
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the 1999 USENIX Annual Technical Conference
Monterey, California, USA, June 6–11, 1999

An Application-Aware Data Storage Model

Todd A. Anderson and James Griffioen
University of Kentucky

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



An Application-Aware Data Storage Model �

Todd A. Anderson, James Gri�oen

Department of Computer Science

University of Kentucky

Abstract

We describe a new application-controlled �le per-

sistence model in which applications select the de-

sired stability from a range of persistence guaran-

tees. This new abstraction extends conventional ab-

stractions by allowing applications to specify a �le's

volatility and methods for automatic reconstruction

in case of loss. The model allows applications, par-

ticularly ones with weak persistence requirements, to

leverage the memory space of other machines to im-

prove their performance. An automated (�lename-

matching) interface permits legacy applications to

take advantage of the variable persistence guaran-

tees without being modi�ed. Our prototype imple-

mentation shows signi�cant speed-ups, in some cases

more than an order of magnitude over conventional

network �le systems such as NFS version 3.

1 Introduction

In recent years, workstations and personal comput-

ers have become extremely powerful and have seen

impressive increases in storage capacities. The cost

e�ectiveness of these systems combined with emerg-

ing high-speed network technologies have led to local

and intra-area networks of workstations with tens of

gigabytes of memory storage and hundreds of giga-

bytes of disk storage. Studies show that the aggre-

gate capacity and processing power of these systems

are grossly underutilized. Acharya and others [1]

discovered that, on average, 60% to 80% of a net-

work's workstations are idle at any point and 20%

to 70% of workstations are always available. Once a

workstation has been idle 5 minutes, it will remain

idle for an average of 40 to 90 minutes, implying that

idle machines can be selected with high con�dence

that they will remain idle.

While aggregate processing power has grown

�This work supported in part by NSF grant numbers CCR-

9309176, CDA-9320179, CDA-9502645 and DARPA grant

number DAAH04-96-1-0327.

sharply, applications have seen only modest perfor-

mance improvements [21]. This is due in large part

to the historic reliance of �le systems on disk-based

storage, characterized by slow access times. More-

over, the performance gap between disks and mem-

ory/remote memory is increasing. Several �le sys-

tem designs have noted the growing gap and have

proposed ways to improve �le system performance.

Local client caching is a well-known technique to im-

prove read times. More recent cooperative caching

systems [10, 13, 23] have extended the caching model

to use memory of other workstations in the system to

improve the cache hit rate. Systems such as xFS [3]

have improved write performance by striping data

across the aggregate disk capacity of the system.

Other approaches are described in Section 8.

Our goal is to shrink the gap between �le sys-

tem performance and rapidly improving hardware

performance by introducing a new �le system ab-

straction that can capitalize on the large aggregate

idle resources of current distributed systems. We ex-

tend past approaches by allowing the application to

control the tradeo� between persistence and perfor-

mance.

2 Derby

In our previous work, we investigated a new �le sys-

tem design called Derby [15, 14] that used idle re-

mote memory for both read and write tra�c. Reads

and writes occurred at remote memory speeds while

providing the disk persistence necessary for database

transaction-oriented storage. Derby assumes a small

fraction of the workstations were equipped with

uninterruptable power supplies (Workstations with

UPS orWUPS). The system operates as follows. All

active data resides in memory. Read requests that

cannot be satis�ed from the local cache use a dy-

namic address table lookup to �nd the idle machine

that holds the data. The request is sent to a server

process on the remote machine that returns the data

from its memory. Write requests occur in a similar



manner but also send the written/modi�ed data to

one or more WUPS machines. The data is held tem-

porarily in WUPS memory until the server process

asynchronously writes the data to disk and informs

the WUPS that the newly written data can be re-

moved. By using WUPS for short-term persistence

and disks for long-term persistence, Derby achieves

disk persistence at remote memory speeds.

The advantage of Derby and similar main mem-

ory storage systems [18, 17, 24] is the ability to

achieve traditional disk persistence at memory-

speeds. However, disk persistence comes at a price.

Such systems require special purpose hardware such

as NVRAM or uninterruptable power supplies. In

Derby, disk persistence increases the communica-

tion overhead between clients, servers, and WUPS

servers. In addition, the disk system poses a po-

tential bottleneck because all write tra�c (includ-

ing small, frequent operations such as �le creation,

deletion, and other metadata changes) hits the disk.

Note that past �le system analysis shows average

�le lifetimes to be quite short (80% of �les and 50%

of bytes last less than 10 minutes [4]). Thus, many

�les are likely to be written to cache and disk, read

from the cache, and deleted, without ever being read

directly from disk. This unnecessarily consumes

CPU, bus, memory, disk bandwidth, and network

resources in a distributed �le system.

3 Enhancing Derby

Given the overhead and performance drawbacks as-

sociated with disk persistence, a �le system that of-

fers multiple persistence guarantees rather than a

\one-size-�ts-all model" has several potential ben-

e�ts. Consider the Unix Temporary File Sys-

tem (tmpfs) which stores data in the high-speed

(volatile) memory of the local machine and never

writes the data to disk. Despite the potential for

data loss, many applications are willing to take

that chance in exchange for fast �le access. Un-

fortunately, to use tmpfs, users must know where

the tmpfs �le system is mounted (assuming it is

mounted) and must selectively place their tempo-

rary �les in the tmpfs portion of the directory struc-

ture. This also forces logically related �les with dif-

ferent persistence requirements to be stored in dif-

ferent places. As another example, local �le systems

often delay writes to disk to improve performance.

In this case, all data eventually hits the disk, but

recently written data may be lost, often to the sur-

prise and dismay of the user. We conclude that ap-

plications are often willing to trade persistence for

performance and that a one-size-�ts-all persistence

model will be suboptimal for most applications. In

this paper, we develop a new �le system that sup-

ports a per-�le, selectable-persistence model.

Our analysis shows that the majority of data writ-

ten to the �le system can tolerate a persistence level

between tmpfs and disk persistence. Note, this does

not mean \the data will be lost" but rather that

we will accept a slightly higher probability of loss

in exchange for better performance. For example,

web-browser cache �les can be lost without ill e�ect.

Locally generated object �les (.o's) and output �les

from word processing and typesetting applications

can be easily regenerated or replaced. Likewise,

whether adding to or extracting from an archive �le

(for example, tar or zip), the resultant �le(s) can

be recreated as long as the original �le(s) survive.

Even �les initially retrieved by HTTP or FTP, if

lost, usually can be re-downloaded. Certainly, there

are exceptions to the above generalizations and so

a per-�le persistence model is necessary to provide

the correct persistence for atypical �les.

