
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the USENIX Annual Technical Conference
Monterey, California, USA, June 6-11, 1999

The Region Trap Library: Handling Traps on
Application-Defined Regions of Memory

_

_

Tim Brecht
University of Waterloo

Harjinder Sandhu
York University

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

The Region Trap Library: Handling Traps on
Application-Defined Regions of Memory

Tim Brecht
Department of Computer Science

University of Waterloo, Waterloo, ON Canada
brecht@cs.uwaterloo.ca

Harjinder Sandhu
Department of Computer Science

York University, Toronto, ON Canada
hsandhu@cs.yorku.ca

Abstract

User-level virtual memory (VM) primitives are used in
many different application domains including distributed
shared memory, persistent objects, garbage collection,
and checkpointing. Unfortunately, VM primitives only
allow traps to be handled at the granularity of fixed-
sized pages defined by the operating system and archi-
tecture. In many cases, this results in a size mismatch
between pages and application-defined objects that can
lead to a significant loss in performance. In this paper
we describe the design and implementation of a library
that provides, at the granularity of application-defined re-
gions, the same set of services that are commonly avail-
able at a page-granularity using VM primitives. Applica-
tions that employ the interface of this library, called the
Region Trap Library (RTL), can create and use multiple
objects with different levels of protection (i.e., invalid,
read-only, or read-write) that reside on the same virtual
memory page and trap only on read/write references to
objects in an invalid state or write references to objects
in a read-only state. All other references to these objects
proceed at hardware speeds.

Benchmarks of an implementation on five different
OS/architecture combinations are presented along with
a case study using region trapping within a distributed
shared memory (DSM) system, to implement a region-
based version of the lazy release consistency (LRC) co-
herence protocol. Together, the benchmark results and
the DSM case study suggest that region trapping mech-
anisms provide a feasible region-granularity alternative
for application domains that commonly rely on page-
based virtual memory primitives.

1 Introduction

Modern operating systems typically export to the user-
level the ability to manipulate the protection levels of
virtual memory pages and to handle traps to those pages

from within an application. Although originally intended
for user-level virtual memory management, these mech-
anisms have been used in many application domains
beyond those for which they were originally designed,
including distributed shared memory, persistent stores,
garbage collection and checkpointing. Unfortunately,
pages are often the wrong unit for data management,
since their size is fixed by the operating system and ar-
chitecture and this size usually has little in common with
the size of variable-length data objects defined within an
application. When multiple data objects with different
access patterns occupy the same virtual memory page, a
trap to one object on the page may adversely affect the
state of any other object on the same page. Conversely,
for data objects that cross page-boundaries, traps must
typically be handled one page at a time and may incur
greater overhead than necessary.

A variety of mechanisms have been proposed for man-
aging data at finer granularity or at a granularity de-
fined by the application. There has been much research,
for example, on the use of software checks, inserted by
the compiler prior to memory references, to determine
the status of persistent objects in a persistent store (e.g.,
White [26] and Moss [18]). Some systems have also
used software checks to implement fine-grained shar-
ing or write collection in a distributed shared memory
(DSM) system e.g., Shasta [22], Blizzard-S [23], and
Midway [6]). Although the trade-offs between incurring
a small software check overhead on common memory
references versus a large overhead on traps (which are
much less common) have been studied from an efficiency
point of view (Hosking and Moss [10], Zekauskas et al.
[28], Thekkath and Levy [25]), one of the advantages of
VM trap handling mechanisms seems to be their avail-
ability on most modern operating systems and architec-
tures. Other object-based DSM systems have explored
the use of program-level constructs to explicitly inform
the system when shared objects are referenced (e.g., Orca
[5], Amber [9], Midway [6] and CRL [13]). Although

these systems avoid the need for both software checks
and traps, they also impose a more restrictive program-
ming model on the user.

In this paper, we present the design of mechanisms
for providing, at the granularity of application-defined
regions of memory, the same set of services that are com-
monly available at a page-granularity using virtual mem-
ory primitives. These mechanisms, implemented as a C
library called the Region Trap Library (RTL), use a com-
bination of pointer swizzling and virtual memory protec-
tion to provide a portable set of primitives for manipulat-
ing protection levels to regions and for handling traps to
regions from within an application domain (and they do
not depend on features of a particular programming lan-
guage). Thus, for example, if three regions A, B, and C
use the RTL interface and occupy the same virtual mem-
ory page, and A is in an invalid state, B is in a read-only
state, and C is in a read-write state, the RTL mechanisms
will generate a trap on a read or write reference to A or a
write reference to B, but allow read/write references to C
and read references to B to proceed at hardware speeds.
The RTL mechanisms also allow an application domain
to map the same region at different protection levels for
different threads within the same address space, and to
determine both the set of regions that have been modi-
fied since a previous check and the set of modified ad-
dresses within those regions. Together, these services
form a superset of those commonly offered by the operat-
ing system through VM primitives at a page-granularity
and listed by Appel and Li in their paper discussing the
requirements of application domains that make use of
VM primitives [4].

One of the main contributions of the mechanisms de-
scribed in this paper is that they are general purpose
(i.e., they can be used in different application domains
and languages) and they can be ported to many differ-
ent modern architectures and operating systems. While
earlier papers have discussed the use of pointer swiz-
zling for object faulting [10][25], to our knowledge
pointer and register swizzling have been implemented
previously only within an interpreted Smalltalk environ-
ment and specifically for persistent storage [10]. Ear-
lier systems have also not considered the problem of
providing more than one level of protection using these
techniques, or the problem of providing a solution that
can work across different architectures or in applica-
tion domains other than persistent storage and garbage
collection. We have currently implemented the RTL
mechanisms on several operating system/architecture
combinations: Solaris/MicroSparc, Solaris/UltraSparc,
IRIX/R4400, AIX/PowerPC, and LINUX/Pentium, and
explored their use within a distributed shared memory
system. We present some of the issues involved in the
design and implementation of these mechanisms on dif-

ferent systems and the overhead incurred by these mech-
anisms on each of these different systems. We also de-
scribe the implementation and use of these mechanisms
for a region-based version of the lazy release consistency
protocol within the TreadMarks DSM system. In the
DSM case study, we find that the overhead estimates for
region trapping account for less than 1% of the parallel
execution time in five of the six applications examined,
and 6% in the other application. The use of regions rather
than pages for sharing data also leads to significant im-
provements (up to 41%) in performance for the applica-
tions used in this study.

An overview of this paper follows. Section 2 presents
some of the background and related work for the ideas
presented in this paper. Section 3 describes the design
and implementation of the Region Trap Library. Section
4 presents the results of some micro-benchmarks that
compare the overhead of region trapping mechanisms to
page-based VM primitives. Section 5 presents our case
study using region trapping within a DSM environment.
In Section 6 we discuss the potential and limitations of
our approach and present our conclusions in Section 7.

2 Background and Related Work

Our goal in this paper is to explore the design and imple-
mentation of mechanisms for modern architectures and
modern operating systems that offer the same set of ser-
vices typically provided through virtual memory primi-
tives, but at the granularity of user-defined regions. Ap-
pel and Li, in their paper on virtual memory (VM) prim-
itives for user applications, list the set of services com-
monly required by applications that make use of these
VM primitives [4]. These services, generalized to in-
clude region-based primitives in addition to VM primi-
tives, are shown in Table 1. These services are available
in some form or another on virtually all modern archi-
tectures but only at a page-granularity. Some very early
architectures (e.g., the Burroughs 6000 series of comput-
ers [16]) once provided non-page granularity support for
handling traps and managing data from user applications,
but such support is not available on any modern architec-
tures.

