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Abstract

With the development of new client-server computing
models, such as thin clients and network computers, the
performance of servers becomes a bottleneck. In these
models, servers support a large number of clients. They
download significant amounts of data to their clients in
the form of graphics, executables (e.g., applets), and
video. We present an architecture for building high-
performance server systems that can efficiently serve
large local clusters of NCs or other clients. The key com-
ponent in our architecture is a genericcache module that
is designed to fully utilize available bus bandwidth. Our
experiments show that such a server system can achieve
throughput rates of up to 36,000 transactions per second.
We detail the design and implementation of the generic
cache component, describe its use in the implementation
of a sample server system, and show how the architecture
can be scaled.

1 Rationale

In the future, we envision local networks serving thou-
sands up to hundreds-of-thousands of resource-poor
clients, e.g., NCs. These networks might be intra-
building, intra-organization or even intra-city. Customiz-
able servers will be required that nevertheless offer ex-
tremely high performance.

The low cost and variety of future clients (e.g., PDAs,
laptops, pagers, printers, and specialized appliances) will
result in a larger number of client devices per user. Each
office employee could have tens of client devices. Thin
clients will have fast processors, but little or no disk stor-
age so that they will download most of their data and
executables. Some typical applications for these clients
will also download very large objects, such as graphics
and video.

The existence of cheap client hardware with high-
resolution graphics and high-quality audio together with

ubiquitous high-bandwidth networks will probably lead
to applications with increasing demands on network and
server performance. For a scenario with 10,000 users
and 100,000 thin clients, we think that requirements to
the server like “handle 20,000 requests in a second with
a data bandwidth of 1 GByte/s” will be realistic. Perhaps
even higher bandwidth will be requested. In the near fu-
ture, we envision clusters of 1,000 up to 2,000 NCs.

The postulated server performance is about two orders
of magnitude higher than current servers achieve [10,
15]. We are convinced that improving current systems
by evolution is not sufficient: we need a new server ar-
chitecture to achieve the mentioned goals. The basic re-
quirements to this architecture arecustomizability, per-
formance, scalabilityandsecurity support.

As Kaashoeket al. have noted recently [10], tradi-
tional servers are designed either to run a variety of ap-
plications, but with abstractions that lead to poor per-
formance, or run specialized applications efficiently, but
without the flexibility to run other applications. They
define aserver operating systemenvironment that is de-
signed to provide abstractions for building specialized,
high-performance servers. While their server operating
system enables improvements in server performance and
flexibility, we claim that further improvement in perfor-
mance is necessary and possible without reducing the va-
riety of server systems that can be developed.

We believe that in our envisioned scenarios, signifi-
cant performance improvements are possible by provid-
ing clients with access to local servers that optimize ca-
che response. For example, an organization could use a
central server (or cluster of servers) and 1000 NCs, all
connected by a local area network. The NCs boot from
the central server, use it as a file system, as a Web proxy,
as a server for organization-internal HTML documents,
and perhaps also for video clips. Some objects the server
deals with will come from the Web; however most ob-
jects will be local to the organization (software, forms,



brochures, diagrams, custom data, etc.) so we expect a
large but bounded working set.

In this scenario, the important problems are actually
server latency and throughput, rather than network la-
tency (as addressed by Web caching [3]). Network band-
width for the central server to communicate with the
clients is easily obtained (e.g., using multiple 100 Mbps
Ethernets), so the problem in this scenario is to improve
server performance such that it can utilize this bandwidth
effectively.

We are aware of two principal ways for increasing a
system’s performance substantially beyond the bare per-
formance growth of hardware: replication and caching.
Massive replication of servers (e.g., IBM’s Olympic
server) is probably too expensive, makes write accesses
complicated and slow, and needs sophisticated load bal-
ancing.

Therefore, we focus on the development of a high-
performance, cache-based architecture that is general
enough to support most type of server applications. Such
an architecture should enable the server to achieve very
close to the maximum performance that the architecture
can achieve in principle for the fast path (i.e., hits on NC
client requests in the local server’s cache). In addition,
customizability and handling heterogeneous objects are
also relevant to the architecture because it must be gen-
eral enough to support a wide variety of applications.

Our key decision for constructing high-performance
customizable servers is to separategeneric cache mod-
ulesandcustomizable miss-handlingmodulesand to map
them to dedicated machines. Generic cache modules
are responsible for high performance while customiz-
able miss handlers enable flexibility. Single or multi-
ple generic and customizable modules together build a
general or specialized server (or server cluster). In the
prototype, we use an off-the-shelf PC equipped with
a 200 MHz PentiumPro processor for a generic cache
module.

In this paper, we focus on the generic cache module
which is the centerpiece of the architecture. For it, we
envision main-memory caches of 4 GB up to 64 GB. The
challenge is to construct software that efficiently main-
tains such a cache, that does not restrict customizabil-
ity, that supports scaling of multiple modules, and that is
nevertheless highly specialized and optimized to achieve
the demanded high throughput.

The proposed architecture heavily relies on the inher-
ent “cache friendliness” of applications. Ourhope is that
due to the customizability of the architecture and due to
the support of active objects in the genericcache module,
most applications can benefit from the cache structure.
However, we are still far from substantiating this hope.
Currently, we have only implemented two small proto-
types, an instructional video-clip server (see Section 2.1)
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Figure 1: Server Architecture.A customized server has mod-
ules of two different types: hit-server(s) and miss-server(s). They are
dedicated machines and are connected with a dedicated intra-server
network. Client libraries reside on each client and are responsible for
communicating with the hit-server via a LAN.

and a web proxy. Using only a single custom module
and a single generic cache module, the video-clip server
is able to serve up to 402 clients with video clips simul-
taneously (MPEG I, 1.5 Mbps, full screen presentation).
The performance is currently limited by the sub-optimal
DMA of current PCI chipsets and memory buses.