To quantify the amount of �le data that can take

advantage of a selectable persistence abstraction, we

snooped NFS tra�c on our computer science net-

works. The trace was conducted for 3 days and

recorded all NFS tra�c sent to our 5 �le server ma-

chines running Solaris 2.6. All user accounts reside

on the �le servers as is typical of many distributed

�le systems. The majority of activity consisted

of reading mail, browsing the web (browser cache

�les), editing/word-processing/typesetting, compil-

ing, and archiving (for example, tar and gzip). We

recorded the names of all �les opened for writing and

the number of bytes written to each �le. We then

classi�ed �les as requiring disk persistence or weak

persistence (something less than disk persistence). If

there was any doubt as to the persistence required by

a �le, we erred on the side of caution and classi�ed

the �le as requiring disk persistence stability. Note

that the amount of weakly persistent data would be

higher had tra�c to /tmp been captured as part of

this trace. The results of the study are reported in

Table 1.

File Type # of �les # of bytes

Weak persistence 24477 (75%) 4,410,711,305 (97%)

Disk persistence 8165 (25%) 116,717,201 (3%)

Table 1: Number of �les/bytes written or modi�ed.



Although 25% of �les required disk persistence,

most of these �les were small text �les (.h and .c

�les for example) created with an editor and did

not require memory-speed write performance. Disk-

persistent �les also only accounted for a small por-

tion of the total �le system write tra�c. Conversely,

weakly persistent �les made up the bulk of write traf-

�c, consisting of compiler and linker output, LaTeX

output (for example, .dvi, .log, and .aux �les), tar

�les, Netscape cache �les, and temporary �les cre-

ated by a variety of programs. From this we conclude

that a large percentage of write tra�c would trade

weaker persistence guarantees for performance. Fur-

thermore, we believe that the aggregate memory

space of current networks is ideal for storing weakly-

persistent data requiring fast access.

4 MBFS Overview

Our objective was to replace Derby's (and con-

ventional �le systems') one-size-�ts-all persistence

model with a con�gurable persistence model thereby

removing the need for non-volatile memory and the

other overheads of disk persistence. The new de-

sign, called MBFS (Memory Based File System), is

motivated by the fact that current distributed sys-

tems contain massive amounts of memory storage -

in many cases tens or hundreds of gigabytes. The

aggregate memory space, consisting of both local

and remote memory, can be used to provide high-

speed �le storage for a large portion of �le tra�c

that does not require conventional disk persistence.

These �les are often short lived and require fast ac-

cess. In MBFS, memory rather than disk serves as

the primary storage location for these �les. Disks,

tapes, writable CD's, and other high-latency devices

are relegated to the role of archival storage, out of

the critical path of most �le operations.

MBFS supports a continuum of persistence guar-

antees and allows applications to select the desired

persistence on a per-�le basis. Weaker persistence

guarantees result in better performance than strong

persistence guarantees, allowing applications with

weak persistence requirements to avoid the perfor-

mance penalties and overheads of conventional disk-

persistent models.

Because systems cannot guarantee persistence

(data will not be lost under any circumstance), they

actually only guarantee \the probability of persis-

tence" or \the probability the data will not be lost."

In conventional �le systems, persistence is de�ned

as (1-(probability of disk failure)) , whereas MBFS

supports any persistence probability. The di�culty

in supporting such a continuum lies in an applica-

tion's need to know exactly what each position in

the continuum means. For example, what does it

mean to select a persistence at the midpoint of the

continuum, halfway between \will lose the data im-

mediately" and \will keep multiple almost indestruc-

tible copies"? The midpoint de�nition depends on

the the devices used to store the data, their failure

characteristics, and if or when data is archived to

more persistent storage. Also, the same persistence

probability can be implemented di�erent ways. For

example, storing data in two NVRAM's may have an

equivalent persistence probability to storing the data

on an inexpensive disk. Exposing applications to the

details of the storage devices and their failure rates

is undesirable as it complicates the �le system in-

terface and ties the application to the environment,

thereby limiting application portability. As a result,

MBFS attempts to hide these details from the ap-

plication.

4.1 Storage Hierarchy

To clarify the \guarantees" provided at di�erent set-

tings of the persistence spectrum without binding

the application to a speci�c environment or set of

storage devices, MBFS implements the continuum,

in part, with a logical storage hierarchy. The hierar-

chy is de�ned by N levels:

1. LM (Local Memory storage): very high-

speed volatile storage located on the machine

creating the �le.

2. LCM (Loosely Coupled Memory stor-

age): high-speed volatile storage consisting of

the idle memory space available across the sys-

tem.

3. -N DA (Distributed Archival storage):

slower speed stable storage space located across

the system.

Logically, decreasing levels of the hierarchy are char-

acterized by stronger persistence, larger storage ca-

pacity, and slower access times. The LM level is sim-

ply locally addressable memory (whether on or o�

CPU). The LCM level combines the idle memory of

machines throughout the system into a loosely cou-

pled, and constantly changing, storage space. The

DA level may actually consist of any number of sub-

levels (denoted DA1; DA2; :::; DAn) each of increas-

ing persistence (or capacity) and decreasing perfor-

mance. LM data will be lost if the current machine



crashes or loses power. LCM data has the poten-

tial to be lost if one or more machines crash or lose

power. DA data is guaranteed to survive power out-

ages and machine crashes. Replication and error cor-

rection are provided at the LCM and DA levels to

improve the persistence o�ered by those levels.

Each level of the logical MBFS hierarchy is ul-

timately implemented by a physical storage device.

LM is implemented using standard RAM on the local

machine and LCM using the idle memory of work-

stations throughout the network. The DA sub-levels

must be mapped to some organization of the avail-

able archival storage devices in the system. The sys-

tem administrator is expected to de�ne the mapping

via a system con�guration �le. For example, DA-

1 might be mapped to the distributed disk system

while DA-2 is mapped to the distributed tape sys-

tem.

Because applications are written using the logical

hierarchy, they can be run in any environment, re-

gardless of the mapping. The persistence guarantees

provided by the three main levels of the hierarchy

(LM, LCM,DA1) are well de�ned. In general, appli-

cations can use the other layers of the DA to achieve

higher persistence guarantees, without knowing the

exact details of the persistence guaranteed; only that

it is better. For applications that want to change

their storage behavior based on the characteristics

of the current environment, the details of each DA's

persistence guarantees, such as the expected mean-

time-till-failure, can be obtained via a stat() call

to the �le system. Thus, MBFS makes the layering

abstraction explicit while hiding the details of the

devices used to implement it. Applications can con-

trol persistence with or without exact knowledge of

the characteristics of the hardware used to imple-

ment it.