The mechanisms we propose use pointer swizzling for
region trap handling. Pointer swizzling has been used
previously in persistent object and garbage collection
systems. In a persistent object system, pointers to ob-
jects may have different representations when they reside
on disk than when they reside in memory, and pointer
swizzling is used to update the values of pointers when
objects are brought into memory or written out to disk.
Most implementations use either software checks to de-
tect references to invalid objects (see White [26] for a
review) or VM page trapping mechanisms to fault ob-

Primitive Description

TRAP handle traps to fpage,regiong in user handler
PROT1 decrease accessibility of a fpage,regiong
PROTN decrease accessibility of N fpages,regionsg
UNPROT increase accessibility of a fpage,regiong
DIRTY return the list of dirty fpages,regionsg
MAP2 map physical fpage,regiong at two different

addresses at different protection levels,
in the same address space

Table 1: Description of services typically required of ap-
plications using page-based VM primitives, and analo-
gous region-based RTL services.

jects into memory at a page-granularity (e.g., Texas [24]
and Objectstore [15]).

Hosking and Moss [10] implemented a technique
called object faulting within an interpreted Smalltalk en-
vironment. In their strategy, pointers to a persistent ob-
ject are swizzled to refer to a fault block that lies on a
protected page. This fault block acts as a stand in for
the object when it is not in memory. A reference to the
object generates a trap, and the object is faulted in to
memory. In this scheme, references to the object once
it is brought into memory are indirect, unless, as sug-
gested by Hosking and Moss, a garbage collection sys-
tem is used that can recognize these indirect references
and convert them to direct references. Although this
strategy provides some advantages over persistent object
systems that use page-granularity trapping mechanisms
or software checks prior to each memory reference, its
implementation is language dependent and it makes ex-
tensive use of virtual method invocation and built-in indi-
rect references to objects within an interpreted Smalltalk
environment.

Thekkath et al. describe the use of unaligned access
traps for object faulting [25]. Unaligned access traps
are generated by some architectures on memory refer-
ences to data that should to be word aligned but is not.
This mechanism was used for fast synchronization in
the APRIL processor [2]. Using this approach for ob-
ject faulting, pointers to an object would be swizzled so
that they are unaligned, and a subsequent dereference to
the pointer would generate an unaligned access trap that
could be handled by the application. However, this strat-
egy, while providing a language independent solution to
object granularity trap handling, cannot be used on archi-
tectures that do not support unaligned access traps (e.g.,
the PowerPC architecture), and will only work in lim-
ited cases on architectures that support unaligned traps
for some memory reference instructions but byte level
accesses for others (e.g., the SPARC architecture).

The mechanisms we describe in this paper are similar
in some respects to these latter two strategies, but are de-

signed to provide greater functionality using mechanisms
that do not depend on features of a particular program-
ming language, and in an architecturally portable fash-
ion. Many applications that use page-based virtual mem-
ory primitives require the ability to trap on read/write
references to inaccessible pages or on write references
to read-only pages. However, the use of unaligned ac-
cess traps, as well the strategy proposed by Hosking and
Moss, provide only the ability to trap on inaccessible ob-
jects. One level of protection may be sufficient in the
context in which these earlier strategies have been pro-
posed (to fault objects into memory), but they do not suf-
fice in many other contexts. This includes checkpointing
applications, where the system has to be able to detect
write operations to objects that are either in a read-only
or invalid state, or in the implementation of coherence
protocols within a distributed shared memory system,
where the system typically needs to be able to obtain up-
dates to an object on read references in an invalid state
and to mark changes to the object on write references in
the invalid or read-only state.

3 The Region Trap Library

In this section, we describe the design and implemen-
tation of the Region Trap Library (RTL). We begin by
describing the interface to the RTL.

3.1 RTL Interface

Applications that use the RTL must identify the ar-
eas of memory that are to be managed as regions, the
set of pointers that are used to reference regions, and
a handler function that will be invoked when a region
trap occurs. A variety of primitives are provided for
specifying each. To identify regions, an application may
use a memory allocator called region alloc(size)
to both allocate and define a region, or define a pre-
viously allocated range of memory as a region using
region define(addr, size). An additional pa-
rameter may be provided to these functions that identi-
fies a pointer that will be used to reference that region.
A region pointer identified in this way is referred to as
a bounded region pointer, since it can only be used to
refer to the specified region. Additional bounded point-
ers to the same region can be specified using a primitive
called region bptr(&ptr1, &ptr2), which indi-
cates that ptr2 will be used to refer to the same region
as ptr1. Unbounded region pointers, those that may
refer to any region, can be specified using a primitive
called region ptr(&ptr). Region pointers can be
destroyed using a call to region ptr free(&ptr).
The region ptr and region ptr free calls are
used to maintain a list of pointers associated with each

Page-based trapping RTL region trapping with a RTL region trapping with an RTL region trapping with
using VM primitives bounded region pointer unbounded region pointer C++ pointer declaration
char *x; char *x; char *x; region ptr<char *> x;
struct sigaction s1,s2;
...
x = valloc(N); x = region alloc(N,&x); x = region alloc(N); x = region alloc(N);
...
s1.sa handler = page handler; region ptr(&x);
sigaction(SIGSEGV,&s1,&s2); region handler(x,reg handler); region handler(x,reg handler); region handler(x,reg handler);
mprotect(x,N,PROT READ); region protect(x,PROT READ); region protect(x,PROT READ); region protect(x,PROT READ);
...
a = x[0]; /* no trap */ a = x[0]; /* no trap */ a = x[0]; /* no trap */ a = x[0]; /* no trap */
x[1] = 1; /* trap */ x[1] = 1; /* trap */ x[1] = 1; /* trap */ x[1] = 1; /* trap */
x[2] = 2; /* no trap */ x[2] = 2; /* no trap */ x[2] = 2; /* no trap */ x[2] = 2; /* no trap */

Table 2: Example of how regions are defined in the RTL using both the C and C++-style declaration of region pointers,
and compared to the analogous code using page-based virtual memory mechanisms.

Trap handler for virtual memory primitives Trap handler for region trapping library
page handler(signal-context) reg handler(region-trap-context)
f f

char *addr = faulting address(); char *addr = faulting address();
... ...

if (is a write fault) if (is a write fault)
mprotect(addr,page size,PROT READ|PROT WRITE); region protect(addr,PROT READ|PROT WRITE);

else else
mprotect(addr,page size,PROT READ); region protect(addr,PROT READ);

g g

Table 3: Skeletons of trap handler functions contrasting the way traps are handled using virtual memory primitives
and the region trapping mechanisms.

region. Later, when protection levels are changed for a
region each of these pointers will be swizzled by the RTL
(see Section 3.2 for further details).

All calls to allocate or define regions, or to modify pro-
tection levels, update the region pointers that are declared
by the user to reference that particular region. Region
pointers can be used in the same way as other C pointers
including the ability to use offsets within a region and to
manipulate pointers using pointer arithmetic. The only
restriction is that pointers not explicitly identified to the
RTL should not be used to reference regions allocated or
defined by the RTL.

The region handler function, potentially a differ-
ent one for each region, can be provided as an ad-
ditional parameter when the region is defined, or it
may be specified separately using a primitive called
region handler. Region protection levels are set
using a function called region protect. Protec-
tion levels are specified as they are for the VM prim-
itive mprotect, as PROT NONE (to trap on any sub-
sequent reference to this region), PROT READ (to trap
only on subsequent write references to this region), and
PROT READ|PROT WRITE (to enable all read or write ref-
erences to this region).

