ect of the detection period on the performance as
we can see in Table 6.

The number of sublists used in the detection process
can also a�ect the detection results of the DEAR
scheme. Table 7 gives the detection results of the
DEAR scheme as the number of sublists increases
from three to seven. From the results, we can no-
tice that the number of sublists hardly a�ects the
detection results although there is a slight increase
in the number of undetected cases as the number
of sublists increases due to a more strict detection
rule. Remember that to detect a reference pattern
the associated detection rule should be held for all
the sublists.

Table 6: The e�ect of the detection period on the performance of the DEAR scheme for the multiple
application case.

Scheme Detection Response Time (seconds)

Period cs+sort gli+link cpp+ps1 gli+ps2 cs+sort+link gli+sort+cpp

100 66.68 73.54 236.29 144.67 108.86 251.54

250 65.84 73.41 216.62 136.86 108.62 230.61

DEAR 500 66.61 74.29 216.73 139.88 112.73 235.56

1000 67.34 74.99 216.91 139.24 116.30 238.70

2000 68.70 81.69 219.38 139.34 116.84 241.41

LRU N/A 70.96 89.87 229.99 155.27 118.03 245.34

Table 7: The e�ect of the number of sublists on the detection results of the DEAR scheme.

Application Detection Results

Number of sublists = 3 Number of sublists = 5 Number of sublists = 7

cscope seq[3],loop[8] seq[3],loop[8] seq[3],loop[8]

glimpse seq[4],loop[8] seq[4],loop[8] seq[3],loop[9]

sort seq[3],loop[3] seq[3],loop[2],undetect[1] seq[3],loop[2],undetect[1]

link seq[3],loop[5] seq[3],loop[5] seq[3],loop[5]

cpp prob[18] prob[18] prob[13],undetect[5]

gnuplot seq[1],loop[6] seq[1],loop[6] seq[1],loop[6]

postgres1 seq[5],loop[16] seq[5],loop[16] seq[5],loop[16]

postgres2 prob[13],loop[5],seq[2],undetect[1] prob[12],loop[4],seq[2],undetect[3] prob[11],loop[3],seq[2],undetect[5]

4.6 Comparison with Application-
controlled File Caching

To compare the performance of the DEAR scheme
with that of application-controlled �le caching
(ACFC) [12], we performed trace-driven simulations
with the same set of three application traces used
in [12]. The characteristics of the three applications
and their traces can be found in [12]. Figure 10
shows the miss ratio of the three applications for
the LRU, ACFC, DEAR, and OPT (o�-line opti-
mal) schemes when cache size increases from 1MB
to 16MB. The results for the LRU, ACFC, and
OPT schemes were borrowed from [12] and those
for the DEAR scheme were obtained by simulat-
ing the DEAR scheme with detection period equal
to 500 and the number of sublists in the ordered
list equal to 5 for both backward distance and fre-
quency block attribute types. The results show that
the miss ratio of the DEAR scheme is comparable to
that of the ACFC scheme, which utilizes user-level
hints to guide the replacement decisions. The small
di�erence between the two schemes results from the
misses that occur before the DEAR scheme has a
chance to detect the reference pattern.

5 Conclusions and Future Work

In this paper, we proposed a new bu�er manage-
ment scheme called DEAR (DEtection based Adap-
tive Replacement) that automatically detects the
block reference pattern of applications as sequential,
looping, temporally-clustered, or probabilistic with-
out any user intervention. Based on the detected
reference pattern, the proposed DEAR scheme ap-
plies an appropriate replacement policy to each ap-
plication.

We implemented the DEAR scheme in FreeBSD
2.2.5 and measured its performance using several
real applications. The results showed that compared
with the bu�er management scheme in FreeBSD the
proposed scheme reduces the number of disk I/Os
by up to 51% (with an average of 23%) and the re-
sponse time by up to 35% (with an average of 12%)
in the case of single application executions. For mul-
tiple applications, the reduction in the number of
disk I/Os is by up to 20% (with an average of 12%)
while the reduction in the overall response time is
by up to 18% (with an average of 8%).

