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Abstract

We first describe how the Coda distributed filesystem
was ported to Windows 95 and 98. Coda consists of
user level cache managers and servers and kernel level
code for filesystem support. Severe reentrancy difficul-
ties in the Win32 environment on this platform were
overcome by extending the DJGPP DOS C compiler
package with kernel level support for sockets and more
flexible memory management. With this support library
and kernel modules for Windows 9x filesystems in place,
the Coda file system client could be ported with very
little patching and will likely soon run as well on Win-
dows 9x as on Linux. We ported Coda file servers to
Windows NT. For fileservers the Cygwin32 kit was
used. We will not report here on the port of the Coda
client to Windows NT, which is in an early stage. In
both cases cross compilation from a Linux environment
was most helpful to get a good development environ-
ment.

1. Introduction

The purpose of this paper is to convey our progress on
porting a sophisticated distributed file system running
on the Unix platform to Windows NT and Windows
9x. Coda [1], [10] boasts many valuable features such as
read/write server replication, a persistent client cache, a
good security model, access control lists, disconnected
and low bandwith operation for laptops, ability to con-
tinue operation in the presence of network and server
failures and well-defined consistency semantics. Using
Coda as a vehicle to study the feasibility of porting
complex Unix systems to Windows should be very in-
teresting.

The Coda project began in 1987 with the goal of build-
ing a distributed file system that had the location trans-
parency, scalability and security characteristics of AFS
[11] but offered substantially greater resilience in the
face of failures of servers or network connections. As
the project evolved, it became apparent that Coda's
mechanisms for high availability provided an excellent
base for exploring the new field of mobile computing.
Coda pioneered the concept of disconnected operation
and was the first distributed file system to provide this
capability [13]. Coda has been the vehicle for many
other original contributions including read/write server
replication [1], log-based directory resolution [14], ap-
plication-specific conflict resolution [15], exploitation of
weak connectivity [12], isolation-only transactions, and
translucent cache management [17].

Coda has been in daily use for several years now on a
variety of hardware platforms running the Mach 2.6,
Linux, NetBSD and FreeBSD operating systems, and
most of its features are working satisfactorily. Therefore
we have started to focus on further improvement of per-
formance and ports of Coda to other platforms.  Ports to
NetBSD, FreeBSD and Linux have confirmed that the
underlying code relies almost solely on the BSD Unix
API -- as intended -- and avoids Mach specific features
to the maximum possible extent. During these ports
various subsystems were recognized to depend too
closely BSD specific file system data structures, and we
replaced these with platform independent code, antici-
pating that this would greatly ease further ports in par-
ticular those to Windows.  Our optimism about porting
the user level code to Windows NT or Windows 95 us-
ing a POSIX implementation turned out to be justified.
Our code compiled with very few patches.  We will de-



scribe how this led to Coda servers running on Win-
dows 9x and Windows NT.
However, a filesystem also depends on kernel code, and
it turned out to be much less trivial to get that working
on Windows 9x.  We will describe these difficulties in
detail.  We will not report here on the kernel module for
the Coda client on Windows NT.

This paper is organized by expanding briefly on the fea-
tures and implementation of Coda. We then summarize
some of the differences between the Win32 API and the
Unix API which affect Coda. Finally we describe how we
overcame serious difficulties to get clients running on
Windows 9x.  We finish by describing the porting effort
for servers to Windows NT, and by summarizing the
lessons we learned.

2. What is Coda?

Coda is the collective name for the programs and kernel
modules which make up the Coda file servers and cli-
ents. Coda is  implemented as a collection of substantial
user level programs together with a small kernel module
on the client which provides the necessary Coda file
system interface to the operating system. The user level
programs comprise Vice, the server, and Venus, the cli-
ent cache manager.

The file server Vice is implemented entirely as a user-
level program servicing network requests from a variety
of clients. (For performance reasons, Vice can use a few
custom system calls to access files by inode, but this is
a detail.) 
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On the client the kernel module does some caching of
names and attributes but is mostly there to re-direct
system calls to Venus. The kernel module is called the
Minicache. The user level programs make sophisticated
use of the standard Unix API and they are multithreaded
using a user level co-routine thread package. The file-
system metadata on clients and servers are mapped into
the Vice/Venus address space and are manipulated us-
ing a lightweight transaction package called rvm [16].

The experience of the Coda project has been that plac-
ing complicated code in user-level processes offers tre-
mendous development advantages without incurring
unacceptable performance compromises [2]. This ar-
rangement is shown in figure 1. 