These C functions present a low-level interface that is
intended to mimic corresponding page-based VM prim-
itives whenever possible. Table 2 shows how VM prim-
itives (column 1) and RTL primitives using this C inter-
face (columns 2 and 3) are used for handling traps, to vir-
tual memory pages in the former case and for regions in
the latter case. Table 3 shows the skeleton of analogous
application trap handler functions for both the VM and
region trapping cases. While the use of C as an interface
permits this library to be used in virtually any language
environment, the semantics of C are such that a program-
mer using this interface directly would have to exercise
some discipline in the way regions and region pointers
are defined and used. For instance, there is no way in C to
indicate to the RTL when a pointer is declared that it will
be used to refer to regions, and to automatically inform
the RTL library that a pointer is no longer being used
to refer to regions when the scope within which it was
declared has ended. This necessitates the use of the rou-
tines region ptr (and region ptr free for point-
ers that are not declared globally) when using the C in-
terface directly.

Within specific languages and application domains,
higher-level interfaces can be built that provide more el-

egant ways to define regions, region pointers, and trap
handlers. In C++, for example, the template facility pro-
vides a means to simplify the way in which region point-
ers are allocated and deallocated from the RTL, through
a region pointer wrapper class as shown in column 4
of Table 2. Using C++ templates, the declaration of
a region pointer as region ptr<type *> is suffi-
cient both as a declaration of the pointer and an indi-
cation to the RTL that this pointer will be used to re-
fer to regions. Calls to the RTL functions region ptr
and region ptr free are made automatically from
within the constructor and destructor for this pointer
class. The access operators for these wrapper classes are
overloaded so that references to a pointer declared in this
way are statically replaced by the compiler with direct
pointer references.

3.2 Implementing Protection Levels

Within the RTL, three separate memory areas are
maintained, an invalid area, a read-only area, and a read-
write area. The invalid area does not occupy any phys-
ical memory and may in fact be outside of the address
space of the process (e.g., in the kernel’s address space).
The other two areas are each composed of a set of vir-
tual memory pages that are mapped into the user address
space. In the read-only area, all pages are mapped read-
only, and in the read-write area, all pages are mapped
read-write. Space is allocated to a specific region in each
of these areas on demand and according to the protec-
tion levels that are used for that region. When region
protection for a particular region is set to x (where x is
invalid, read-only, or read-write), pointers to that region
are swizzled so that they refer to the copy of the region
occupying pages in the area mapped to protection level
x. This strategy is illustrated in Figure 1.

If a region is currently in an invalid state, pointers to
that region point to an area within the invalid space re-
served for that region (Figure 1(a)), and a reference to
that region through any of these pointers will generate a
trap. If a region is currently in a read-only state, point-
ers to that region refer to the copy of the region in the
read-only area (Figure 1(b)), and only write references
to that region will generate a trap. Finally, if a region is
in a read/write state (Figure 1(c)), pointers to that region
are swizzled to point to a space reserved for that region
in the read/write area, so that all references to that region
can proceed without a trap. In this way, a lower protec-
tion level for one region will not result in unnecessary
traps to another region occupying the same set of virtual
memory pages, since the pointers to each respective re-
gion will simply point to different areas. Mapping the
same region at two different protection levels within the
same address space can be done by declaring two differ-

ent sets of pointers to the same region but with different
protection levels.

3.3 Region Trap Handling

When a region trap occurs, the RTL goes through the
following sequence of steps:

� Determine the region to which the faulting address
belongs, the region pointer(s) that refer to this re-
gion, and the application’s trap handler for that re-
gion.

� If the protection level is being changed within the
region trap handler, decode the faulting instruction
and then swizzle both the register containing the
faulting address and pointer(s) in memory referring
to the faulting region. Recall that the pointers re-
ferring to each region have been identified using
region ptr or region bptr calls.

Our prototype implementation of the RTL uses a bi-
nary search to locate region addresses stored within an
AVL tree. Although faster implementations of region
lookup are possible, this approach provides adequate
lookup times for the applications on which we have con-
ducted experiments. Once the region is located, the trap
handler specified by the application for that region is in-
voked. Region pointers bound to this region and the ad-
dress of the application’s handler function for this region
are stored within the nodes of this tree and thus require
no additional effort to locate. Unbounded region point-
ers, if any have been declared, must be searched sepa-
rately to see if any refer to this region. It is the responsi-
bility of the application’s trap handler to determine how
to handle a region trap and to indicate to the RTL what
state the region should be mapped to prior to returning
from the handler (as in Table 3).

When region protect is invoked from the appli-
cation’s handler, the register and all pointers known to
be referring to the region (as specified as parameters to
region alloc, region define, region ptr, or
region bptr) are swizzled. Swizzling the register
containing the faulting address requires first decoding the
instruction that generated the fault in order to determine
which register requires swizzling, and then modifying
that register. Region pointers may point to any address
within a region. Consequently, when pointers or regis-
ters are swizzled from one memory area to another, their
offset from the start of the region in those respective ar-
eas must be preserved (this is what permits offsets and
pointer arithmetic to be used).

A key concern with the efficiency of this strategy
arises from the fact that some transitions to the read-only
state for a region require updating the read-only copy of

kRegion is read-onlyRegion is invaildk kRegion is read-write

kernel
space

pointer
region

user
space

read-only
pages

kernel
space

pointer
region

kregion

user
space

region k

read-write
pages

read-only
pages

kernel
space

pointer
region

k

k

region

region

user
space

region kregion k

(a) (b) (c)

Figure 1: Setting region protection levels by swizzling region pointers between three areas: invalid, read-only, and
read-write. On architectures with a large kernel address space (e.g., MIPS), the invalid area is mapped to kernel space.
On other architectures, the invalid area is mapped to user space but does not occupy physical memory.

the region, in order to maintain consistency. In particu-
lar, on transitions directly from the read-write state to the
read-only state, or transitions from the read-write state
to the invalid state and then to the read-only state, this
update must be performed. Further, the pages occupied
by the read-only copy of the region are themselves in a
read-only state, and they must first be unprotected (using
mprotect) prior to beginning the update, and then re-
protected once the update is complete. The performance
implications of this read-only copy update are considered
in the benchmarks of Section 4. Regions that transition
only between read/write and invalid states or read-only
and invalid states do not incur this overhead.

The allocation of the region in two areas of memory,
a read-only area and a read-write area, facilitates an ad-
ditional service that many applications can make use of
which is often referred to as a diff. Using this service, an
application may, at any point during execution, query the
RTL to determine the set of memory locations in a re-
gion that have been modified since a previous write trap
or checkpoint operation. Many distributed shared mem-
ory systems and checkpointing applications, for exam-
ple, implement such a service at a page-granularity. The
region-based distributed shared memory implementation
within Treadmarks, described in Section 5 also exploits
this service, replacing Treadmarks’ existing page-based
diff mechanisms with region-based diff mechanisms.

3.4 Implementation Issues

The RTL has currently been implemented on the Mi-
croSparc and UltraSparc architectures, both running So-

laris, the SGI MIPS R4400 architecture running IRIX,
the IBM RS/6000 architecture running AIX, and the Pen-
tium architecture running LINUX. Some of the issues
involved in implementing these strategies on various ar-
chitectures, and in particular, some of the requirements
from the operating system, architecture, and compiler for
an implementation of region trap handling on these and
other platforms are discussed in this subsection.

Architectural requirements

Setting region protection levels to invalid requires the
ability to swizzle pointers to an area that is guaranteed to
generate a trap. The MIPS architecture, one of the four
architectures on which we have currently implemented
the RTL, makes this particularly easy. On the MIPS, ad-
dresses with the high order bit set refer to kernel space
addresses, and the region trapping implementation can
take advantage of this by swizzling this high order bit on
pointers to regions in an invalid state. On the other archi-
tectures, our implementation creates an additional area
within a processes’ address space that is mapped as in-
accessible and never occupies physical memory. Invalid
regions are mapped to this area. These two approaches
for mapping the invalid area behave the same and use the
same amount of physical memory, but the latter solution
potentially occupies three areas in the virtual memory ad-
dress space of a process for each region.