In Section 2, we describe the design of the server ar-
chitecture, focused on the generic cache module. We de-
tail the implementation of the hit-server in Section 3 and
present performance results in Section 4. In Section 5,
we discuss the scalability of the presented architecture.
We review related work in Section 6 and conclude in Sec-
tion 7.

2 The Server Architecture

The server architecture consists of two types of modules
that cooperate to manage a large RAMcache of objects
(shown in Figure 1). Ahit-serveris a highly-optimized
generic module (a dedicated machine) that handles client
requests that hit in the object cache.Miss-servershandle
client requests that miss in the object cache. Miss-servers
also implement application-specific policies for manag-
ing the hit-server cache and for distributing objects to
clients. Multiple, different miss-servers can be combined
with a single hit-server or with multiple hit-servers (see
Section 5).

Clients read and write objects by performinggetand
put operations on server objects. For example, HTTP’s
get andput are mapped to Lava’sget andput by client
libraries. The Lava operations also work on partial ob-
jects. This feature permits clients to download or modify
arbitrary, selected parts of the object (i.e., as opposed to
reading the entire object). As well, client libraries can
implement file-system like access. Furthermore, objects
can have object-specificgetandput operations supplied
by the object creator. For example, a customget can



present an object in different formats based on the re-
questing client. Another example is HTTPpost: A com-
binedputgetoperation sends thepostdata to the active
object which then calculates the response and sends it
back to the client asgetdata.

In fact, putgetis the only existing operation from the
hit-server’s point of view. Theputdata is sent to the ob-
ject which then delivers theget data. Pureget andput
operations are implemented byputgetusing empty put
or get parameters respectively. For better intuitive under-
standing, we will, however, always refer to puregetand
putoperations in the following sections.

In the remainder of this section, we develop the design
of the server architecture. First, we describe an example
server which demonstrates the interplay between the ar-
chitecture components. Next, we analyze the application
scenario to determine the requirements of the architec-
ture. The last two subsections develop the design.

2.1 An Example Server

We implemented a video-clip server that delivers video
clips interactively to clients. Examples of such a system
include museum kiosks, retail services (e.g., mall, infor-
mation resources), educational services (e.g., library and
encyclopedia), and entertainment services. For instance,
upon entering a museum, information about exhibits, re-
sources, and staff can be retrieved from computers lo-
cated at kiosks throughout the museum.

A prototype version of the video-clip server system is
built using Windows 95 PC clients running the Active-
Movie application to view videos and a miss-server that
runs on Linux 2.0 to retrieve the videos. Our instruc-
tional server provides small video clips (varying from
about 20 seconds and 4 MB to about 180 seconds and
50 MB each) to its clients.

The Windows 95 clients use Lava’s reliable object pro-
tocol to communicate with the hit-server. The protocol is
implemented as a Windows kernel extension (a so-called
Vxd element) that communicates directly with the net-
work driver using Window’s NDIS network-driver inter-
face. A special ActiveMovie source filter was built that
transfers ActiveMovie requests into Lava’sget transac-
tions. The ActiveMovie source filter requests a series of
video blocks that correspond to a consecutive intervals
of the video. The size of each block is 32 KBytes.

The according miss-server executes as a user pro-
cess on Linux. Lava’s reliable object protocol (see Sec-
tion 2.4) is incorporated into the Linux kernel to en-
able hit-server/miss-server communication. Application-
specific policy is added to: (1) download video objects
into the miss-server from the Web using (unmodified)
HTTP and (2) implement a custom cache-replacement
policy that controls the hit-server.

In conjunction with the mentioned video-clip miss-
server, the hit-server can serve up to 402 clients simul-
taneously with different video clips (see Section 4).

2.2 Requirement Analysis

The hit-server has an object cache that it uses to process
get and put operations from network clients. Further-
more, it is also linked to miss-servers (e.g., web proxy,
file system servers, and databases) from which it can ob-
tain other objects to fulfill its clients’ requests. Each hit-
server communicates with its clients via network con-
trollers that transfer data between the network and the
server’s main memory over the PCI bus and the mem-
ory bus. On the memory bus, CPU-memory and PCI-
memory traffic compete with each other.

Our original goal (which turned out to be not com-
pletely achievable, see Section 4) was to build server sys-
tems whose server-to-client throughput rates approach
the current PCI bus bandwidth of 1 Gbps. Utilizing this
rate even for moderately small objects of 1 K, would
require 128,000 transactions per second. For compar-
ison: commercial servers currently achieve rates up to
2100 [15] transactions per second, research servers [11]
up to 7000 transactions per second.

Since the memory bus is the bottleneck of a hit-server,
the server architecture must maximize the availability of
the memory bus to the network controllers.

In order to achieve high throughput and low latency,
the server must also make efficient use of its object ca-
che, basically a problem of deriving cache replacement
and prefetching protocols that keep the “right” objects in
the cache. We refer to applications in which such pro-
tocols can be defined ascache-friendly. In this paper,
we make no claims about the design of such protocols
(as others do, e.g., Cao et al. [2]). However, for appli-
cations where such protocols exist, the server architec-
ture must permit their implementation. Also, the effect
of processing cache misses on server throughput must be
minimized.

Communication over untrusted links must be authen-
ticated to prevent attacks. An authenticated communica-
tion is one whose source, integrity, and freshness have
been verified. We do not believe that privacy is required
for our server, at present. Certainly communication with
object servers over the Internet needs to be authenticated.
In addition, given the number of insider attacks reported
and the value of corporate data, client communication
over the LAN may also need to be authenticated. There-
fore, the server architecture must enable the ability to au-
thenticate communication along any link. However, we
must minimize the effect that message authentication has
on the hit-server’s throughput rate.



The server systems must also be scalable through the
addition of new server modules. Scalability is limited
primarily by interactions caused by objects being writ-
ten. When an object write occurs, consistency require-
ments of that object must be enforced. Many applica-
tions enforce a strict consistency in which a reader sees
the latest writes. However, less restrictive policies, such
as the various types of release consistency, are also used
by distributed applications, so the server must support
application-specific consistency policies.