To the greatest extent possible, we wanted to replicate
this structure -- and reuse code -- in the Windows
ports. We faced several challenges in doing so. First,
the user-level programs themselves represent a signifi-
cant porting effort. Second, we must provide a kernel
module to provide the Win32 file system services for
Coda volumes. The second task has several comp o-
nents. The kernel module must translate Win32 requests
to requests that Venus can service. Since the Venus
interface was designed to do this for BSD Unix filesys-
tems, and not for Win32 filesystems, some plumbing
between the two filesystem models was needed. More
fundamentally, given that the design uses a user level
cache manager, we had to provide an environment for
the user-level code that reproduces the concurrency
properties of Unix upon which the Coda implementation
model is based. This is discussed in more detail be-
low. This appeared to be a highly difficult task for Win-
dows 9x. It did not represent a fundamental problem for
the Windows NT port.

For the purpose of this paper we will mostly concentrate
on the client side of Coda. The two main components of
a Coda client are Venus, the client cache manager, and
the Minicache, which is the kernel filesystem
code. When a Coda filesystem is used on a client, a
program running on the client will make system calls
which are directed to the filesystem in the kernel. The
virtual filesystem passes this on to the Minicache. This
does some preprocessing for the call and then passes
the request on to Venus, which is running as a user-
level process on the client machine. Venus contacts file
servers or retrieves data from the persistent cache on
the client machine and responds to the Minicache, after
which the system call returns to the caller. In order to
avoid many unnecessary context switches between the
user program and the cache manager, the Minicache
kernel code caches a small amount of naming informa-
tion inside the kernel [2].  This enables the Minicache to
complete most requests without involving Venus.

When a file is first opened, Venus resolves the name,
and transfers it from a server holding the file to the cli-
ent cache directory. Together with the file, the server
delivers a callback promise to notify the client when
the file has been updated by another client. This en-
ables the client to do a subsequent opening of the file
without contacting the servers, provided that callback



for the file has not been broken. Another key feature is
that read and write requests are directly redirected to the
so called container file in the cache directory on the
client machine, and are not processed by the Ve-
nus. This makes read and write calls almost as efficient
as they are for locally stored files. Local modifications
are propagated back to the server at close time, when
the Minicache contacts Venus again.

For the purpose of this paper it is important to dwell a
little longer on the basic mode of operation. The re-
quests which are passed from the kernel to Venus and
vice versa are transferred through a very simple charac-
ter device (especially written for Coda), we will call this
the Coda device. The main event loop inside Venus
boils down to a select loop on socket file descriptors for
the connections with servers and the file descriptor of
the Coda device. When data arrives from the Minicache,
or from the servers, the select call returns to allow Ve-
nus to take appropriate action. The system call interface
described above hinges on the implementation of select
for the Coda device as follows. When the kernel is dis-
patching its system call request to Venus, on behalf of
the calling process, it adds this calling process to a wait
queue associated with the device. Then it wakes up
Venus which proceeds to process a read system call on
the Coda device, after which Venus can process the
request from the kernel. When Venus is ready to deliver
the result, it issues a write call to the Coda device. The
write system call handling for this device finds out for
which process the reply is meant, and removes this pro-
cess from the wait queue. The process making the sys-
tem call can now be scheduled and proceed.
 

3. Strategy 

Venus contains the bulk of the code needed to get a
client running, and it is quite a complicated program.
The task of debugging the Minicache kernel code in the
presence of such a large module is not attractive, par-
ticularly since Venus' operation depends on a correctly
implemented Minicache and vice versa. The Coda team
faced this before with the port of Coda to NetBSD and
decided to develop Potemkin Venus. Potemkin is a pro-
gram that appears to be a genuine Venus, connected to
servers and responding to requests coming from the
Minicache through the Coda device. When using Po-
temkin a directory tree of files residing on the "client"
itself can be mounted as a Coda filesystem. Potemkin is
a simple program, does no fancy caching and is merely a
tool to test the implementation of the Minicache kernel

code for the Coda filesystem. It also utilizes the same
select loop as Venus does.

Clearly the first element of porting Coda to Windows is
to port and adapt Potemkin to Windows and to create a
Minicache. 

4. Windows 9x Problems

Although in many ways NT represents a more attractive
and appropriate target for Coda, we decided to look at
Windows 95 support first. Its Win32 implementation
appeared to have roughly the capabilities we need
(TCP/IP sockets, memory-mapped files, threads), and,
unlike NT, its installable filesystem interface is docu-
mented (in the Windows 95 Device Driver Kit). 

To explain the results of our first Windows 95 experi-
ment, it helps to provide a brief description of its archi-
tecture. The Windows 95 kernel is called the Virtual Ma-
chine Manager (VMM). All Windows applications run
in a single virtual machine called the System VM. Each
Win32 process has its own memory context and may
have multiple threads which are managed by the
VMM. Other virtual machines may be created to support
DOS applications; these VMs contain only a single ad-
dress space and a single thread.  Programs running in
DOS VMs (so-called "DOS boxes") have access to the
standard DOS interrupt API and a protected-mode ex-
tension called DPMI (as well as virtualizations of typical
PC hardware), but not the Win32 API. Win32 is imple-
mented by libraries that run in user-space in the System
VM and use many undocumented VMM inter-
faces. Fortunately, the Windows 95 DDK does specify
the internal interface between the VMM component
which provides file-oriented I/O to the virtual machines
(called the IFSMgr) and installed filesystems. To put it
in Unix terms: the (analogues of) user-level libc and ker-
nel-internal vfs interfaces are documented, while the
actual kernel system calls are largely undocumented.