The use of precise interrupts on protection viola-
tions by the architecture is an important prerequisite
for the implementation of region trap handling. In the
absence of precise interrupts, the trap handler would

have a more difficult time determining which instruc-
tion/register caused the fault, and what machine state
may have been altered. Fortunately, most modern ar-
chitectures (including all of the architectures discussed
in this paper) use precise interrupts on protection viola-
tions.

Operating system requirements

The requirements from the operating system for an im-
plementation of region trapping are relatively few. When
a trap occurs and the RTL’s trap handler is called, the op-
erating system must provide enough processor context to
the RTL trap handler to allow it to determine the faulting
address, the faulting instruction, and the register that con-
tains the faulting address. Additionally, trap recovery in
the RTL requires the ability to modify and restore execu-
tion context. The versions of UNIX on which we have
currently implemented the RTL (IRIX, AIX, LINUX,
and Solaris) all provide this level of support.

Compiler requirements

There is some concern that the compiler might cache re-
gion pointers in registers and that these registers, which
are not known to the RTL will not be swizzled upon
subsequent changes in protection levels. As a result
later references to the region using the cached register
value will not generate the proper behaviour (either gen-
erating unwanted traps or not generating desired traps).
Since protection levels are changed by calling the func-
tion region protect and since the compiler should
not cache values that can be changed inside of the func-
tion call across such calls, the compiler should not create
these potentially dangerous register caches. The prob-
lem is exacerbated because protection levels might be
changed by a function that is called asynchronously (e.g.,
as a result of a trap). In the benchmarks that we have
run on the five different platforms, as well as in the dis-
tributed shared memory experiments we have conducted
using the RTL in the SGI MIPS environment, we have
not encountered any instances of this type of pointer
aliasing. It is conceivable that some compilers may per-
form such aliasing within registers. Fortunately, if such
a problem were to arise, by declaring region pointers as
volatile, the compiler is forced to generate code that
reloads a region pointer (albeit probably from the cache)
each time it is dereferenced, and the compiler is then
not able to create register aliases to regions. This so-
lution is clearly more restrictive than necessary, and will
result in some performance degradation. Ideally, compil-
ers should also support a flag that prohibits the aliasing
of pointers in registers without requiring these pointers
to be declared as volatile.

4 Micro-benchmarks

In this section, we present the results of benchmarks that
measure the overhead of region trapping mechanisms rel-
ative to standard VM page trapping primitives. These
benchmarks are not designed to provide insight into
overall application performance using page or region-
based trapping mechanisms, since the two techniques
will likely result in a different number of traps being
generated. Instead, these benchmarks provide some in-
dication of how well different architectures and oper-
ating systems support region trapping mechanisms and
whether the overheads incurred by the region trapping
mechanisms would be prohibitive for application do-
mains that commonly make use of VM primitives. Sec-
tion 4.1 describes the benchmarks that we use and Sec-
tion 4.2 discusses the results of these benchmarks.

4.1 Benchmark Descriptions

Three benchmarks are used. The first, referred to as
trap, measures the overhead of using trap mechanisms.
For VM primitives, this is simply the cost of entering and
exiting a signal handler. For RT primitives, the trap
time also includes the additional cost (within the signal
handler) of decoding the instruction, locating the region,
calling a null application trap handler, and swizzling the
region pointer and a register.

Appel and Li observe in their paper that applications
that use virtual memory primitives typically perform one
of the following two sequence of operations:

1. Prot1: protect one page and, on a subsequent trap
to that page, unprotect the page from inside the trap
handler, or

2. ProtN: protect a set of N pages and, on a trap to
any of these protected pages, unprotect the page that
caused the trap from inside a trap handler.

A comparison of these two sequences provides a better
understanding of the relative overheads involved in using
trapping mechanisms than simply measuring trap costs
alone. Consequently, we use two benchmarks that are
patterned after these two sequences. These two bench-
marks, referred to as Prot1 and ProtN, are constructed
in the same way as described in the Appel and Li paper.
In the Prot1 test, a protected page or region is refer-
enced and, inside the trap handler, the page or region is
unprotected and another one is protected. In the ProtN
test, 100 pages or regions are protected, and each one is
referenced and unprotected one at a time within a trap
handler.

A large number of repetitions of these sequences are
conducted in order to obtain an average cost per sequence

OS Arch page VM RT-basic RT-update
size trap prot1 protN trap prot1 protN trap prot1 protN

IRIX MIPS R4400 4 KB 65 275 128 96 130 103 477 664 580
6.2 175 MHz 1.5 0.5 0.8 7.3 2.4 4.5
Solaris MicroSparc 8 KB 286 778 591 352 365 366 2258 2539 2518
2.5.1 70 MHz 1.2 0.5 0.6 7.9 3.3 4.3
Solaris UltraSparc 8 KB 94 200 167 112 119 127 854 910 830
2.5.1 168 MHz 1.2 0.6 0.8 9.1 4.5 5.0
LINUX Pentium Pro 4 KB 12 39 30 23 32 28 115 198 174
2.0.0 200 MHz 1.9 0.8 0.9 9.6 5.1 5.8
AIX PowerPC 4 KB 61 169 146 92 107 104 190 774 688
4.1 133 MHz 1.5 0.6 0.7 3.1 4.6 4.7

Table 4: Times (in microseconds) comparing VM primitives, RT-basic and RT-update. RT-basic refers to region traps
on which the read-only copy of the region does not need to be updated, while RT-update refers to region traps on which
the read-only copy of the region must be updated. RT region size is equal to the system page size. Numbers on the
2nd line for each system are the ratio of RT test costs relative to the corresponding VM test. Times reported are the
average of multiple iterations of each test on different pages or regions.

(typically 10,000 to 100,000 repetitions were used, de-
pending on the time taken to execute each sequence).
However, because of the caching effects that occur as
a result of doing multiple repetitions, all results should
be considered optimistic. Additionally, the results do not
consider overheads the RTL would incur as a result of
swizzling multiple pointers (since the number of such
pointers will typically be small and the overhead required
to simply modify a pointer will be negligible) and the
design of the trap benchmark does not consider over-
heads incurred to search for the faulting region. How-
ever, since the Prot1 and ProtN benchmarks use 100
regions, the costs to find the appropriate region are in-
cluded in those benchmarks. Although the time required
to find the appropriate region in the RTL depends on the
number of regions, similar overheads would be incurred
using VM primitives if the action taken on a trap depends
on the object generating the trap.

For all three benchmarks (trap, Prot1, and
ProtN), region trap overheads are classified as RT-basic
and RT-update. RT-basic measures the cost of region
traps that do not require an update of the read-only copy
of the region, while RT-update measures the cost of re-
gion traps that do require such an update. Region size
plays a significant role in the cost of RT-update traps, but
no role in the cost of RT-basic traps. The first set of tests
use a region size that is equivalent to the size of a page on
each system (8 KB on Solaris and 4 KB on the others).
Subsequent tests show the effect of varying the region
size on the Prot1 benchmark.

4.2 Benchmark Results

Table 4 shows the results of the three tests on each of
the systems on which our RTL prototype has been imple-

mented. For each OS/architecture shown in this table, the
second line shows the ratio of the cost of the RT bench-
mark relative to the equivalent VM benchmark. Thus,
for example, RT-basic trap time under IRIX is 96 mi-
croseconds, while the VM trap time is 65 microseconds,
resulting in a relative cost ratio of 1.5. A number less
than 1 implies that the RT benchmark is faster than the
equivalent VM benchmark.