In summary, the major requirements relate to four di-
mensions:Performance, flexibility, security,and scala-
bility.

2.3 Hit-Server Architecture

The hit-server provides efficient mechanisms for pro-
cessing client requests that hit in the object cache. Upon
a client request, the hit-server locates the requested ob-
ject and either downloads it to the client (on aget), cre-
ates a new version (on aput), or forwards the request to
the miss-server (on a miss).

The hit-server is free of policy. Its general mech-
anisms are intended to support any policy that the
miss-servers can implement, so developers can create
application-specific server systems. For example, when
cache replacement is signaled by the hit-server, the miss-
server is free to select the objects to be replaced. A
miss-server library provides general miss-server primi-
tives and a set of functions that use these primitives to
implement predefined policies. However, the developer
can choose to build a miss-server from any combination
of predefined and custom policies or even build a new
miss server from scratch.

The hit-server processes clientget/putrequests to ac-
cess a large RAM cache of objects and processes miss-
serveradd/removerequests to modify the cache. Re-
quests that result in cache misses are forwarded to the
miss-server.

The defaultgetoperation first checks whether the ob-
ject is available. Then, the client is authorized against the
object’s ACL. Next, the object’s status data and consis-
tency matrix may indicate that the object’s miss-server
be signaled, so it can implement the object’s consistency
policy (see Section 5 for details). Finally, after verifying
that a download is necessary by checking version num-
bers, the hit-server sends the requested object data to the
client.

Theputoperation is similar except that eachputgener-
ates a new version of the object: First, the entire object is
copied (lazily); then, those object parts are modified that
are addressed by theput data. The mentioned copy op-
eration is based on copy-on-write techniques; basically,
the newly received packets are simply linked into the new

version’s data descriptor. (The per-object data descriptor
is similar to a multi-level page table but implements a
granularity of 1 K.) This technique makes it easy to up-
date an object whilegetsare concurrently active. After
all getson the old version are finished, the old version
can be garbage collected.

Similar to the DynamicWeb cache [8], the hit-server
interface permits to cachedynamic Web pages or other
dynamic objects. The application running on the miss
server constructs the dynamic object on demand and in-
validates or updates it in the hit-server whenever neces-
sary. Note that this requires only defaultputgetopera-
tions. If the method is too expensive, e.g. for a dynamic
object that delivers random numbers, an object-specifc
putgetcan be used that executes directly on the hit-server.

The architecture enables flexible handling of objects
through object-specificputget operations. An object-
specific operation supersedes the default. Object-specific
putgetmethods are run on the hit-server to enable effi-
cient implementation of custom operations. An object-
specificput operation is invoked after the new data is
received, but prior toupdating the objectcache. E.g.,
it can be used to implement object-specific consistency
protocols that are executed when an update is made. An
object-specificgetoperation is invoked prior to delivery
to the client. An object-specificgetcan be used to deliver
modified object data to a client (e.g., for displaying the
object effectively on the client).

In order to prevent corruption of the hit-server and
denial-of-service to clients, the hit-server must control
these object-specificputgetoperations. We assign each
object-specificputgetoperation to its own address space
to protect the hit-server and other object-specific oper-
ations from modification. Resource requests, such as
access to a client descriptor, are intercepted and au-
thorized against the object-specific operations access
rights [9, 13]. For example, object-specific operations
are permitted to read the requesting client’s description
and the requested object descriptor. If multiple objects
share the sameputgetoperation, they are all mapped into
the same address space. Address spaces are a relatively
lightweight resource, see Section 3.2. Customputget
operations can be multithreaded to execute multiple re-
quests concurrently.

The hit-server also processes miss-server operations,
add and remove, by which miss-servers can add or re-
move objects (specified by name and version) from the
object cache, respectively. Anadd enables the miss-
server to set the initial values for the object’s attributes.

2.4 Reliable Network Communication

Although we envision the use of switched networks,
packet losses are possible. They can occur in switches or



even within the hit-server’s Ethernet chips, even though
the hit-server always has enough receive buffers avail-
able. The point of congestion is not main memory itself
but the memory/PCI bus. As described in more detail
in Section 3.1, the maximum memory-bus bandwidth for
DMA is approximately 600 Mbps. As soon as the sum
of all cards’ incoming and outgoing Ethernet traffic ex-
ceeds1 this value, the receiver FIFOs (4K each) in the
Ethernet chips can run over. (The problem is real: the
current hardware uses 7 full-duplex Ethernet cards en-
abling peaks of 1400 Mbps.)

The first obvious choice for a reliable transport proto-
col is TCP. Although some of its features are not neces-
sary for our application (e.g., checksums, handling du-
plicates and out-of-order packets), adaptive flow control
and retransmission of lost packets are required. It is well
known that TCP is often costly in terms of processor
cycles [18] and that a VMTP-like [4] protocol is better
suited for transactions.

An even more important problem of TCP is that
its congestion-avoidance policies (which are primarily
based on end-to-end flow control) are tailored to current
WANs and are not effective for our envisioned scenar-
ios: On a highly loaded LAN, we experience dramati-
cally changing loss rates, e.g. 0% loss for 5 ms, then
40% for 2 ms, etc. TCP would very quickly reduce its
window size to a single packet. This would result in poor
bandwidth utilizationand not avoid packet lossessince,
in peak situations, the loss rate depends more on the
synchronization between the clients than on the sender’s
transmission rate. Given that under peak load the round-
trip time exceeds 1 ms (the client’s and server’s hardware
FIFOs are even good for a 0.9 ms delay), it is very diffi-
cult to devise a flow-control protocol that can handle the
described agility efficiently.

Instead, we use a late-retransmission protocol. Basi-
cally, any sender transmits the whole object in a burst,
as fast as the network hardware permits. Afterwards, the
receiver tells the sender which parts of the object it has
received; finally, the sender retransmits the missing, i.e.,
lost, parts (if any). This procedure is repeated until all
data is transferred.