Once the desired persistence level has been se-

lected, MBFS's loosely coupled memory system uses

an addressing algorithm to distribute data to idle

machines and employs a migration algorithm to

move data o� machines that change from idle to

active. The details of the addressing and migra-

tion algorithms can be found in [15, 14] and are also

used by the archival storage levels. Finally, MBFS

provides whole-�le consistency via callbacks similar

to Andrew[19] and a Unix security and protection

model.

4.2 File Persistence

The continuity of the persistence spectrum is pro-

vided by a set of per-�le time constraints (one for

each level of the storage hierarchy) that specify the

maximum amount of time that modi�ed data may

reside at each level before being archived to the next

level of the storage hierarchy. Since each level of the

storage hierarchy has increasing persistence guaran-

tees, the sooner data is archived to the next level,

the lower its possibility of loss. Conversely, if data

plans to linger in the higher levels, the chance of that

data surviving decreases. A daemon process tracks

modi�ed data at each storage level, archiving the

data to the next lower level within the prescribed

amount of time. When data is archived to the next

level, it continues to exist at the current level unless

space becomes scarce.

Conceptually, as the cost of recreating the data

increases, so should the �le's persistence level. For

example, while a �le may be relatively easy to re-

generate (for example, an executable compiled from

sources) and may never need to hit stable storage,

moving it to stable storage after some period of time

can prevent the need for the data to be regenerated

later (for example, after a power failure). If a �le

is highly active (i.e., being written frequently), such

as an object code �le (.o), the time delay prevents

the intermediate versions of the �le from being sent

to lower levels of the hierarchy but will ultimately

archive the data at some point in the future, after

the active period has �nished.

Although archiving of data to lower levels of the

hierarchy occurs at prede�ned time intervals, there

are several other events that can cause the archival

process to occur earlier than the maximum time du-

ration. First, the daemon may send the data to the

next level sooner than required if the archiving can

be done without adversely a�ecting other processes

in the system. Most networks of workstations expe-

rience an inactive period each night. Consequently,

modi�ed �les are often archived through all the lev-

els at the end of each day regardless of how long

their respective time constraints are. Second, some

storage levels such as LM and LCM are limited in

capacity. At such levels, modi�ed data may need to

be sent to the next level early to make room for new

data. Lastly, a modi�ed �le may be archived to sta-

ble storage (DA level) earlier than required if one of

the �le's dependencies is about to be changed (see

Section 6).

5 MBFS Interface

In order to support variable persistence guarantees,

we designed and implemented a new �le system ab-



straction with two major extensions to conventional

�le system interfaces: a storage abstraction exten-

sion and a reconstruction extension. The storage

abstraction extension allows programmers to spec-

ify the volatility of a �le. MBFS stores the low-level

volatility speci�cation as part of the �le's metadata

and uses callbacks to maintain metadata and block

consistency. The reconstruction extensions allows

the system to automatically recreate most data that

has been lost. The reconstruction extension is de-

scribed in Section 6.

Although the MBFS logical storage hierarchy al-

lows applications to specify the desired persistence,

programmers will not use the system or will not

make e�ective use of the system if the interface is

too complex or di�cult to select the correct persis-

tence/performance tradeo�. While we expect many

performance critical applications (for example, com-

pilers, typesetters, web browsers, archival and com-

pression tools, FTP) will be modi�ed to optimize

their performance using the new �le system abstrac-

tion, we would like to o�er MBFS's features to ex-

isting applications without the need to change them.

In short, we would like to simplify the interface with-

out sacri�cing functionality. To that end, we use a

multi-level design: a kernel-level raw interface that

provides full control over the MBFS logical stor-

age hierarchy and programmer-level interfaces that

build on the raw level to provide an easy-to-use in-

terface to applications. The following describes the

raw kernel-level interface and two programmer-level

interfaces, the category interface and the �lename

matching interface. Note that additional interface li-

braries (such as �le mean-time-to-failure) could also

be implemented on top of MBFS's raw interface.

Each library is responsible for mapping their respec-

tive volatility speci�cations to the low-level storage

details that the kernel interface expects. Although

we describe our extensions as enhancements to the

conventional �le system abstraction, the extension

could also be cleanly incorporated into emerging ex-

tensible �le system standards such as the Scalable

I/O Initiative's proposed PFS[8].

5.1 Kernel Interface

The kernel interface provides applications and ad-

vanced programmers with complete control over the

lowest-level details of MBFS's persistence speci�ca-

tion. Applications can select the desired storage

level and the amount of time data may reside at

a level before being archived. Applications must be

rewritten to take advantage of this interface. For

this interface, only the open() routines are modi-

�ed to provide volatility speci�cation and to support

the reconstruction extension.1 Consequently, a �le's

volatility speci�cation can be changed only when a

�le is opened. The open() call introduces two new

parameters: one for specifying the volatility and one

for specifying the reconstruction extension. The re-

construction parameter is discussed in Section 6.1.

The volatility speci�cation de�nes a �le's per-

sistence requirements at various points in its life-

time. The volatility speci�cation consists of a count

and a variable size array of mbfs storage level struc-

tures described below. Each entry in the array cor-

responds to a level in the logical storage hierar-

chy (LM, LCM, DA1; :::; DAn). A NULL volatility

speci�cation is replaced by a default volatility spec-

i�cation de�ned by a system or user con�guration

�le. The default volatility speci�cation is typically

loaded into the environment by the login shell or

read by a call to a C-level library.

typedef struct {

struct timeval time_till_next_level;

void *replication_type;

} mbfs_storage_level;

time till next level: Speci�es the maximum

amount of time that newly written or modi�ed

data can reside at this level without being

archived to the next level of the hierarchy. Val-

ues greater than or equal to 0 mean that write()

operations to this level will return immediately

and the newly written data will be archived to

the next level within time till next level time.

Two special values of time till next level can

be used to block future write() and close()

operations. UNTIL CLOSE (�1) blocks the

close operation until all �le blocks reach the

next level. BEFORE WRITE (�2) blocks

subsequent write() operations at this level until

the data reaches the next level.

replication type: This is used to specify the type

of replication to use at this level.

For increased persistence, availability, and perfor-

mance, MBFS supports data replication and striping

as speci�ed by the replication type �eld. The repli-

cation type �eld de�nes the type and degree of repli-

cation used for that level as de�ned by the following

structure:
1If the system supports other �le open or �le creation sys-

tem calls (for example, the Unix creat() call), these calls also

need to be modi�ed to include a volatility and reconstruction

extension



typedef struct {

int Type;

int Degree;

} mbfs_replication;

Type: A literal corresponding to the desired form

of replication selected from SINGLE COPY,

MIRRORING, and STRIPING [22]. SIN-

GLE COPY provides no replication. MIR-

RORING saves multiple copies on di�erent ma-

chines. STRIPING distributes a single �le and

check bits across multiple machines. The de-

fault is SINGLE COPY.