Working from the DDK information, we began to imple-
ment a Potemkin-like system for Windows 95. The ker-
nel-mode component consisted of an installable network
filesystem which would enqueue file requests for a cus-
tom Win32 Potemkin venus-like process. (At this point,
we made no effort to reuse Unix code, but wrote directly
to the Win32 API.) The requests and responses were
transferred using the Win32 DeviceIoControl API call,
rather than a character device, and threads making re-
quests synchronized with the Potemkin process by
waiting on VMM semaphores.



Initially, this approach seemed to work. It was possible
to start a DOS window, mount the filesystem, and ma-
nipulate files on it.  However, the system would some-
times freeze if the user tried to manipulate the Potemkin
drive using Windows applications. Unfortunately, this
reflected a fundamental problem: the implementations of
many Win32 API functions rely on 16-bit libraries in the
System VM which are non-reentrant. Thread access to
these libraries is serialized, system-wide, by a mutex
called the Win16Mutex. The Microsoft Press book In-
side Windows 95 [3] is emphatic that the lowest-level
Win32 API calls (implemented by a library called Ker-
nel32) do not try to acquire this mutex, but unfortu-
nately this is not so: even the very simple file I/O calls
which our Win32 Potemkin made to service requests
would sometimes try to acquire Win16Mutex. If the pro-
cess making the request of Potemkin had already ac-
quired it, the two processes would dead-
lock. Unfortunately, since the Windows user interface
itself relies very heavily on 16-bit code protected by the
Win16Mutex, the whole system would appear dead at
this point. Unauthorized Windows 95 by Andrew
Schulman [4] and Windows 95 System Programming
Secrets by Matt Pietrek [5] explore some of the ways
that the Win16Mutex is actually used in Windows 95. 

5. On DOS and Coda for Windows 9x

We rapidly concluded that the limitations of the Win32
API implementation in Windows 9x ruled it out as a host
environment for Venus. Two possibilities at least re-
mained. A somewhat unrealistic option would have
been to implement all of Coda in the installable filesys-
tem VMM component.  A more attractive alternative
was to implement the cache manager not as a Win32
process but as a DOS program.  While Win32 applica-
tions often contend for the single Win16Mutex, the
Windows 9x design actually gives DOS programs sig-
nificantly better treatment: the actual VMM core is more
reasonably flexible OS kernel which, like a Unix kernel,
permits multiple VMs to have simultaneous outstanding
system calls. This approach sidesteps the Win16Mutex
problem and frees us from worrying about further non-
reentrancy in the Windows 95 Win32 implementa-
tion. Furthermore, the application environment in a DOS
box need not be as hostile as one might imagine: D.J.
Delorie's DJGPP port of gcc provides a 32bit Unix-like
libc, and Phar Lap sells a Win32-subset implemention
that runs in DOS boxes. 
We decided to explore the possibility of hosting Venus
in a DOS box, using DJGPP’s compiler and libc. The first

step was to identify what APIs Venus needed that were
not already provided. They were:
♦  TCP/IP networking accessed using the standard

BSD sockets API
♦  a select() call that could wait on both networking

sockets and the Minicache simultaneously, and
♦  a limitted form of mmap(). Specifically, Venus needs

to be able to allocate virtual memory at fixed virtual
addresses in its memory space. On Unix systems,
this is accomplished using an anonymous mmap()
call.

The TCP/IP implementation in Windows 9x runs in ker-
nel mode as part of the VMM. The published Win32
networking API is implemented by a user-level library
that uses undocumented VMM calls. There is no built-
in support for TCP/IP access from a DOS box. However,
there is a sketchily-documented internal VMM interface
to the networking stack. The approach we adopted was
to use this internal interface to implement a sockets-like
API which could be exposed to DOS boxes.

A second, related issue was support for the select() call
that drives the Venus event loop. This select() call
needs to wait on multiple UDP and TCP sockets and
simultaneously on the queue of requests from the Mini-
cache. To support this, our kernel sockets module ex-
poses an interface that the Minicache uses to partici-
pate in select() calls.