Entering and exiting a signal handler requires crossing
OS protection boundaries. This is fairly expensive on
all architectures that we study, though the fast exception
handling technique described by Thekkath and Levy [25]
would significantly reduce this cost for both VM and RT
primitives. Protection trap times on the LINUX/Pentium
configuration are particularly low when compared with
the other OS/architecture configurations, with trap times
five times lower (12 �s) than the next best time (61 �s
on the AIX system).

RT-basic trap costs are between 1.2 and 1.5 times more
expensive than VM trap costs on all architectures except
LINUX (due to its fast protection traps and more com-
plex instruction set), where RT trap costs are 1.9 times
more expensive. RT-update trap costs, as would be ex-
pected, are significantly higher, ranging from 3.1 times
more expensive than VM trap costs on the AIX system
to 9.6 times more expensive on LINUX. However, in our
measurements of the components of this overhead, we
found that for regions equivalent to or smaller than the
size of a page, the cost of the memcpy function used to
copy regions from the read-write area to the read-only
area makes up only a small portion of this cost. Most
of the additional cost for RT-update comes from the fact
that the pages occupied by the read-only copy must be
unprotected using mprotect before the update can be-
gin, and then reprotected (again using mprotect) after

OS Arch region = 1 page 64 KB Regions 256 KB Regions
(VM) RT-update K pages (VM)�K RT-update K pages (VM)�K RT-update

IRIX MIPS R4400 275 664 16 4400 1548 64 17600 5650
6.2 175 MHz 2.4 0.4 0.3
Solaris MicroSparc 778 2539 8 6224 8990 32 24896 23042
2.5.1 70 MHz 3.3 1.4 0.9
Solaris UltraSparc 200 910 8 1600 1448 32 6400 3552
2.5.1 168 MHz 4.5 0.9 0.6
LINUX Pentium Pro 39 198 16 624 464 64 2496 2606
2.0.0 200 MHz 5.1 0.7 1.0
AIX PowerPC 169 774 16 2704 1915 64 10816 10151
4.1 133 MHz 4.6 0.7 0.9

Table 5: Prot1 benchmarks for varying region size. K is the number of pages occupied by a region. All times shown
are in microseconds. Times reported for RT-update are the average of multiple iterations of the Prot1 test on the
same region.

the update has completed. mprotect, a system call that
requires crossing OS protection boundaries and shooting
down TLB entries, is relatively expensive on all of the
platforms we have used in conducting our experiments.

The Prot1 and ProtN benchmarks reveal a very dif-
ferent picture than trap overheads alone. For the VM
case, protection levels are set using mprotect. A
region protect in RT-basic is very cheap by com-
parison (typically less than 1 us), since it does not re-
quire any system calls. As a result, RT-basic Prot1
times are smaller than VM Prot1 times across all
architectures, with differences ranging from a factor
of 0.5 to 0.8. Prot1 and ProtN times are almost
identical for RT-basic, due to the small overhead of
a region protect call. For the VM ProtN test,
protecting multiple pages in one call to mprotect is
cheaper than protecting each page one at a time, so VM
ProtN times are less than Prot1 times. However,
RT-basic ProtN times are still lower than VM ProtN
times, by factors of 0.6 to 0.9.

RT-update Prot1 times are significantly higher than
RT-basic Prot1 times, as would be expected. In RT-
update however, since a significant proportion of the cost
is due to using mprotect twice to unprotect and repro-
tect the page occupied by the region, and the VM Prot1
test performs the same number of mprotect calls, RT-
update Prot1 times range from being just 2.4 times
higher than VM Prot1 on IRIX to 5.1 times higher on
LINUX. RT-update ProtN times range from being 4.3
to 5.8 times higher than VM ProtN times.

4.3 Large Regions

In this subsection, we consider the effects of defining
large regions that span multiple pages. Since some re-
gion traps require copying the region from one area to
another, it stands to reason that region trapping overheads

in these cases will increase significantly as the region
size is increased, although the cost of using mprotect
within a region protect call in such cases will be
amortized over the larger regions. The cost of handling
traps to large regions is considered from two perspec-
tives: (1) relative to the cost of handling a trap to a region
for which the size is equivalent to one page, and (2) rel-
ative to the cost of handling a trap to a page-based strat-
egy that would handle traps to the same number of pages
as spanned by the region. For page-based strategies, the
premise for the Appel and Li benchmarks is that typical
applications incur a fault on each page separately regard-
less of how large the object is, since such strategies do
not usually take application characteristics into account.
Consequently, if a region spans K virtual memory pages
in a region-based approach, the analogous page-based
applications using VM mechanisms will likely incur K
traps for every one trap incurred by the region-based ap-
proach.

Table 5 shows the results of the Prot1 benchmark for
region sizes equivalent to one 1 page, 64 KB and 256 KB.
RT-basic times, which are not affected by region size, are
not shown. Although experiments in the previous sub-
section were performed using multiple iterations of the
same test across one hundred regions, this was not possi-
ble for the experiments here because of the large region
sizes involved (declaring one hundred such regions re-
sults in paging on some of these machines). These tests
are conducted using multiple iterations on the same re-
gion, and are thus more prone to caching effects than the
experiments in the previous subsection. For comparison
to the region trapping version, VM times show the cost
of K Prot1 sequences when the region spans K pages.

For 64 KB regions, although memcpy costs go up sig-
nificantly, RT-update Prot1 times increase by relatively
small factors in the range of 1.6 (on the UltraSparc) to 3.5
(on the MicroSparc), when compared to the times for re-

gion sizes equivalent to the page size. RT-update times
for the Prot1 benchmark are lower than K Prot1 se-
quences in the VM case for four of the systems studied
(ranging from 0.4 to 0.9), and somewhat higher on the
other (1.4 on the Solaris/MicroSparc system). This dif-
ference is reduced on some architectures and increased
on others for 256 KB regions, so that the costs of RT-
update relative to K VM Prot1 tests range from 0.3 to
1.0. However, these latter comparisons assume for the
VM case that every page spanned by the region would be
referenced and that the VM strategy does not employ any
strategy to increase the effective page size. A worst case
comparison for the region trapping case would be in in-
stances where only one of theK pages spanned by the re-
gion is actually referenced. In such cases, RT-basic costs,
which are unaffected by region size, are the same relative
to the VM case. However, RT-update costs would look
significantly worse, by factors of 7 to 11 for 64 KB re-
gions, when compared to a VM based strategy that han-
dles a trap only to the page that was referenced.

4.4 Benchmark Summary

The benchmark results of this section provide some in-
sight into the overheads involved in the use of the region
trapping mechanisms described in this paper. The ar-
chitectures on which region trapping mechanisms were
implemented and studied vary significantly in speed and
in the complexity of the instruction sets. Operating sys-
tem overheads also play a significant role in these costs.
Overall, despite the seemingly high overhead of keeping
the read-only copy up-to-date with respect to the read-
write copy, region trapping overheads are competitive
with VM overheads. For instance, for regions equal to
the size of a page, the Prot1 benchmarks show region
trapping to be faster by factors of 0.5 to 0.8 for transi-
tions on which the read-only copy is not updated, and
slower by factors of 2.4 to 5.1 when the read-only copy
does need to be updated. For much larger regions, RTL
costs in the Prot1 benchmark are typically comparable
to or lower than VM costs when K traps to a page in
the VM case are considered equivalent to one trap in the
RTL case for regions spanningK pages.