Degree: The number of machines to replicate the

data on. If Type is SINGLE COPY this �eld is

ignored. If MIRRORING, it de�nes the number

of copies. If STRIPING, it de�nes the size of the

stripe group.

Mirroring and striping increase reliability by en-

suring data persists across single machine or disk

failures. Because unexpected machine failures are

not uncommon in a distributed system (for exam-

ple, the OS crashes, a user accidentally or intention-

ally reboots a machine, user accidentally unplugs

machine), replication at the LCM level greatly in-

creases the probability LCM data will survive these

common failures.

The kernel-level interface also requires modi�ca-

tions to the system calls used to obtain a �le's status

or a �le system's con�guration information (for ex-

ample, stat() and statvfs() in Solaris). For applica-

tions requiring complete knowledge of the environ-

ment, MBFS returns information about a �le's per-

sistence requirement, reconstruction information, or

the estimated mean time to failure of each of the DA

levels based on manufacturer's speci�cations. The

raw kernel-level interface provides full control over a

�le's persistence, but this control comes at the price

of elegance and requires that the application provide

a substantial amount of detailed information on each

open() call.

5.2 Category Interface

To simplify the task of specifying a persistence guar-

antee, the MBFS interface includes a user-level li-

brary called the category interface. The premise of

the category interface is that many �les have similar

persistence requirements that can be classi�ed into

persistence categories. Thus, the category interface

allows applications to select the category which most

resembles the �le to be created. Category names are

prede�ned or user-de�ned ASCII character strings

that are speci�ed in the open() call. The open() call

optionally also takes a reconstruction parameter like

the kernel interface.

The category library maps category names to full

volatility speci�cations and then invokes the raw

kernel-level interface. The mapping is stored in a

process' environment variables which are typically

loaded at login from a system or user-speci�c cat-

egory con�guration �le. The environment variable

is a list of (category name, volatility speci�cation)

pairs.

The system con�guration �le must minimally de-

�ne the categories listed below to ensure portability

of applications. Programmers and applications may

also create any number of additional custom cate-

gories. The (minimal) system categories are divided

into two sets. The �rst set de�nes categories based

on the class of applications that use the �le. The sec-

ond set de�nes categories that span the persistence

continuum. The continuum categories are useful for

�les that do not obviously fall into any of the prede-

�ned application classes. The application categories

are:

EDITED: Files that are manually created or man-

ually edited and typically require strong per-

sistence (for example, source code �les, email

messages, text documents, word processing doc-

uments).

GENERATED: Files generated as output from

programs that require very weak persistence be-

cause they can be easily recreated (for example,

object �les, temporary or intermediate �le for-

mats such as *.aux, *.dvi, *.log, and executables

generated from source code).

MULTIMEDIA: Video, audio, and image �les

that are down-loaded or copied (as opposed to

edited or captured multimedia data) such as gif,

jpeg, mpeg, or wav �les.

COLLECTION: A collection of �les (archive) cre-

ate from other �les in the system or down-load

(for example, *.Z, *.gz, *.tar, *.zip)

DATABASE: Database �les often of large size,

requiring strong persistence, high-availability,

and top performance.

Categories that span the persistence spectrum are

(from most volatile to least volatile):

DISPOSABLE: Data that is to be immediately

discarded (such as /dev/null).



TEMPORARY: Temporary �les that can be dis-

carded if necessary and which will not reach

DA1.

EVENTUAL: Data can be easily recreated but

should reachDA1 if it lives long enough (several

hours or more).

SOMETIME: Reconstructable data that is likely

to be modi�ed or deleted soon. If the data is

not modi�ed soon, the data should be archived

to DA1 relatively soon to minimize the need

for reconstruction (repeatedly generated object

�les).

SOON: Data that should be sent to DA1 as soon

as possible, but it is not a disaster if the data is

lost within a few seconds of the write.

SAFE: Data is guaranteed to be written to DA1

before the write operation completes.

ROBUST: Data is stored at two or more DA levels.

PARANOID: Data is replicated at multiple DA

levels of the storage hierarchy.

5.3 Filename Matching Interface

The �lename matching interface does not require

any changes or extensions to the conventional

open() operation in order to obtain variable persis-

tence guarantees. Instead, it determines the volatil-

ity speci�cation from the �lename. The �lename

matching interface allows the user to de�ne cate-

gories of �les based on �lenames. Consequently, ap-

plications (or existing software libraries) need not

be rewritten to use the �lename matching interface.

To take advantage of MBFS's variable persistence,

applications can either be re-linked or can install an

open system call hook that intercepts all open oper-

ations and redirects them to the �lename matching

library. This allows legacy applications to bene�t

from MBFS's variable persistence model without be-

ing modi�ed in any way.

The �lename matching library maps �lenames to

full volatility speci�cations needed by the kernel.

Like the category interface, the mapping is stored in

environment variables loaded from system or user-

de�ned con�guration �les. The mapping consists

of (regular expression, volatility speci�cation) pairs.

At open time, the library matches the �lename being

opened to a regular expression in the environment.

If successful, the library uses the associated volatil-

ity speci�cation, otherwise a default persistence is

assigned.

5.4 Metadata and Directories

In most �le systems, write() operations modify both

the �le data and the �le's metadata (for example,

�le size, modi�cation time, access time). Although

it is possible to allow separate persistence guaran-

tees for a �le's metadata and data, if either the

metadata or the data is lost, the �le becomes un-

usable. Moreover, separate volatility speci�cations

only complicates the �le system abstraction. Con-

sequently, MBFS's volatility speci�cations apply to

both the �le's data and its metadata.

A similar problem arises is determining how the

volatility for directories is speci�ed. In MBFS, di-

rectory volatility de�nitions di�er from �le volatility

in two important ways.

First, all modi�cations to directory information

(e.g., �le create/delete/modify operations) must

reach the LCM immediately so that all clients have

a consistent view of directory information. Only the

metadata needs to be sent to LCM. The �le's mod-

i�ed data can stay in the machine's LM if the �le's

metadata was sent to the LCM and a callback is reg-

istered with the LCM, and the �le's LM timeout has

not occurred.