We also compared the performance of the DEAR
scheme with that of application-controlled �le
caching [12] through trace-driven simulations with

PP

UU

QPQP

QUQU

s���@��@b�����@c����@HmbI

m
��
�
@r

�
��
�
HE

I lrulru

deardear

acfcacfc

optopt

@Q@@@@R@@@@@@@@@T@@@@@@@@@@@@@@@@@@@@@X@@@QV@Q@@@@R@@@@@@@@@T@@@@@@@@@@@@@@@@@@@@@X@@@QV

(a) cscope

PP

QPQP

RPRP

SPSP

TPTP

UPUP

VPVP

s���@��@b�����@c����@HmbI

m
��
�
@r

�
��
�
HE

I lrulru

deardear

acfcacfc

optopt

@Q@@@@R@@@@@@@@@T@@@@@@@@@@@@@@@@@@@@X@@@QV

(b) linking kernel

P

QP

RP

SP

TP

UP

VP

WP

XP

s���@��@b�����@c����@HmbI

m
��
�
@r

�
��
�
@H
E
I

lrulru

deardear

acfcacfc

optopt

@Q@@@@@@R@@@@@@@@@@@@@@@@@T@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@X

(c) Postgres

Figure 10: Comparison with application-controlled
�le caching.

the same set of application traces used in [12]. The
results showed that the DEAR scheme performs
comparably to application-controlled �le caching for
the traces considered.

As we noted in Section 4.2, some applications have
block reference behavior that cannot be character-
ized by a single reference pattern. One direction
for future research is to extend the current DEAR
scheme so that it can detect more complex refer-
ence patterns with parallel, sequence, and nested
structures as well as to develop appropriate replace-
ment policies for them. Another direction for future
research is to study more advanced bu�er alloca-
tion strategies for the DEAR scheme than the sim-
ple strategy explained in Section 3. A good bu�er
allocation strategy for the DEAR scheme should re-
ward more to applications with larger reductions
in the number of disk I/Os while preventing any
one application from monopolizing the bu�er space.
Other directions for future research include apply-
ing the detection capability of the DEAR scheme
to prefetching and considering block attribute types
other than backward distance and frequency.

All the source code for the DEAR scheme and the
applications run for the experiments can be found at
http://ssrnet.snu.ac.kr/~choijm/cache.html.

Acknowledgments

We would like to thank Pei Cao, Edward W. Felten,
and Kai Li for providing us with the traces we used
in the experiments. We also would like to thank
Yoonho Park, our shepherd, for his help in improv-
ing this paper and Donghee Lee for many helpful
discussions. Finally, we would like to thank anony-
mous reviewers for their constructive comments and
suggestions. This work was supported in part by the
Korea Research Foundation for the program year of
1998.

References

[1] A. J. Smith, \Disk cache-miss ratio analysis
and design considerations," ACM Transactions

on Computer Systems, vol. 3, pp. 161{203, Au-
gust 1985.

[2] P. M. Chen, E. K. Lee, G. A. Gibson, R. H.
Katz, and D. A. Patterson, \RAID: High-
Performance, Reliable Secondary Storage,"
ACM Computing Surveys, vol. 26, pp. 145{182,
June 1994.

[3] J. T. Robinson and M. V. Devarakonda, \Data
Cache Management Using Frequency-Based
Replacement," in Proceedings of the 1990 ACM
SIGMETRICS Conference, pp. 134{142, 1990.

[4] E. J. O'Neil, P. E. O'Neil, and G. Weikum,
\The LRU-K Page Replacement Algorithm for
Database Disk Bu�ering," in Proceedings of the
1993 ACM SIGMOD Conference, pp. 297{306,
1993.

[5] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L.
Min, Y. Cho, and C. S. Kim, \On the Exis-
tence of a Spectrum of Policies that subsumes
the Least Recently Used (LRU) and Least Fre-
quently Used (LFU) Policies." To appear in
the Proceedings of the ACM SIGMETRICS'99,
1999.