Since these benchmarks provide only a microscopic
view of RTL and VM overheads, the question of how real
applications will perform using these mechanisms cannot
be answered without examining the applications them-
selves. In particular, the number of traps that are actually
generated is entirely application dependent and is likely
to be different within a page-based and region-based ver-
sion of the same application. For instance, when multiple
objects occupy a single page, a page-based strategy may
generate more traps than a region-based strategy (as a re-
sult of false sharing for example), or fewer (if all of the

objects on that page are accessed together). Conversely,
if an object is much larger than a page, a page-based
strategy may generate more traps than a region-based
strategy if it faults on each page of the object separately,
or an equivalent and perhaps fewer number of traps if
not all of the pages occupied by an object are typically
referenced at one time.

To obtain a clearer picture of how RTL mechanisms
would behave within a real application domain, we im-
plemented a region trapping based coherence protocol
within a distributed shared memory system. This is de-
scribed in the next section.

5 Case Study: Distributed Shared Memory

This section presents some results from a case study
which uses region trapping within the TreadMarks dis-
tributed shared memory (DSM) system. TreadMarks
uses page-based VM primitives to implement an effi-
cient coherence protocol called lazy release consistency
(LRC), described in detail by Keleher et al. [14]. We
have modified TreadMarks to support a region-based ver-
sion of LRC that uses region trapping to handle traps
and manage data at the granularity of regions rather than
pages.

For comparison, we have designed and implemented
another coherence protocol, called Multiple-Writer En-
try Consistency (or MEC) which is described in detail
in an earlier publication [20]. This protocol is similar
to entry consistency [6] from the programming perspec-
tive except that it uses program-level annotations that are
non-synchronizing. In this paper versions of the appli-
cations that have been implemented using this protocol
are referred to as the Annotated Regions (AN) versions.
They behave like the region trapping versions except that
they use program-level annotations rather than traps to
indicate when regions are referenced for read or write.

While the annotated (AN) versions are significantly
more difficult to program, a comparison between the re-
gion trapping and annotated regions versions of these
applications highlights the overhead of the region trap-
ping mechanisms. At the same time, a comparison be-
tween the page-based version and region-trapping ver-
sions highlights both the cost of using region trapping
versus VM mechanisms as well as the trade-offs between
using regions rather than pages for data management.

Six applications were used in this study: matrix mul-
tiplication (MM), red-black successive over-relaxation
(SOR), blocked contiguous LU-decomposition (LU), a
Floyd-Warshall algorithm for finding shortest paths in a
directed graph (FLOYD), integer sort (IS), and the trav-
eling salesperson problem (TSP). TSP, SOR, and IS are
all from the suite of applications used in earlier Tread-
Marks studies [1], LU is from the Splash-2 benchmark

Treadmarks version (VM) Region Trapping version (RT) Annotated Regions version (AN)
float **red, **black float **red, **black float **red, **black

int *redX, *blackX
.
for (i=0;i<M+1;i++) f for (i=0;i<M+1;i++) f for (i=0;i<M+1;i++) f

red[i] = Tmk malloc(NS) red[i] = region alloc(NS, &red[i]) red[i] = region alloc(NS,&redX[i])
black[i] = Tmk malloc(NS) black[i] = region alloc(NS, &black[i]) black[i] = region alloc(NS,&blackX[i])
g g g
.
for (j=begin;j<=end;j++) f for (j=begin;j<=end;j++) f for (j=begin;j<=end;j++) f
for (k=0;k<N;k++) f for (k=0;k<N;k++) f writeaccess(blackX[j])

black[j][k] = (red[j-1][k] + black[j][k] = (red[j-1][k]+ readaccess(redX[j-1])
red[j+1][k] + red[j][k] + red[j+1][k] + red[j][k] + readaccess(redX[j+1])
red[j][k+1])/4.0; red[j][k+1])/4.0; readaccess(readX[j])

g g for (k=0;k<N;k++) f
g g black[j][k] = (red[j-1][k] +

red[j+1][k] + red[j][k] +
red[j][k+1])/4.0;

g
g

Table 6: Snapshots of some code within SOR using VM, RT, and AN. M is the number of rows and NS is the size of
each row.

suite [27], and MM and FLOYD were written locally.

5.1 Programming with Regions

Table 6 contrasts how one of the applications used in our
study, SOR, is written to use each of the three protocols
that we compare, page-based LRC (VM), region trap-
ping LRC (RT), and annotated regions LRC (AN). Only
a portion of SOR is shown but the example illustrates
the program-level differences between these three ap-
proaches. In the original TreadMarks system, shared data
must be allocated dynamically using the Tmk malloc
routine. In the original VM version of SOR (obtained
with the TreadMarks distribution), each row of the two
matrices (called red and black) is allocated separately
using Tmk malloc. In the RT version, each row is de-
fined as a region by changing the Tmk malloc call to
region alloc and providing a pointer to that region
as a parameter. The rest of the code is identical for both
page-based and region trapping versions of SOR. In the
annotated regions version, each region is explicitly as-
sociated with a region identifier for that region (redX
and blackX in the example), that is used in subsequent
readaccess or writeaccess calls to identify a se-
ries of references to the region. Obviously a key moti-
vation for implementing the RTL is to avoid having to
annotate programs as shown in the AN example.

The other five applications required similar modifica-
tions to implement region trapping and annotated ver-
sions, although some of these applications use aliases to
region pointers that also need to be declared as region

pointers. In MM, all of the rows in a matrix used by a
single processor are aggregated into a single region. In
FLOYD, each row of the shared matrix is defined as a
single shared region. In LU, each block is laid out con-
tiguously and allocated separately in the original Splash-
2 version. These blocks are allocated as regions in the
RT version. In IS, there is a single shared data structure,
a shared bucket, which is defined as a region. Finally, the
original TreadMarks version of TSP allocates a single
block of shared data using a single Tmk malloc call.
This block contains several different data structures. The
RT version separates some of these data structures into
separate regions, the largest of which is still about 700
KB in size.

5.2 Performance and RTL Overhead

We have conducted a series of experiments on a clus-
ter of four 175 MHz R4400 SGI workstations connected
by 155 Mbps links to a Fore Systems ASX-200 ATM
switch. Table 7 shows the problem sizes used in these ex-
periments, the size and number of regions defined in the
region trap and annotated region-based versions (only the
main regions are described), and the execution times of
the applications on one processor and on four processors
for each of the three models. Table 8 shows the number
of traps that occur on a typical processor in the RT and
VM versions of the applications, the RT overhead as a
percentage of the runtime, and the number of messages
and bytes transmitted between processors (relative to one
processor) for both the RT and VM versions.

app problem size and shared data structure regions execution times
num size 1 VM RT AN

MM 640x640 matrices 9 � 1 MB 81 33 22 22
SOR 200x4096 matrices, 100 iterations 4097 8 KB 46 27 16 15
LU 1024x1024 matrix, blocksize = 64 1024 32 KB 59 34 21 22
FLOYD 567 node graph 567 2.2 KB 137 64 48 48
TSP 19 city tour vector 1 1 MB 87 73 60 51
IS 2

22 keys, bucketsize = 2
9, 10 iterations 1 2 KB 22 14 10 10

Table 7: Applications used in DSM study and the corresponding problem size descriptions and execution times (in
seconds) on one processor and under VM, RT and AN on four processors.

app Traps (#) RT overhead Messages KBytes
RT VM % of runtime RT VM RT VM

MM 3 600 < 0.1% 7 606 2458 2463
SOR 548 2545 1% 490 1863 3226 3256
LU 201 1327 0.5% 528 2068 11475 6495
FLOYD 709 1702 < 0.1% 1721 2559 119 2054
TSP 309 2045 0.3% 940 3320 1077 711
IS 40 960 6% 93 1013 4021 3914

Table 8: Total number of traps generated, and messages and kilobytes transferred for RT and VM and the estimated
RT overhead as a percentage of parallel execution time.