Second, a directory inherits its volatility speci�-

cation from the most persistent �le created, deleted,

or modi�ed in the directory since the last time the

directory was archived. If a �le is created with

a volatility speci�cation that is \more persistent"

than the directory's current volatility speci�cation,

the directory's speci�cation must be dynamically up-

graded. If the directory was lost and the directory's

persistence wasn't greater than or equal to its most

persistent �le, the �le would be lost from the di-

rectory (even if the �le's data is not lost). Once

the directory is archived to level N , the directory's

volatility speci�cation for level N can be reset to in-

�nity. This produces optimal directory performance.

Assigning stronger persistence guarantees to directo-

ries than the �les they contain degrades performance

and wastes resources because of the unnecessary per-

sistence costs.

6 Reconstruction

The volatile nature of MBFS may result in lost

�le data due to unexpected failures. To encour-

age programmers and applications to select weaker

persistence guarantees, MBFS aids in the process of

restoring lost data. It should be noted that restora-

tion is a mechanism that is applicable to many, but



not necessarily all, �les. In other words, the restora-

tion mechanism cannot guarantee successful recon-

struction. Some aspects of the environment (for ex-

ample, date, time, software versions, access to the

network) in which the program was originally run

may be impossible to capture or recreate and may

render reconstruction impossible. In these few cases,

manual reconstruction or disk persistence should be

used. However, if data is committed to stable stor-

age within some reasonably short period of time,

such as 24 hours, the environment is unlikely to

change signi�cantly during the volatile interval when

reconstruction may be necessary. Therefore, we be-

lieve a large percentage of performance-critical �les

can use the reconstruction mechanism to achieve im-

proved performance without fear of data loss or man-

ual restoration.

MBFS supports two methods for restoring lost

data: manual reconstruction and automatic recon-

struction. The most obvious and painful method is

manual reconstruction in which users manually re-

runs the program that originally created the lost �le.

The second approach relieves the user of this burden

by having the �le system automatically reconstruct

lost �les after system failures. Prior to a failure, the

user or application speci�es the information needed

to reconstruct the volatile �le. Using this informa-

tion, the �le system automatically reconstructs the

lost data by re-executing the appropriate program

in a correct environment.

6.1 The Reconstruction Extension

The MBFS open() call in the kernel, category, and

�lename matching interfaces optionally support a

reconstruction parameter de�ned by the following

structure:

typedef struct {

char *reconstruction_rule;

envp *environment[];

int num_dependencies;

char *dependencies[];

int data_freshness;

Bool reconstruct_immediately;

} mbfs_reconstruction;

reconstruction rule: A string containing the

command-line that the system should execute

to reconstruct the �le.

environment: An array of environment variables

and values to be set in the shell before invoca-

tion of this �le's reconstruction rule. If NULL,

the current environment in assumed.

data freshness: Speci�es how \up-to-date" the

contents should be with respect to it's depen-

dencies:

� LATEST DATA - This corresponds to a

guarantee that the �le will always contain

the newest possible data. The �le should

be reconstructed if any of its dependencies

have changed. This feature can be used to

implement intentional �les.

� VERSION DATA - The system guaran-

tees that some version of the �le data

exists, not necessarily the latest. Unlike

LATEST DATA, the �le's contents are not

regenerated when a dependency changes.

Only if the data is lost will the data be re-

generated. If a dependency is deleted, the

reconstruction rule cannot be executed, so

the system immediately archives the data

to an DA level to ensure its persistence.

� OLD DATA - This guarantees that the

�le's contents will be based on versions

of the dependencies as they existed at the

time the �le was created. Before the sys-

tem will allow a dependency to be changed

or deleted, the system will ensure the data

reaches an DA level because reconstruction

might produce di�erent data.

reconstruct immediately: A boolean specifying

when the system should execute the �le's re-

construction rule.

� TRUE - The system will invoke the recon-

struction rule as soon as lost �le data is

detected or, if LATEST DATA is selected,

as soon as a dependency is changed.

� FALSE - The system may postpone the in-

vocation of the reconstruction rule for any

amount of time up until the �le is refer-

enced. This is the default.

num dependencies: The number of entries in the

dependency array.

dependencies: An array of entries corresponding

to the MBFS �les on which the given �le is de-

pendent.

With the inclusion of dependencies and the LAT-

EST DATA freshness quality, the reconstruction ex-

tension naturally provides an automatic form of the



Unix \make" utility and provides a form of inten-

sional �les. While an automatic \make" is useful in

some circumstances, users may still invoke the stan-

dard make utility manually.

6.2 Reconstruction Environment

The system must determine on which machine the

rule should be run. Remembering the machine that

created the �le is useful but not su�cient. First, the

original machine may be down or heavily load at

reconstruction time. Second, the original machine's

environment may have changed since the �le was cre-

ated. Before a reconstruction rule is saved, MBFS

collects the architecture and operating system of the

machine and stores them with the reconstruction

rule. At reconstruction time, the system searches

for machines satisfying both architecture and OS,

and chooses one of them on which to run the re-

construction rule. If no machine is found, an error

message is sent to the owner of the �le saying the

�le could not be reconstructed.

7 MBFS Prototype

To quantify the potential performance gains of a

variable persistence model, we implemented a pro-

totype MBFS system with support for LM, LCM,

and DA1 (via disks). The prototype runs on Solaris

and Linux systems. The current prototype does not

yet support the reconstruction extension. We then

ran tests using �ve distinct workloads to evaluate

which data can take advantage of variable persis-

tence and to quantify the performance improvements

that should be expected for each type of workload.

Our tests compared MBFS against NFS version 3,

UFS (local disk), and tmpfs. Only one point for

UFS and tmpfs per graph are provided since dis-

tributed scalability is not an issue associated with

localized �le systems. In all but the edit test, no

�le data required disk persistence and typical per-

formance improvements were in the range of three

to seven times faster than NFS v3 with some tests

almost two orders of magnitude faster.

The MBFS server runs as a multi-threaded user-

level Unix process, experiencing standard user-level

overheads (as opposed to the NFS server which is

in-kernel). Putting the MBFS in-kernel and using

zero-copy network bu�er techniques would only en-

hance MBFS's performance. The MBFS server runs

on both Solaris and Linux. An MBFS server runs

on each machine in the system and implements the

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

A
ve

ra
ge

 n
um

be
r 

of
 s

ec
on

ds
 p

er
 c

lie
nt

Number of clients

10M Private File Write Scalability

local disk

tmpfs

nfs v3
mbfs

(a) Run-time scalability

(b) Operation Improvement

Figure 1: Results of the large write throughput test.