The mentioned protocol does not work for any topol-
ogy. However, it behaves nicely on a star topology as
in our scenario where nearly all communication either
goes to or comes from the hit-server. With a switched
network, the protocol ensures that the hit-server receives
data at its maximum rate and all clients get close to op-
timal bandwidth. At a first glance, this might be coun-

1In reality, the situation is complicated by DMA bursts, bus arbitra-
tion policies and the existence of multi-level PCI buses. However, all
this is hardware and most of its parameters and algorithms cannot be
influenced by software. A detailed description is beyond the scope of
this paper.

terintuitive since the protocol seems to invite congestion
rather than to avoid it. However, assume that two clients
simultaneously send a 1 MByte object each to the same
hit-server card. Due to congestion, always 1/2 of the data
sent will be lost: On the first round,each client sends
the entire object; on the second round,each client sends
the lost 1/2 M, on the third the 1/4 M lost in the second
round, etc. In total,each client sends 2 MByte with full
speed to effectively transfer 1 MByte, i.e., gets 50% of
the available bandwidth. In the same time, the hit-server
receives2 � 1MByte at the highest possible rate. The
point is that only such packets are lost that could not
have been transmitted under ideal flow control, and that
the “unnecessary” transmissions consume only resources
that otherwise would be unused.2

Since this paper concentrates on the hit-server design,
we will neither go into details of the protocol nor proof
its properties nor discuss further “good” topologies here.
For the context of this paper, it is relevant that the pro-
tocol is reliable, performs well under peak load, is cheap
for low loss rates, is robust against random losses and
highly fluctuating loss rates, and can be “asymmetri-
cally” implemented such that it requires more processor
cycles on the client side and less on the hit-server side.

3 Hit-Server Implementation

In this section, we describe the techniques used for im-
plementing the generic hit-server. Miss-servers enable
customizability and extensibility; the hit-server is re-
sponsible for performance. Consequently, its design is
basically driven by performance requirements. In a first
step, achievable performance goals are derived from the
characteristics of the available hardware. Then, in an
ideal-case micro analysis, we try to determine the load
an optimal implementation would impose on processor,
cache, memory bus, PCI bus and Ethernets. This analysis
gives us a more realistic upper bound of the achievable
throughput, and it reveals the bottlenecks of the system.
Finally, guided by these results, we describe the actual
construction of the hit-server core software.

2There are some pathological situations. If, e.g., 100 clients simul-
taneously start sending an object of 100 packets, each round effectively
transfers only 1 packet per client. Then we needed 1 ack per trans-
ferred packet, similar to 1-packet windows in TCP. (Nicely, we needed
only 0.1 acks per transferred packet, if 1000-packet objects were sent.)
Therefore, as soon as a client notices that the effective ratio of acks to
effectively transferred packets becomes too high, it takes random rests
while transmitting the packets. Since all active clients act in a similar
way, the congestion and the loss rate decreases so that the ack ratios
become better. For short objects, additional transmission rounds are
needed: the packets are retransmitted a second or third time without
waiting for an ack.



3.1 Analysis

Our current hit-server machine is an off-the-shelf PC,
equipped with a 200-MHz Pentium Pro uniprocessor, an
Intel 440FX chipset, and 256-K of L2cache memory.
For our experiments, the hit-server was equipped with
256 M of main memory. External devices are connected
to the processor and the memory by a 32-bit PCI bus with
a cycle time of 30 ns (33 MHz). The PCI-bus specifica-
tion [17] permits burst DMA transfers with a rate of 1
word per PCI-bus cycle, corresponding to 132 MByte/s
or 1056 Mbps. However, the 440FX chipset, at least
in combination with the Ethernet controller chips we
use, takes on average 1.5 cycles to transfer a word. So
the maximum achievable transfer rate is 88 MByte/s or
704 Mbps.

The SMC EtherPower 10/100 PCI network cards we
use support 100 Mbps Ethernets. They are based on the
DEC 21140AE (“Tulip”) controller chip. Since the ma-
chine has only 4 PCI slots on its motherboard, we had
to use an additional PCI bridge (DEC 21152) for con-
necting 7 Ethernet cards. In our experimental setup (Fig-
ure 2), 6 Ethernets are used as client networks, 4 of them
are connected with the motherboard through the addi-
tional bridge. The seventh Ethernet connects the hit-
server with the miss-servers.

video clip
miss server

WEB
miss server

hit server

1�
100 Mbps Ethernet

6�
100 Mbps Ethernet

. . . Clients . . .

Figure 2: Single-Hit-Server Architecture.

For increased numbers of miss-servers and hit-servers
in a server cluster, the inter-server network hardware can
be upgraded: multiple Ethernets for point-to-point con-
nections, an ATM switch or a Myrinet. Since the inter-
server network connects only 2 to perhaps 15 nodes, the
related costs are economically feasible.

Pre-Implementation Performance Analysis

From the performance point of view, the most relevant
operations are delivering objects to clients and receiving
requests. We start with an idealistic and optimisticpre-
implementation analysisof these both basic functions.

The purpose of this analysis is twofold: (1) estimate an
upper bound of the achievable performance; (2) iden-
tify the system’s potential bottlenecks. Of course, the
thus determined idealistic performance is in practice not
completely achievable. Nevertheless, it gives us a rea-
sonable order-of-magnitude goal and helps us to concen-
trate on the relevant optimizations in the design. Further-
more, this methodology helps us checking whether the
theory, i.e., our understanding of the system, is inaccor-
dance with the reality of the system. If later performance
experiments roughly corroborate with the idealistic pre-
dictions, we have a certain confidence about theory and
implementation. If experiments largely diverge with our
theory, we either have the wrong model or made mistakes
in implementing it.