Region trapping overheads are estimated by multiply-
ing the number of traps incurred of each type by the cost
measured for that type of trap on the appropriate archi-
tecture (as shown in Table 4). These overheads account
for less than 1% of the parallel execution time in five
of the six applications, and 6% in the other application
(TSP). Those overheads that do exist arise largely from
the cost of updating the read-only copy of the region
(when required) on transitions to the read-only state for a
region. In TSP, this overhead is incurred within a critical
section and has rippling effects on other processors wait-
ing to enter that critical section, thereby causing a still
larger difference in overall performance between the two
region-based protocols (15%). The negligible difference
in performance between the region trapping and anno-
tated regions versions in all but one of these applications
(TSP) suggests that region trapping costs play a mini-
mal role in most cases. and that the significant differ-
ence in the performance between these region trapping
applications and those based on VM primitives results
from the differences in managing data at a region rather
than page-granularity. These results demonstrate that the
RTL can be used to eliminate the need for programmer
annotations in such programs while maintaining efficient
execution.

Compared to the VM version, the two region-based
protocols improve performance in these applications by
significant margins ranging from 18% in TSP to 41% in
SOR on this platform. Using application-defined regions
as the medium for sharing data reduces the number of
traps that occur and the number of messages communi-
cated in all six applications. Interestingly, however, the
number of bytes communicated between processors is
significantly higher in the region-based protocols in two
of the applications, LU and TSP. While a better choice
of regions might improve this situation, the increase in
bytes using regions in these two applications is a result
of defining large regions that span multiple virtual mem-
ory pages. These applications suffer from false sharing
within regions, where modifications to the entire region
are transmitted between processors on a trap even though
much of region may not be used by the other processor.
On the SGI platform, the reduction in the number of mes-
sages communicated between processors in these two ap-
plications compensates for the increase in the number of
bytes transmitted.

It is worth noting that in our environment the RT and
AN versions of MM execute significantly faster than the
VM version. This is rather surprising, since other studies
report near-linear speedup for page-based DSM imple-

mentations of MM. We do not obtain near-linear speedup
for the VM version of MM because we use a matrix size
that results in false sharing, our execution times include
the time required to fault all data to remote machines, and
IRIX 6.2 appears to delay the delivery of SIGIO signals
to an executing process until it either blocks or its quan-
tum expires. In some cases, this results in delays when
requesting remote pages or regions. While such delays
are not present in other environments we’ve used in pre-
vious studies we have found that the AN version of MM
still outperforms the VM version (although in this case,
the execution time is only improved by 12%) [20]. This
earlier publication [20] also provides a more detailed dis-
cussion comparing the performance of page-based (VM)
and region-based protocols (AN).

5.3 Case Study Summary

These results provide some evidence that the overhead of
the region trapping mechanisms within a DSM environ-
ment are reasonable. Since trapping overheads account
for a small proportion of the execution time for both
RT and VM mechanisms, the key factor in determining
whether region trapping is useful within the distributed
shared memory context lies in the trade-offs between us-
ing regions rather than pages for managing shared data,
both from a programming and performance perspective.
Studies by Adve et al. [1] and by Buck and Keleher [7]
compare the performance of page-based LRC to object-
based EC. Each study suggests that page-based systems
are competitive with and sometimes better than object-
based systems, while a similar study by Neves et al. [19]
has found object-based systems to be much better. How-
ever, unlike the page and region-based versions of LRC
used in the study presented in this section, page-based
LRC and object-based EC differ not only in the use of
pages rather than objects (regions) as the granularity of
data management, but also in terms of the synchroniza-
tion model (release consistency versus entry consistency)
and coherence protocols (lazy release consistency versus
write-update) that are used. Consequently, the results of
those studies are not directly comparable to those pre-
sented in this section.

The comparison between the page and region-based
versions of LRC presented in this section suggest that
many applications may benefit from using these region
trapping mechanisms instead of the traditional page-
based VM mechanisms. However, a detailed exami-
nation of these trade-offs between pages and regions
within a distributed shared memory system are beyond
the scope of the study presented in this section. Con-
sequently, a number of factors that may also influence
the choice of whether to use pages or regions for man-
aging shared data have not been considered here. This

includes the use of page aggregation techniques, which
increase the effective size of a page [3] and would likely
improve the performance of the VM case for some of
the coarse-grained applications used in this study, and
the use of other coherence protocols such as scope con-
sistency [12], which captures some of the advantages of
object-based protocols such as entry consistency.

6 Discussion

The benchmarks and case study of Sections 4 and 5 high-
light both the potential and the limitations of the cur-
rent RTL implementation. The primary limitations, both
in terms of the programming interface and performance,
can, as it turns out, be easily addressed. In this section,
we briefly discuss these limitations and how they can be
overcome in the RTL.

One of the key performance costs in the RTL, the need
to update the read-only copy of the RTL, can be elim-
inated by mapping the read-only and read-write mem-
ory areas to the same physical memory area. Once this
is done, all of the RT-update costs described in Section
3.3 and shown in the figures of Section 4 are eliminated
since only a single physical copy of the region needs to
be maintained (unless a copy is required in order to com-
pute diffs). This also eliminates the additional physical
memory overhead incurred by the current RTL imple-
mentation.

The other major concern is with the RTL interface it-
self, which requires all pointers to a region to be ex-
plicitly declared. In work conducted concurrently and
independently of our own, Itzkovitz and Schuster [11]
present an alternative approach that provides the func-
tionality that the RTL implements but without having
to manipulate pointers to those regions. Itzkovitz and
Schuster’s MultiView system allocates each region on a
separate virtual memory page, but maps each of those
regions to the same set of physical memory pages. This
allows the virtual memory protection levels of each re-
gion to be manipulated independently while still allocat-
ing different regions on the same page.

The MultiView approach presents a simpler program-
ming paradigm than the RTL (regions must still be identi-
fied, but pointers to regions do not). However, MultiView
may also consume a significant portion of the virtual ad-
dress space because a single virtual memory page must
be allocated for each region, even if the region is only a
few bytes in size. This leads to a potentially more serious
performance drawback in that each virtual memory page
requires a single TLB entry. Since most current architec-
tures have relatively limited TLB sizes, applications that
reference many small regions may generate significantly
more TLB misses using the MultiView approach. In con-
trast the RTL approach has a small fixed virtual memory

and TLB entry overhead that is dependent only on the to-
tal size of the virtual memory consumed by the applica-
tion. Further, once the RT-update costs in the RTL have
been eliminated using the technique noted above, chang-
ing RTL protection levels will be a fraction of the cost
of manipulating virtual memory protection levels. These
latter costs, using the expensive mprotect system call,
are required both in traditional page-based approaches
and by MultiView. Thus while the MultiView approach
offers clear advantages as far as the programming inter-
face is concerned these performance issues may make the
RTL approach more suitable for very fine-grained shar-
ing.

7 Conclusions

In this paper, we have described the design and imple-
mentation of the Region Trap Library, which provides
the same functionality, at the granularity of user-defined
regions, that application domains typically require from
virtual memory primitives at a page-granularity. One
of the main contributions of the mechanisms used in
this library is that they do not depend on features of a
particular programming language and they are portable
across several architectures. Benchmarks on several op-
erating systems and architectures suggests that the over-
head of these mechanisms is typically competitive with
their page-based counterparts. Our implementation of
a region-based version of the lazy release consistency
coherence protocol within the TreadMarks page-based
DSM system demonstrates the applicability of region
trapping mechanisms within some of the domains that
make use of virtual memory primitives. In the DSM con-
text, we found region trapping overheads to be typically
less than 1%, with the exception of one application that
incurred an overhead of 6%.