LCM, and DA1 storage levels. The LCM compo-

nent monitors the idle resources, accepts LCM stor-

age/retrieval requests, and migrates data to/from

other servers as described in [14]. Similarly, the

DA1 component uses local disks for stable storage

and employs an addressing algorithm similar to that

used by the LCM. To eliminate the improvements

resulting from multiple servers (parallelism) and in-

stead focus on improvements caused by variable per-

sistence, we only ran a single server when comparing

to NFS.

The MBFS client is implemented as a new �le sys-

tem type at the UNIX VFS layer. Solaris and Linux

implementations currently exist. MBFS clients redi-

rect VFS operations to the LCM system or service

them from the local cache. The system currently

uses the �lename-matching interface. The current

implementation does not yet support callbacks, so

the time till next level of LM must be 0 so data is

ushed to the LCM to ensure consistency. The sys-



0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 n
um

be
r 

of
 s

ec
on

ds
 p

er
 c

lie
nt

 (
m

in
us

 C
P

U
 c

om
pi

la
tio

n 
tim

e)

Number of clients

Andrew Benchmark Scalability

local disk

tmpfs

nfs v3
mbfs

(a) Run-time scalability

(b) Operation Improvement

Figure 2: Results of the Andrew Benchmark.

tem currently provides the same consistency guar-

antees as NFS. Callbacks would improve the MBFS

results shown here because �le data could stay in the

LM without going over the network. Replication is

not currently supported by the servers. Commu-

nication with the LCM is via UDP using a simple

request-reply protocol with timeouts and retrans-

missions.

7.1 Solaris Results

The MBFS and NFS servers were run on a

SPARC 20 with 128 MB of memory and a Seagate

ST31200W disk with a 10ms average access time.

We ran up to 10 simultaneous client machines on

each server. Each client was a SPARC 20 with

64 MB of memory and a 10ms Seagate local disk

(for the UFS tests). Tmpfs tests used the stan-

dard UNIX temp �le system. All machines were

connected by a 100 Mbps Ethernet and tests were

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 n
um

be
r 

of
 s

ec
on

ds
 p

er
 c

lie
nt

Number of clients

Small file create/write/delete Scalability

local disk

tmpfs

nfs v3
mbfs

(a) Run-time scalability

(b) Operation Improvement

Figure 3: Results of the small �le cre-

ate/write/delete test.

run during the evening hours when the network was

lightly loaded. We computed con�dence intervals

for each test. The con�dence intervals were typi-

cally within 5% of the total runtime and as a result

are not shown in the graphs.

Five tests with di�erent workloads were run: (1)

write throughput for large �les, (2) small �le cre-

ate/write/delete throughput, (3) a mixture of �le

and directory creation with large and small �les, (4)

a manual edit test, and (5) the Andrew Benchmark.

Each of the tests focused on write tra�c to �les or di-

rectories. Read tra�c was minimal and did not con-

tribute to any speedups observed. Each test was run

several times and averaged. The results show two

graphs: (1) a line-graph illustrating the scalability of

MBFS versus NFS in terms of total runtime, and (2)

a pie-chart of the 10-client test describing how much

each operation contributed to the overall speedup.

Each slice of the pie-chart depicts the percentage of

runtime improvement caused by that operation. The



0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 n
um

be
r 

of
 s

ec
on

ds
 p

er
 c

lie
nt

Number of clients

tcl7.5 untar Scalability

local disk

tmpfs

nfs v3
mbfs

(a) Run-time scalability

(b) Operation Improvement

Figure 4: Results of the untar test.

numbers in parenthesis list the average speedup over

NSF for the operation. The �rst number in the pair

gives the absolutes speedup in milliseconds and the

second number gives the relative speedup in terms

of a percentage (NFStime�MBFStime

NFStime
).

To measure the baseline write performance, we

used a large-write throughput test. Each client cre-

ates a copy of an existing 10 MB �le. Because the

new �le is a copy, disk persistence is not required.

The original 10 MB �les is preloaded into the client

cache to eliminate read tra�c from the test. Fig-

ure 1(a) shows that MBFS performs better than

NFS (despite NFS's use of asynchronous writes) be-

cause of contention at the disk. Note that as the

number of clients increases, the server's maximum

receive rate quickly becomes the bottleneck in this

test. Figure 1(b) shows that 91% of the overall run-

time savings were due to improved write operations,

with 9% of the improvement arising from the fact

the MBFS does not issue a �nal commit operation.

In other words, even when writes are asynchronous,

the server response time is signi�cantly slower than

MBFS memory-only writes.

Figure 2(a) shows the results of the Andrew

Benchmark that tests several aspects of �le system

performance: making directories, copying �les to

those directories, scanning the directories, read the

�le contents, and perform a compilation. To more

accurately isolate the �le system performance, we

subtracted the CPU time used by the compiler dur-

ing the compilation phase. Because all the data

and directories are generated or copied, none of

the writes required disk persistence. Improvements

range from 40% with one client (a perceivable im-

provement to the user) to as much as 64%. Fig-

ure 2(b) clearly illustrates that all savings come from

operations that typically require disk persistence:

mkdir, create, write, setattr, and commit.

Figure 3(a) shows the results of the small �le test

where each client repeatedly (100 times) creates a

�le, writes 1K of data, and deletes the �le. The test

measures directory and metadata performance and

models applications that generate several small �les

and then deletes them (for example, compilers). The

results are extremely impressive with MBFS process-

ing 313 �les per second compared with NFS's 13 per

second at 10 clients.

Figures 4(a) and 4(b) show the results of untaring

the TCL 7.5 source code. Untar is an I/O bound

program that creates multiple directories and writes

a variety of �le sizes (all easily recreatable from the

tar �le). Again, the results are perceivably faster to

the user.

In all the tests MBFS outperformed both NFS

and UFS (local disks). More surprising is how of-

ten MBFS challenged tmpfs performance despite

the lack of callbacks in the current implementation.

Similar performance tests were performed in a Linux

environment with even better results since Linux's

NFS version 2 does not support asynchronous writes.

Finally, we ran an edit test in which we edited

various �les, composed email messages, and created

web pages. All �les required disk persistence. As ex-

pected there was no, or minimal, performance gains.

8 Related Work

Several researchers have investigate high-speed per-

sistent storage techniques to improve write perfor-

mance. Remote memory systems have also been

proposed as a high-speed �le caches. The following



briey describes this related work.

8.1 Persistence vs. Performance

The performance penalties of a disk-persistent �le

storage model are well known and have been ad-

dressed by several �le systems [3, 18, 6, 9, 5, 25, 20].

Unlike the application-aware persistence design we

propose, the following systems have attempted to

improve performance without changing the conven-

tional one-size-�ts-all disk-persistence �le system ab-

straction.