Even if an ideal implementation of the hit-server core
would spend no time for bookkeeping and OS overhead,
sending and receiving packets through the Ethernet con-
troller are unavoidable. So we first analyze the optimal
costs for sending a packet. Figures 3 and 4 illustrate the
interaction between processor and Ethernet controller.
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Figure 3:Sending an Ethernet packet.Thering bufferholds
descriptors pointing (thin arrow) to the packets that the Ethernet con-
troller should transmit. For each packet, the processor first writes the
descriptor and the packet header; then the Ethernet controller reads the
descriptor and the whole packet. Memory reads and writes are denoted
by thick arrows.
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Figure 4: Accessing Main Memory.Processor read/writes
use only the memory bus while transferring data to or from Ethernet
controllers involves PCI bus and memory bus.

Both components communicate via the main memory:



the processor accesses the main memory through the
memory bus and the Ethernet controller through the PCI
busandthe memory bus.

For this analysis, we assume that the packets consist of
32 B header information and 1024B object data. Trans-
mitting a packet requires the following steps:

1. The system has to receive a device interrupt that indi-
cates that the controller is ready to accept another packet.
(Alternatively, the system has to poll the controllers, i.e.,
needs to read their status registers.) To generate the in-
terrupt, the controller sends one word through the PCI
bus. Furthermore, it writes its current status word, an-
other PCI-bus write operation.

2. To ensure that no errors are pending, the system has to
read the controller status (see step 1) from memory. Note
that this is always an L2-cache miss, since the controller
writes to memory and not into the L2-cache.

3. The system has to select a new packet. Under ideal as-
sumptions, no L2-cache miss occurs for this. The main
memory is not accessed.

4. The system has to prepare the new packet for transmis-
sion. This includes at least writing the client’s Ethernet/IP
address into the packet header: one cache line has to be
written back.

5. The transmission has to be set up. For this purpose, the
descriptor in the ring buffer has to be written. It needs
at least the physical memory address of the new packet:
one memory access. Furthermore, the Ethernet controller
needs to be triggered for starting the transmission (one
PCI word). Afterwards, the controller will read the ac-
cording descriptor from the ring buffer, i.e. from memory:
4 words through the PCI bus.

6. Finally, the controller will transfer the packet from mem-
ory to its own bus: 256+8 words through the PCI bus.

In Table 1, the costs of these six steps are estimated and
given for the critical components: processor, memory
bus, PCI bus and Ethernet buses. Due to buffering and
pipelining, these components can to a large degree work
in parallel. However, main-memory reads through the
PCI bus always require corresponding memory-bus ac-
tivity.

3.2 Implementation Techniques

From the previous analysis, we know that every 14�s a
1 K packet has to be sent to achieve maximum hardware
utilization. However, we had to design the system for an
even higher demand: with optimal PCI-bus DMA hard-
ware (1 word per 30 ns cycle), a packet had to be trans-
mitted every 8�s.3 Obviously, the hit-server software

3From the above discussion, we know that transmitting a 1024B
packet and a 32 B header requires(1 + 1)step1 + (1 + 4)step5 +
(256 + 8)step6 = 271 word transfers. So in the ideal situation, 1
word per 30 ns through the PCI bus and no delay by the memory bus,
217� 30ns= 8:13�s.

Send Packet (1056 bytes)

lines words 7�

processor by Memory by PCI Ethernet
[�s] cpu [�s] PCI [�s] [�s]

1) device interrupt 1.90 – 0.30 2 0.48 –
2) inspect controller 0.40 1 0.29 – – –
3) select packet 0.10 – – – – –
4) prepare packet 0.57 1 0.29 – – –
5) setup transmission 0.72 1 0.57 5 0.36 –
6) transmit packet – – 12.09 264 12.09 84/7

total 3.69 13.53 12.45 12.00

utilization 27% 100% 92% 89%

max achievable rate: 1056� 8 bits
13.53�s

= 624 Mbps

Table 1: Pre-Implementation Micro Analysis for a Hit-
Server.Processor costs are derived from instruction estimates (disre-
garding memory costs) and from micro benchmarks of the underlying
�-kernel. Memory and PCI-bus costs are calculated from the derived
number of transfers and the average throughput costs of these transfer
measured by micro benchmarks. Ethernet costs are derived from the
specified throughput of 100 Mbps.

must be constructed carefully not to delay packet trans-
mission. The following paragraphs discuss the methods
we used to achieve these goals.

Early Evaluation

Early evaluation is a technique for reducing the latency
and improving the throughput of operations. If an op-
eration is requested several times on the same object, it
needs to be executed only once. If an operation can be
executed either at a place or at a time when free resources
are available, its costs are hidden.

Object precompilationensures that only negligible
computations or data transformations are required by
the hit-server for delivering a cached object to a client.
When loading the object into the hit-server cache, the
miss-server partitions it into network packets, gener-
ates the appropriate header information and computes a
client-independent digest for each packet. On sending
a packet, only the destination address, sequence number
and sometimes a message-authentication code have to be
generated.

To meet our security requirements, any delivered
data has to be secured by a client-specific message-
authentication code which is also unique in time to pre-
vent replay attacks. By using a client-specific secret key,
the authentication code is calculated from the precom-
piled client-independent digest and a nonce.

Many research experiments show that avoiding unnec-
essary data copies improves performance,(e.g., Fbufs [6],
Unet [19]). Since we use precompiled packets in the ob-
ject cache, we can always use unbuffered transmission



for delivery. Withputoperations, the arriving 1 K pack-
ets are linked, not copied, into the new version of the
object (see also Section 2.3).

Per-Object Address Spaces

The defaultputgetoperation is implemented by the hit-
server in a single address space. Since we would like
to enforce security requirements on active objects, they
execute their specialized operations in per-object address
spaces.

Remember that the object granularity forput updates
is 1 K while hardware pages are 4 K. Therefore, once
a 4 K region of an object with a non-defaultputgetop-
eration is no longer physically contiguous, the corre-
sponding page must be removed from the object’s ad-
dress space. Upon the page fault on this page, the cor-
responding 1 K chunks are physically copied into a fresh
4 K page frame which is then mapped into the object’s
address space. Object-specificputgetsoften do not read
the entire object data by itself but simply specify to
the hit-server core what parts should be transmitted. In
these cases, the above mentioned lazy-copying technique
avoids copying of receivedputdata packets even for non-
default objects.