Together, the benchmark results and the DSM case
study suggest that the region trapping mechanisms im-
plemented in the Region Trap Library provide a feasible
region-granularity data management alternative to VM
primitives within some of the application domains that
commonly rely on page-based VM primitives. Further
study is needed to identify the overhead of the region
trapping mechanisms within some of these other applica-
tion domains, and to determine the value of using regions
rather than pages as the unit of data management in these
domains.

Acknowledgments

The authors gratefully acknowledge the financial sup-
port of the Natural Sciences and Engineering Research
Council of Canada (NSERC). We thank Graham Smith

for porting the RTL to LINUX on the Pentium Pro and
Diego Moscoso for discussions during the early stages of
this work. We thank Ken Sevcik and the POW group at
the University of Toronto for providing us with access to
their IBM systems. Finally we wish to thank the anony-
mous referees for their careful reading of the paper and
for their insightful comments.

References

[1] S.V. Adve, A.L. Cox, S. Dwarkadas, R. Rajamony
and W. Zwaenepoel, “A Comparison of Entry Con-
sistency and Lazy Release Consistency Implemen-
tations”, Proceedings of the 2nd International Sym-
posium on High-Performance Computer Architec-
ture, February, 1996.

[2] A. Agarwal, B-H. Lim, D. Kranz, and J. Kubia-
towicz, “APRIL: A processor architecture for mul-
tiprocessing”, Proceedings of the 17th International
Symposium on Computer Architecture, pp. 104-
114, May, 1990.

[3] C. Amza, A.L. Cox, K. Rajamani, and W.
Zwaenepoel, “Tradeoffs between False Sharing and
Aggregation in Software Distributed Shared Mem-
ory”, Proceedings of the Sixth Conference on Prin-
ciples and Practice of Parallel Programming, pp.
90-99, June 1997.

[4] A.W. Appel and K. Li, “Virtual Memory Primi-
tives for User Programs”, Proceedings of the 4th
Symposium on Architectural Support for Program-
ming Languages and Operating Systems, pp. 96-
107, April, 1991.

[5] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum,
“Orca: A language for parallel programming of dis-
tributed systems”, IEEE Transactions on Software
Engineering pp. 190-205, March, 1992.

[6] B. Bershad, M. Zekauskas and W. Sawdon, “The
Midway Distributed Shared Memory System”, Pro-
ceedings of COMPCOM ’93, pp. 528-537, Febru-
ary, 1993.

[7] B. Buck and P. Keleher, “Locality and Performance
of Page- and Object-Based DSMs”, Proceedings of
the 12th International Parallel Processing Sympo-
sium, March, 1998.

[8] J.S. Chase, F.G. Amador, E.D. Lazowska, H.M.
Levy, and R.J. Lettlefield, “The Amber System:
Parallel programming on a network of multiproces-
sors”, Proceedings of the 12th ACM Symposium
on Operating Systems Principles, pp. 147-158, De-
cember, 1989.

[9] M. Feeley and H. Levy, “Distributed Shared
Memory with Versioned Objects”, Conference

on Object-Oriented Programming Systems Lan-
guages, and Applications, October, 1992.

[10] A.L. Hosking and J.E.B. Moss, “Protection Traps
and Alternatives for Memory Management of an
Object-Oriented Language”, Proceedings of the
Fourteenth ACM Symposium on Operating Sys-
tems Principles, pp. 106-119, December 1993.

[11] A. Itzkovitz and A. Schuster, “MultiView and Mil-
lipage – Fine-Grain Sharing in Page-Based DSMs”,
Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation (OSDI ’99),
February, 1999.

[12] L. Iftode, J.P. Singh, and K. Li, “Scope Con-
sistency: A Bridge between Release Consistency
and Entry Consistency”, Proceedings of the Sym-
posium on Parallel Algorithms and Architectures,
June 1996.

[13] K. Johnson, F. Kaashoek and D. Wallach, “CRL:
High-Performance All Software Distributed Shared
Memory”, Proceedings of the 15th Symposium on
Operating Systems Principles, pp. 213-228, De-
cember, 1995.

[14] P. Keleher, A. Cox, S. Dwarkadas and W.
Zwaenepoel, “TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating
Systems”, Proceedings of Winter 1995 USENIX
Conference, pp. 115-131, 1994.

[15] C. Lamb, G. Landis, J. Orenstein and D. Weinreb,
“The Objectstore Database System”, Communica-
tions of the ACM, Vol. 34, No. 10, pp. 50-63, Oc-
tober, 1991.

[16] C. Lakos, “Implementing BCPL on the Burroughs
B6700”, Software Practices and Experience, Vol.
10, pp. 673-683, 1980.

[17] K. Li and P. Hudak, “Memory Coherence in Shared
Virtual Memory Systems”, ACM Transactions on
Computer Systems, Vol. 7, No. 4, pp. 321-359,
November, 1989.

[18] J.E.B. Moss “Working with Persistent Objects: To
Swizzle or not to Swizzle”, IEEE Transactions on
Software Engineering, Vol. 18, No. 8 pp. 657-673,
August, 1992.

[19] N. Neves, M. Castro, and P. Guedes, “A Checkpoint
Protocol for an Entry Consistent Shared Memory
System”, Proceedings of the 13th Annual ACM
Symposium on Principles of Distributed Comput-
ing August, 1994.

[20] H. Sandhu, T. Brecht, and D. Moscoso, “Multiple-
Writer Entry Consistency”, International Confer-
ence on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’98), pp. 355-362,
July, 1998.

[21] D. J. Scales and M.S. Lam, “The Design and Eval-
uation of a Shared Object System for Distributed
Memory Machines”, Proceedings of the First Sym-
posium on Operating System Design and Imple-
mentation, pp. 101-114, November, 1994.

[22] D.J. Scales, K. Gharachorloo, and C.A. Thekkath,
“Shasta: A Low Overhead, Software-Only Ap-
proach for Supporting Fine-Grain Shared Mem-
ory”, Proceedings of the 7th Symposium on Archi-
tectural Support for Programming Languages and
Operating Systems, October, 1996.

[23] I. Schoinas, B. Falsafi, A.R. Lebek, S.K. Reinhardt,
J.R. Larus, and D.A. Wood, “Fine-Grain Access
Control for Distributed Shared Memory”, Proceed-
ings of the 6th Symposium on Architectural Sup-
port for Programming Languages and Operating
Systems, pp. 297-306, October, 1994.

[24] V. Singhal, S.V.Kakkad, and P.R.Wilson, “Texas:
An Efficient, Portable Persistent Store”, Proceed-
ings of the Fifth Int’l. Workshop on Persistent Ob-
ject Systems, September 1992.

[25] C.A. Thekkath and H. M. Levy, “Hardware and
Software Support for Efficient Trap Handling”,
Proceedings of ASPLOS-IV, October 1994.

[26] S. T. White, “Pointer Swizzling Techniques for
Object-Oriented Database Systems”, Ph.D. Thesis,
University of Wisconsin, 1994.

[27] S. Woo, M. Ohara, E. Torrie, J.P. Singh, A.
Gupta, “The SPLASH-2 Programs: Characteriza-
tion and Methodological Considerations”, Proceed-
ings of the 22nd Annual International Symposium
on Computer Architecture, pp. 24-36, 1995.

[28] M.J. Zekauskas, W.A. Sawdon, and B.N. Bershad,
“Software Write Detection for Distributed Shared
Memory”, Proceedings of the First Symposium on
Operating System Design and Implementation, pp.
87-100, November, 1994.