The xFS �le system [3] attempts to improve write

performance by distributing data storage across mul-

tiple server disks (i.e., a software RAID [22]) using

log-based striping similar to Zebra [16]. To maintain

disk-persistence guarantees, all data is written to the

distributed disk storage system. xFS uses metadata

managers to provide scalable access to metadata and

maintain cache consistency. This approach is partic-

ularly useful for large writes but does little for small

writes.

The Harp[18] and RIO[6] �le systems take an ap-

proach similar to the one used by Derby. High-speed

disk persistence is provided by out�tting machines

with UPS's to provide non-volatile memory storage.

Harp also supported replication to improve availabil-

ity. However, Harp used dedicated servers as op-

posed to Derby which uses the idle memory of any

machine. RIO uses non-volatile memory to recover

from machine failures and could be used to imple-

ment the non-volatile storage of Harp or Derby. Al-

ternatively it could be used to implement memory-

based writes on an NFS �le server, but would not

take advantage of the idle aggregate remote memory

storage space like DERBY. Also, because RIO does

not ush data to disk (unless memory is exhausted),

UPS failures may result in large data losses. Because

Derby only uses UPS's as temporary persistent stor-

age, UPS failures are less catastrophic.

Other systems have introduced the concept of de-

layed writes (asynchronous writes) to remove the

disk from the critical path. For example, conven-

tional Unix �le systems use a 30-second delayed-

write policy to improve write performance but create

the potential for lost data. Similarly, Cortes et al.

[9] describe a distributed �le system called PAFS

that uses a cooperative cache and has cache servers

and disk servers. To remove disks from the critical

path, PAFS performs aggressive prefetching and im-

mediately acknowledges �le modi�cations once they

are stored in the memory of a cache server. Cache

servers use a UNIX-like 30 second delayed write pol-

icy at which point they send the data to a disk server.

The Sprite [20] �le system assumed very large dedi-

cated memory �le servers and wrote all data to disk

on a delayed basis creating the potential for lost

data. A special call to ush data to disk could be

invoked for applications worried about persistence.

NFS version 3 [5] introduced asynchronous writes

whereby the NFS server would place asynchronous

writes in memory, acknowledge the write requests,

and immediately schedule the new data block to be

written to disk. Before an NFS client can close a

modi�ed �le, the client would issue a commit oper-

ation to the NFS server. The NFS server will not

acknowledge the commit until all the �le's modi�ed

blocks have been committed to disk. The Bullet �le

server [25] provides a \Paranoia Factor" which when

set to zero provides the equivalent of asynchronous

writes. For other values, N, of the paranoia factor,

the Bullet �le server would replicate the �le on N

disks. Both NFS and Bullet write all data to disk,

even short lived �les. Tmpfs implements a ramdisk

and makes no attempt to write data to disk. Tmpfs

users understand that tmpfs �les are volatile and

may be lost at any time.

8.2 Remote Memory Storage

A signi�cant amount of the large aggregate memory

capacity of a network of workstations is often idle.

O�-the-shelf systems provide access to this idle re-

mote memory an order of magnitude faster than disk

latencies. Therefore, many systems have been devel-

oped to make use of idle memory capacity, primarily

for paging and caching.

Comer and Gri�oen [7] introduced the remote

memory model in which client machines that exhaust

their local memory capacity paged to one of a set

of dedicated remote memory servers. Each client's

memory was private and inaccessible even if it was

idle. Data migration between servers was not sup-

ported.

Felten and Zahorjan [11] enhanced the remote

memory model to use any idle machine. Idle client

machines advertise their available memory to a cen-

tralized registry. Active clients randomly chose one

idle machine to page to. Like [7], data was not mi-

grated among idle clients.

Dahlin et al. [10] describe an N-Chance Forward-

ing algorithm for a cooperative cache in which the

�le caches of many client machines are coordinated

to form a global cache. N-Chance Forwarding tries

to keep as many di�erent blocks in global memory

as it can by showing a preference for singlets (single



copies of a block) over multiple copies. The cache

only stores clean (unmodi�ed) blocks. Thus, all �le

block modi�cations are written to the �le server's

disk. A similar approach is used in xFS[3] and

PAFS[9].

Feeley et al. [13] describe the Global Memory

Service (GMS) system that integrates global mem-

ory management at the lowest level of the operat-

ing system enabling all system and higher-level soft-

ware, including VM and the �le cache, to make use

of global memory. GMS uses per node page age in-

formation to approximate global LRU on a coopera-

tive cache. Like N-Chance Forwarding, GMS's only

stores clean �le blocks and so all �le writes must hit

the �le server's disk.

Hartman and Sarkar [23] present a hint-based co-

operative caching algorithm. Previous work such as

N-Chance Forwarding [10] and GMS [13] maintain

facts about the location of each block in the coop-

erative cache. Although block location hints may

be incorrect, the low overhead needed to maintain

hints outweighs the costs of recovering from incor-

rect hints. All �le modi�cations are written to the

�le server's disk so that if a hint is missing or incor-

rect, a client can always retrieve a block from the

server. Using hints, block migration is done in a

manner similar to that of GMS [13]. Unlike MBFS,

none of the above systems considers a client's CPU

or memory load when deciding the movement or re-

placement of pages.

Franklin et al. [12] use remote memory to cache

distributed database records and move data around

using an algorithm similar in nature to that of N-

chance forwarding. Client load was not considered

by the data migration mechanism.

The Trapeze network interface [2] provides an ad-

ditional order of magnitude improvement in remote

memory latencies versus disk latencies by improving

the network subsystem.

8.3 Application Aware Storage

The Scalable I/O Initiative (SIO), introduced a new

�le system interface [8] for parallel �le systems.

The interface enables direct client control over client

caching algorithms, �le access hints, and disk layout.

As such, it is a suitable platform for integrating our

proposed variable persistence model.

9 Summary

In this paper we presented a new �le system ab-

straction for memory-based �le management sys-

tems. The abstraction is unique in the fact that

it allows applications or users to control �le persis-

tence on a per-�le basis. Applications that can tol-

erate weak persistence can achieve substantial per-

formance improvements by selecting memory-based

storage. The new abstraction has two major ex-

tensions to conventional �le systems abstractions.

First, applications can de�ne a �le's persistence re-

quirements. Second, applications can specify rules

to reconstruct �le data in the unlikely event that

it is lost. Analysis of current �le systems indicates

that a large percentage of write tra�c can bene�t

from weak persistence. To support large amounts

of data with weak persistence guarantees, we devel-

oped a high-speed loosely-coupled memory storage

system that utilizes the idle memory in a network of

workstations. Our prototype implementation of the

MBFS system running on Solaris and Linux systems

shows applications speedups of an order of magni-

tude or more.