The �-kernel can be configured to support up to
65,000 address spaces. The space costs per address space
are low for small objects, about 22 bytes for an object
of 16 K. Nevertheless, the maximum number of address
spaces is only 6.5% of the maximum number of objects.
Currently, we do not yet know whether this is in prac-
tice sufficient to preallocate and preconstruct an address
space for any object that uses non-defaultget and put
operations. Otherwise, the hit-server would have to mul-
tiplex address spaces for active objects.

Minimizing Memory Conflicts

In the hit-server case, copying data in main memory
is not only “in principle avoidable” but belongs to the
class of the most expensive operations. Section 3.1 illus-
trated that the memory bus is the time-critical bottleneck.
Therefore, processor accesses to main memory have to
be minimized.Since L1 and L2 caches use a write-back
strategy, the processor’s reads and writes are uncritical as
long as they hit in the hardware cache and do not touch
the memory bus.

Fortunately, early evaluation techniques, in particular
object precompilation, prevents unnecessary memory-to-
cache copies. Since we use a precalculated digest, there
is no need for the defaultgetoperation to read the object
data.

The code segments of the�-kernel and the hit-server
core are small enough so that their frequently used parts

fit completely even into the L1 cache. The hit-server’s
memory bus is not burdened with handling instruction
misses. For data, the situation is different:

1. Client descriptors, basically the client’s secret key and
some status information, are not expected to cause fre-
quent L2-cache misses, since they need only 2 cache lines
per client. 400 simultaneously active clients need 10% of
the L2 cache.

2. Hash and name tableserve to identify a requested object.
Since they are large, most accesses will cause L2-cache
misses. Finding a 100-byte name then requires to read
1 line of the hash table and 4 lines of the name table,
provided there is no name-hash conflict.

3. Object descriptorswill frequently miss the L2 cache. Due
to the large number of objects, we generally assume that
the object-descriptor data is never found in the L2-cache
upon agetrequest. Applications with many hot-spot ob-
jects will perform slightly better. Memory accesses are
minimized by keeping object descriptors small:

(a) Theobject rootholds pointers to the object-specific
operation, the object-page descriptor list and the
object’s ACL. 2 cache lines are accessed per re-
quest, one from the ACL and one to find the packet
descriptors.

(b) Any object-page descriptorcontains the pointer to
4 packets forming the page and the corresponding
4 precalculated digest values. Together with links
and a length field (objects can be smaller than a
page) this fits into one cache line.

4. Object datais never read by defaultget operations. So
no L2-cache misses occur in this case. Writing an ob-
ject using aputoperation requires message-authentication
codes of the received data to be verified. This costs
1024=32 = 32 cache misses per 1 K packet. (Checking
the authentication code is omitted if the packet comes
from a miss-server, since miss-servers are trusted and the
inter-server interconnection is a closed network.)

5. Packet headershave to be constructed per packet trans-
mission. For our hardware, packet header and the buffer
descriptor required for the Ethernet controller together fit
into one cache line. Since the Ethernet controller always
transfers data from/to main memory, one L2-cache-line
write and one read is required per transmission.

6. Request datais placed in main memory by the receiving
Ethernet controller. Obviously, a request packet has to
be read by the hit-server. For requesting an object with a
100-byte name, 4 cache lines have to be transferred.

Therefore in total, a defaultget on annK object re-
quires at least11 + d9n=4e cache-line transfers between
L2 cache and main memory.



4 Performance

In two throughput experiments,get requests for objects
of 10 K and 1 K size are generated at the highest possible
rate. A single physical client sends requests for randomly
chosen virtual clients. (The Ethernet driver and the hit-
server software are constructed such that, provided the
utilized bandwidth does not exceed that of one card, there
is no measurable difference between the packets coming
through a single or through multiple cards.) To ensure an
infinite burst, the request generator does not wait for a re-
quest to be completed. Avoiding the request-generation
problems mentioned in [1], this method is good for gen-
erating up to 161,000 requests per second. To be sure to
saturate the hit-server in a realistic way, we send requests
with random gaps such that the hit-server gets slightly
more requests on average than it completes. For the ex-
periments, all objects were resident in the hit-server so
that no miss-server communication was required.

For 10 K objects, we achieve a throughput of
594 Mbps with the current hardware, 7,000 transactions
per second. For 1 K objects, the bandwidth is 304 Mbps,
approximately 36,000 transactions per second. Note that
all delivered data is authenticated. Corroborating these
results, our video-clip server can serve up to 402 clients
with different MPEG I video clips (1.5 Mbps) simultane-
ously.

The crucial question is of course whether our approach
performs significantly better than conventional server ar-
chitectures. Therefore, we compare Lava with some
other research systems and commercial Web serversin
our envisioned LAN scenario(many NCs in a local clus-
ter). The reader should note that the results cannot sim-
ply be extrapolated to other application fields, e.g., wide-
area networks. In particular, the systems are not func-
tionally equivalent: e.g., the commercial Web servers
support TCP clients but cannot be customized like the
Lava architecture.

Figure 5 illustrates that for our LAN-based application
Lava’s hit-server offers an order-of-magnitude increase
over conventional systems. We report net data through-
put, i.e., do not count headers etc.

The numbers for Harvest [3] and Cheetah are taken
from [11] and converted to Mbps. Both systems run on a
200 MHz PentiumPro machine like the Lava hit-server.
Harvest runs on top of the BSD operating system, Chee-
tah on top of MIT’s Xok system. IO-Lite [16] runs on
a 233 MHz Alpha station with two 100 Mbps network
adapters. For comparison with industry-standard servers,
we include numbers for Microsoft’s Internet Information
Server 4.0 running on a 166 MHz Pentium with Win-
dows NT 4.0. Afpa [15] is an NT-based server running
on a Pentium 166 processor. Both the MIIS and Afpa
peformance have been measured in our lab by eliminat-

ing all client and network bottlenecks and increasing load
until server was saturated. Similar to our experiment,
the measurements for Cheetah, Harvest, MIIS, and Afpa
are based on a LAN with no competing traffic;get re-
quests are always served from the systems’ respective
main-memory caches. All systems implement the HTTP
functionality; for Lava however, the client library trans-
lates HTTP requests to object-protocol requests on the
client side.
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Figure 5:Server Throughput.Net data throughput in Mbps for
get operations. (Headers, checksums, etc. are not considered to be net
data.) Black bars denote the throughput for 1 K objects, shaded bars
for 10 K objects. All systems are measured on a local area network and
deliver data from their respective main-memory object cache.