Finally, as mentioned above, Venus uses a package
called rvm that provides a transactional, memory-
resident database of filesystem metadata. This package
relies on being able to read the database contents into
the same region of virtual memory every time Venus
runs. Unfortunately, DPMI, the interface that allows 32-
bit applications running in DOS boxes to allocate mem-
ory, does not permit the application to specify the vir-
tual address where the newly-allocated memory block
will land. (To be precise: there is a version of DPMI that
does specify a way to do this, but the Windows 95 im-
plementation does not implement the feature.) As a re-
sult, we wrote a kernel module that implemented a sepa-
rate memory allocation system for 32-bit DOS applica-
tions and which does permit the application to choose
which virtual pages to allocate.

Once these pieces were in place, our port became sur-
prisingly straightforward. To manage our source code
effectively we resisted the temptation to go native. In-
stead, we cross-compile from Linux workstations. For
debugging, we use gdb’s remote debugging feature: a
specially modified debugging stub runs Venus under
debugger on Windows 95, communicating over a TCP



socket (using our socket implementation) with a gdb
process running on Linux. The result is a highly effec-
tive work environment for Coda development: we can
compile and debug the Windows 95 Venus without
leaving xemacs!

It is perhaps worth mentioning two other aspects of our
approach which significantly speeded the porting proc-
ess. First, we implemented a work-around for Windows
95’s lack of support of dynamically loaded filesystem
drivers. We wrote a small shim filesystem driver that
would load and register itself at boot time as required by
the Windows 95 architecture. All actual filesystem re-
quests it would divert to a dynamically-loaded Mini-
cache module that we could update multiple times with-
out rebooting. Second, during development we modified
Venus to use an intermediate relay program to converse
with the Minicache. That is, instead of having Venus
read requests from the Minicache and send replies di-
rectly back, we had Venus read and reply to Minicache
requests using a UDP socket. A separate relay program
would transfer requests and replies between the Mini-
cache and the UDP socket that Venus used. This had a
couple significant advantages: a) the relay program pro-
vided an excellent debugging log of interactions be-
tween Venus and the Minicache and helped identify
quickly, when a bug occurred, which component was at
fault; b) by using a modified relay program, it was pos-
sible to test Venus with synthetic requests.

6. Coda Client on Windows 9x: Results

The experiment of porting the Coda client on Windows
95 has been gratifyingly successful. Although it is not
stable enough to use in production, it is possible to
install Microsoft Office into a Coda filesystem and then
use the resulting installation to do real work—including
using Office while disconnected from the Coda server
cluster. In fact, it has even worked to install Office into a
Coda filesystem while in disconnected mode and then to
allow the reintegration process to update the servers
with all hundreds-of-megabytes of Office code. While it
is too early to report precise figures, Coda performance
when in connected mode with a cluster of Linux Coda
servers is within a factor of two or so of the built-in
SMB client when run against Samba on similar Linux
servers.

Despite the enormous differences between Unix and
Windows environments Coda, with the exception of the
kernel modules, builds from a single source archive, with
very little conditional compilation. The overall arrange-
ments of source are shown in figure 2.
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Figure 2

7. Coda servers on Windows 95 and NT

The Coda servers are much easier to port. They do not
rely on the upcall mechanism and do not need any ker-
nel support for their operation. Here we chose to use the
Cygnus Cygwin32 library [18], which implements a Unix
C library on the Win32 environment. This port pro-
ceeded smoothly and led to working servers within a
few months. During the port of Coda to Linux those
subsystems which appeared to rely on BSD specific
data structures defined by the host environment were
replaced with data structures private to the Coda pack-
age, that could exist on all platforms. This strategy
proved very valuable, for porting both servers and cli-
ents, since the cache manager and file server compiled
with very few patches under DJGPP and Cygwin.

One notable difficulty is that Windows NT executes
asynchronous procedure calls which do not appear to
mix well with Coda's user level thread library. While a
work around could be found by modifying Cygnus' se-
lect call implementation, we expect that a better solution
will come forward when we implement Coda threads on
NT Fibers.

Initial impression were that the performance will need
tuning and that some more native features are desirable,
particularly on Windows NT.

8. Summary and lessons learned

Using a variety of freely available software packages, a
very complex porting problem could be tackled. A se-
vere lack of clear documentation on Microsoft's part,
made us go wrong in several ways before finding a solu-
tion to our problems. The kernel environment for Win-
dows 95, while difficult and hostile as a development
environment, allowed the implementation of socket,



special memory allocation and filesystem support in a
way that circumvented the user level Win32/Win16
mutex problems. Porting our servers was comparatively
straightforward using the Cygwin32 library from Cyg-
nus.

Looking back at our work, we vividly remember that
initially and particularly after the first set backs, we were
very doubtful if Coda could run on Windows.  It turned
out that with some creativity it did become possible to
achieve our goals and obtain acceptable quality.  Kernel
related software for Windows is difficult to write, but
the POSIX environments offered by DJGPP and Cyg-
win32 are truly remarkable, and should allow may other
ports to proceed smoothly.
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