10 Acknowledgments

We would like to thank the anonymous reviewers for

their helpful comments. We would also like to thank

our shepherd, Darrell Long, for his insightful sugges-

tions and comments. Also thanks to the CS570 class

for using the system during the fall 1998 semester.

References

[1] A. Acharya, G. Edjlali, and J. Saltz. The Utility of

Exploiting Idle Workstations for Parallel Computa-

tion. In Proceedings of 1997 ACM Sigmetrics Inter-

national Conference on Measurement and Modeling

of Computer Systems, Seattle, June 1997.

[2] D. C. Anderson, J. S. Chase, S. Gadde, A. J. Gal-

latin, K. G. Yocum, and M. J. Feeley. Cheat-

ing the I/O bottleneck: Network storage with

Trapeze/Myrinet. In Proceedings of the USENIX

1998 Annual Technical Conference, pages 143{154,

Berkeley, USA, June 15{19 1998. USENIX Associ-

ation.

[3] T. Anderson, M. Dahlin, J. Neefe, D. Patterson,

D. Roselli, and R. Wang. Serverless Network File

Systems. In Proceedings of the 15th ACM Sympo-

sium on Operating Systems Principles, December

1995.



[4] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.

Shirri�, and J. K. Ousterhout. Measurements of

a distributed �le system. In Proceedings of 13th

ACM Symposium on Operating Systems Principles,

pages 198{212. Association for Computing Machin-

ery SIGOPS, October 1991.

[5] B. Callaghan, B. Pawlowski, and P. Staubach. NFS

Version 3 Protocol Speci�cation, June 1995. RFC

1813.

[6] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock,

G. Rajamani, and D. Lowell. The Rio �le cache:

Surviving operating systems crashes. In Seventh In-

ternational Conference on Architectural Support for

Programming Languages and Operating Systems,

pages 74{83, Cambridge, Massachusetts, 1{5 Oct.

1996. ACM Press.

[7] D. Comer and J. Gri�oen. A New Design for

Distributed Systems: The Remote Memory Model.

In The Proceedings of the 1990 Summer USENIX

Conference, pages 127{136. USENIX Association,

June 1990.

[8] P. Corbett, J. Prost, J. Zelenka, C. Demetriou,

E. Riedel, G. Gibson, E. Felten, K. Li, Y. Chen,

L. Peterson, J. Hartman, B. Bershad, and A. Wol-

man. Proposal for a Common Parallel File System

Programming Interface Part I Version 0.62, August

1996.

[9] T. Cortes, S. Girona, and J. Labarta. Avoiding the

cache-coherence problem in a parallel/distributed

�le system. In Proceedings of the High-Performace

Computing and Networking, pages 860{869, Apr.

1997.

[10] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and

D. A. Patterson. Cooperative Caching: Using Re-

move Client Memory to Improve File System Per-

formance. In Proceedings of the First Symposium

on Operating Systems Design and Implementation,

pages 267{280, November 1994.

[11] E. W. Felten and J. Zahorjan. Issues in the Im-

plementation of a Remote Memory Paging System.

Technical Report 91-03-09, Department of Com-

puter Science and Engineering, University of Wash-

ington, March 1991.

[12] M. Franklin, M. Carey, and M. Livny. Global Mem-

ory Management in Client-Server DBMS Architec-

tures. In 18th International Conference on Very

Large Data Bases, 1992.

[13] M. Freeley, W. Morgan, F. Pighin, A.Karlin, and

H. Levy. Implementing Global Memory Manage-

ment in a Workstation Cluster. In Proceedins of

the 15th ACM Symposium on Operating Systems

Principles, December 1995.

[14] J. Gri�oen, T. Anderson, and Y. Breitbart. A

Dynamic Migration Algorithm for a Distributed

Memory-Based File Management System. In Pro-

ceedings of the IEEE 7th International Workshop

on Research Issues in Data Engineering, April 1997.

[15] J. Gri�oen, R. Vingralek, T. Anderson, and Y. Bre-

itbart. Derby: A Memory Management System for

Distributed Main Memory Databases. In The Pro-

ceedings of the IEEE 6th International Workshop

on Research Issues in Data Engineering (RIDE

'96), February 1996.

[16] J. Hartman and J. Ousterhout. Zebra: A Striped

Network File System. In Proceedings of the Usenix

File System Workshop, pages 71{78, May 1992.

[17] H. V. Jagadish, D. Lieuwen, R. Rastogi, A. Sil-

berschatz, and S. Sudarshan. Dali: A High Perfor-

mance Main Memory Storage Manager. In Proceed-

ings of the VLDB Conference, 1994.

[18] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson,

L. Shrira, and M. Williams. Replication in the Harp

�le system. In Proceedings of 13th ACM Sympo-

sium on Operating Systems Principles, pages 226{

38. Association for Computing Machinery SIGOPS,

October 1991.

[19] J. Morris, M. Satyanarayanan, M. Conner,

J. Howard, D. Rosenthal, and F. Smith. Andrew:

A Distributed Personal Computing Environment.

CACM, 29:184{201, March 1986.

[20] M. Nelson, B. Welch, and J. Ousterhout. Caching in

the Sprite network �le system. ACM Transactions

on Computer Systems, 6(1):134{154, Feb. 1988.

[21] J. K. Ousterhout. Why Aren't Operating Systems

Getting Faster As Fast as Hardware? In Pro-

ceedings of the Summer 1990 USENIX Conference,

pages 247{256, June 1990.

[22] D. Patterson, G. Gibson, and R. Katz. A Case for

Redundant Arrays of Inexpensive Disks (RAID). In

ACM SIGMOD 88, pages 109{116, June 1988.

[23] P. Sarkar and J. Hartman. E�cient Cooperative

Caching using Hints. In Proceedings of the Second

Symposium on Operating Systems Design and Im-

plementation, pages 35{46, October 1996.

[24] M. Satyanarayanan, H. H. Mashburn, P. Kumar,

D. C. Steere, and J. J. Kistler. Lightweight recover-

able virtual memory. In B. Liskov, editor, Proceed-

ings of the 14th Symposium on Operating Systems

Principles, pages 146{160, New York, NY, USA,

Dec. 1993. ACM Press.

[25] R. van Renesse, A. S. Tanenbaum, and A. Wilschut.

The Design of a High Performance File Server. Pro-

ceedings of the IEEE 9th International Conference

on Distributed Computing Systems, 1989.