Based on the get-throughputexperiment, we simulated
a system where a hit-server is used as a boot server for
1000 NCs. For booting,each NC had to download an in-
dividual set of objects, together 10 Mbyte per NC. We as-
sumed that all 1000 NCs are turned on within the same 5-
minute interval, equally distributed over time. We further
assumed that each NC, once it isbooted, starts working
and then every secondgets a 20 K object. When a user
turns on her/his NC, how long would (s)he have to wait
until the 10 M of boot data are downloaded? We found
an average boot latency of 1.7 s with a standard deviation
of 0.9 s (see Figure 6).
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Figure 6: Average Boot Latency.All clients boot within the
same 5-minute interval. Boot data is client-specific but of equal size
for all clients (5 M, 10 M, or 15M).

Miss handling does not substantially degrade the hit-
server’s throughput, since most of the work (loading
the object) has to be done by the miss-server. Only
during transferring an object from the miss-server into
the hit-server, the hit-server’s delivery rate decreases by
18%, basically because the miss-server communication
consumes 100 Mbps from the total transfer bandwidth.
(Transferring a 1 M object takes approximately 0.1 s.)
Table 2 shows miss costs relative to hits for a single-disk
Linux file system used as miss-server.

1 K 10 K 100 K 1 M
miss latency 20 ms 21 ms 35 ms 162 ms
hit latency 0.1 ms 0.9 ms 9 ms 86 ms
hit : miss latency 1 : 200 1 : 23 1 : 3.9 1 : 1.9
hit : miss bandwidth 1200 : 1 140 : 1 22 : 1 10 : 1

Table 2: Hit/miss costs. The miss server file system runs on
a 166 MHz Pentium with a Caviar 33100 disk. All data reflect ideal
situations in which requests are not delayed by competing requests.
Congestion at the miss-server or at a hit-server’s Ethernet card would
increase the latency. For the bandwidth ratios, we assume that the hit-
server concurrently delivers objects of the same size on all cards.

For local networks, the throughput experiment gives
some evidence that the Lava architecture enables an
order-of-magnitude larger server/NC configurations than
conventional server architectures. Whether the architec-
ture can be modified to work efficiently in a wide area
network is an open research problem.

5 Scalability

For many applications, a single hit-server might support
up to 1000 clients. Future 66 MHz-PCI devices and
100 MHz memory buses might perhaps enable twice as
many clients. However, for achieving our original goal
of more than 10,000 clients, we must scale hit-servers.
Miss-servers and hit-servers may also be scaled to reduce
the miss latency or increase the effective cache size.

5.1 Adding Server Modules

There are three methods for adding server modules: (a)
add miss-servers either to decrease miss latency or to
handle heterogeneous objects, (b) add hit-servers to in-
crease the cache size and hit rate, and (c) add hit-servers
to improve the total bandwidth and handle more clients.

(a) Scalability is aided by an explicit separation of
miss-server and hit-server hardware: miss-server CPU
and IO consumption does not degrade hit-server through-
put. Miss handling only influences the throughput of the
hit-server when the miss-server stores an object into the
hit-server cache.

(b) For certain cases, the bandwidth of a single hit-
server might be sufficient but its main-memory cache
might be too small for the application’s working set. In
particular, this can happen if the hit-server’s motherboard
supports less memory than the processor can address.
Then, multiple hit-servers can be used to increase the ob-
ject cache. Each hit-server holds the entire cache direc-
tory but the cached objects are partioned among all hit-
servers. Client requests are multicasted to all hit-servers.
If the request hits, the according hit-server executes it;
the other ones classify the request as a hit but ignore it
since they do not have the object. If a request misses,
all hit-servers detect a miss and a dedicated hit-server
signals it to the miss-server. This one then selects a hit-
server for loading the new object. Fortunately, no com-
plicated consistency protocol is required for this type of
scaling. Network load, miss-server load and hit-server
bandwidth are identical to the single hit-server case; only
the resultingcache size is increased.

(c) When the number of clients becomes too large, hit-
servers must be scaled to increase the total bandwidth
of the system. This is simple as long as all objects are
read-only. As soon as objects are write-shared between
multiple hit-servers, we need consistency protocols.

5.2 Consistency

For sake of customizability and extensibility, the hit-
server provides a consistencymechanismfrom which
per-objectconsistency protocols can be implemented by
miss-servers. So policies can be fully customized.

Unlike a hardware bus, a LAN does not enable
snooping-based solutions for coherency. Instead, we en-
able the use of miss-servers as arbiters that can coordi-
nate conflicting accesses to objects that are shared by
multiple hit-servers.

The hit-server provides a single basic consistency
mechanism: per-objectconsistency-action matrices.
Two status bits are managed per object:accessedis set
for any operation,dirty is set when aput operation oc-
curs. The hit-server never resets these bits. The miss-



server, however, can arbitrarily change them. Combi-
nation of the four states with the two possible opera-
tions (get/put)leads to a2 � 4 consistency-action ma-
trix. Miss-servers specify a consistency action for each
of the 8 fields for each object (in an object descriptor’s
consistency-matrix attribute). Four different consistency
actions are available:

Ignore. The get/putoperation takes place without involving
the miss-server.

Notify. The object’s miss-server is notified about theget/put
operation. This notification is non-blocking. The miss-server
will be informed concurrently to serving the client’s request.