[6] V. Phalke and B. Gopinath, \An Inter-
Reference Gap Model for Temporal Locality in
Program Behavior," in Proceedings of the 1995

ACM SIGMETRICS Conference, pp. 291{300,
1995.

[7] A. Dan and D. Sitaram, \A Generalized Inter-
val Caching Policy for Mixed Interactive and
Long Video Workloads," in Proceedings of Mul-

timedia Computing and Networking(MMCN)

Conference, pp. 344{351, 1996.

[8] C. Faloutsos, R. Ng, and T. Sellis, \Flexible
and Adaptable Bu�er Management Techniques
for Database Management Systems," IEEE

Transactions on Computers, vol. 44, pp. 546{
560, April 1995.

[9] K. M. Curewitz, P. Krishnan, and J. S. Vit-
ter, \Practical Prefetching via Data Compres-
sion," in Proceedings of the 1993 ACM SIG-

MOD Conference, pp. 257{266, 1993.

[10] J. Gri�oen and R. Appleton, \Reducing File
System Latency using a Predictive Approach,"
in Proceedings of the 1994 Summer USENIX

Conference, pp. 197{207, 1994.

[11] T. M. Kroeger and D. D. E. Long, \Predicting
File System Action from Prior Events," in Pro-

ceedings of the 1996 Annual USENIX Technical

Conference, pp. 319{328, 1996.

[12] P. Cao, E. W. Felten, and K. Li, \Application-
Controlled File Caching Policies," in Proceed-

ings of the USENIX Summer 1994 Technical

Conference, pp. 171{182, 1994.

[13] R. H. Patterson, G. A. Gibson, E. Gint-
ing, D. Stodolsky, and J. Zelenka, \Informed
Prefetching and Caching," in Proceedings of the
15th Symposium on Operating System Princi-

ples, pp. 1{16, 1995.

[14] G. Glass and P. Cao, \Adaptive Page Replace-
ment Based on Memory Reference Behavior,"
in Proceedings of the 1997 ACM SIGMETRICS

Conference, pp. 115{126, 1997.

[15] T. C. Mowry, A. K. Demke, and O. Krieger,
\Automatic Compiler-Inserted I/O Prefetching
for Out-of-Core Applications," in Proceedings

of the Second USENIX Symposium on Operat-

ing Systems Design and Implementation, pp. 3{
17, 1996.

[16] B. K. Pasquale and G. C. Polyzos, \A Static
Analysis of I/O Characteristics of Scienti�c Ap-
plications in a Production Workload," in Pro-

ceedings of Supercomputing '93, pp. 388{397,
1993.

[17] A. Dan, P. S. Yu, and J.-Y. Chung, \Character-
ization of Database Access Pattern for Analytic
Prediction of Bu�er Hit Probability," VLDB

Journal, vol. 4, pp. 127{154, January 1995.

[18] M. G. Baker, J. H. Hartman, M. D. Kupfer,
K. W. Shirri�, and J. K. Ousterhout, \Mea-
surements of a Distributed File System," in
Proceedings of the 13th Symposium on Oper-

ating System Principles, pp. 198{212, 1991.

[19] P. J. Shenoy, P. Goyal, S. S. Rao, and H. M.
Vin, \Design and Implementation of Sym-
phony: An Integrated Multimedia File Sys-
tem," in Proceedings of ACM/SPIE Multime-

dia Computing and Networking(MMCN) Con-

ference, pp. 124{138, 1998.

[20] J. Choi, S. H. Noh, S. L. Min, and Y. Cho,
\An Adaptive Block Management Scheme Us-
ing On-Line Detection of Block Reference Pat-
terns," in Proceeding of the Fourth IEEE Inter-

national Workshop on Multi-Media Database

Management Systems, pp. 172{179, 1998.

[21] E. G. Co�man and P. J. Denning, Operating
Systems Theory. Englewood Cli�s, New Jersey:
Prentice-Hall, 1973.