Call. The object’s miss-server is called before theget/putre-
quest is served. The request blocks until the miss-server grants
or denies it. In its reply, the miss-server can define new set-
tings for the object’saccessed/dirtybits and the consistency-
action matrix. Before replying to a call, the miss-server can
itself read the object back or update its value. Call-associated
actions are completely controlled by the corresponding miss-
server, and have a higher latency than ignore-associated and
notify-associated actions.

Propagate. Any put operation is directly propagated to the
corresponding miss-server (put-through). The data received
from the client is sent to the miss-server and concurrently used
for updating the object in the hit-server. Receive and propagate
activities are pipelined; however, the client is not acknowledged
until the miss-server commits or aborts the operation. Prior
to handling a client’sget request, the hit-server itself “gets”
the newest version of the object from the corresponding miss-
server (get-through). (Get requests include no data transfer if
the requestor already holds the current object version.) To min-
imize the latency, receiving the new object data from the miss-
server and propagating it to the client overlap in time.

The consistency-action matrix is a generic mechanism
that can be used to implement a variety of different
cache-consistency protocols and also cache-replacement
protocols.

For a simplewrite-through policy, (i,i,i,i / p,p,p,p)4

could be used: get operations on this object do not
involve the miss-server whereas any put operation is
directly propagated. For implementingwrite-back to-
gether with LRU replacement, the miss-server can use
(n,i,n, i / n,n,n,i) . Then the miss-server is notified (a)
when the object is accessed the first time (read or write)
and (b) when the object becomes dirty (first write). Sub-
sequent accesses do not involve miss-server notification.
For LRU bookeeping, the miss-server will periodically
reset all objects tounaccessedthat have been accessed
in the meantime. New accesses are then signaled (once
per period) to the miss server. Inactive objects do not in-

4We denote a consistency-action matrix by(get-clean-unacc, get-
clean-acc, get-dirty-unacc, get-dirty-acc / put-clean-unacc, put-clean-
acc, put-dirty-unacc, put-dirty-acc), where the first four entries specify
the actions for get operations, the second row for put operations. Con-
sistency actions are qualified by their first letter,i, n, c,andp.

cur bookeeping overhead since there is no need for the
miss-server to scan them periodically.

For consistency in a multi-hit-server system with
write-shared objects, a MESI-like policy can be used:

( i ,i,i,i / i,i,i, i ) ( i ,i,i,i / c,c,c, c ) ( c ,c,c,c / c,c,c, c )

for M or E objets forS objects forI objects

Modified (M) and exclusive (E) objects reside only in
one hit-server. Clean objects are called E, dirty ones
are called M. Accessing an M or E object does not in-
volve miss-server activity. Shared (S) objects can reside
in multiple hit-servers:gets happen without involving
the miss-server whereasputs invoke acall consistency
action. As a result of thecall, the miss-server can inval-
idate the replicas of the according object in all other hit
servers by changing their respective consistency-action
matrices or even by removing them completely. For clas-
sical MESI, the miss-server will afterwards change the
original object’s consistency-action matrix to the M state
and permit theput operation. Invalid (I) objectscall the
miss-server for any access so that this one couldupdate
the object replica and permit the access or simply delay
it by delaying its reply.

6 Related Work

Internet caching has attracted a substantial amount of
work. Web proxy caches, e.g. the original CERN web ca-
che [14], are client-oriented, while hierarchical internet
caches like Harvest/Squid [3] aim at reducing both back-
bone traffic and end-to-end network latency. As Kroeger
et al. [12] and Duskaet al. [7] report, Web hit-rates on a
wide-area network are only about 40% to 50%; latency
can be reduced by 30% to 60%.

We use caching for a completely different purpose.
Instead of reducing wide-area traffic and network la-
tency, we aim at improving server latency and server
throughput. In a way, that is similar to Iyengar and Chal-
lenger [8] who concentrate on how to use caches on a
server to improve the generation of dynamic Web pages.

Server operating systems have been discussed recently
by Kaashoek et al. [10]. Cheetah’s design exploits the
underlying characteristics of the Exokernel [11] to con-
struct servers that can access the hardware at low over-
heads. Cheetah uses kernel extensions to achieve high
performance. Our hit-server runs entirely at user level.
In some sense, our active objects are similar to ASHes
[20] but are geared to multimedia documents, provide an
object-oriented structuring technique, run entirely at user
level and use supervised IPC.

The facilities we used to securely execute the custom
methods of active objects could be used securely support
ActiveIP [21]. In this sense, our techniques could be used
to build an extremely fast router. One key difference be-
tween activeIP and our techniques is that since we use



hardware based protection and fast authorized IPC, our
code does not need to be interpreted to be supervised but
regular binaries can be used instead.

ADC [5] and Fbufs[6] are techniques used to improve
the performance of network protocols and drivers for
high speed networks and focus on reducing the number
of data copies. We use similar techniques but go beyond
them as we concentrate more on server throughput and
network scheduling, rather than point-to-point network
protocol throughput.

7 Conclusions

We have described the centerpiece of a server architec-
ture for designing high-performance LAN servers. The
server is separated into generic cache modules and cus-
tom modules. The generic module is policy-free and im-
plements general and optimized mechanisms to handle
cache requests. The custom modules can enforce arbi-
trary policies on the management and use of the cache
(including authentication and object consistency). For
cache-friendly applications, the resulting servers can per-
form an order-of-magnitude faster than existing systems.
Since the custom modules can implement application-
specific cache management policies, the likelihood that
an application is cache-friendly can be increased.

We have learned that reducing main memory conflicts
between the CPU and the network conrollers is the key
to achieve high network throughput. Therefore, we pro-
vide a detailed examination into how the cache module
must be designed to make efficient use of all hardware
components.

There remain many open questions about how to use
this server architecture. It is difficult to determine the
cache-friendliness of applications designed to support
thousands of clients in a laboratory setting. In the future,
we plan to investigate the breadth of applicability of this
architecture to current applications and investigate new
classes of applications that may be enabled by our archi-
tecture.
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