i

The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)
New Orleans, Louisiana, June 1998

Making Commodity PCs Fit for Signal Processing

Michael Ismert
Massachusetts | nstitute of Technology

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

Making Commodity PCs Fit for Signal Processing

Michael Ismert
Software Devices and Systems Group
Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139
izzy@lcs.mit.edu, http://www.sds.lcs.mit.edu/

Abstract

Commodity PCs are on the verge of being capable
of performing a variety of signal processing tasks
that previously required special purpose hardware.
Advances in the speed and width of their proces-
sors and internal buses allow these machines to ma-
nipulate data at rates that would allow their users
to interact with a diverse range of sampled media,
such as the raw RF spectrum and ultrasound. How-
ever, today’s PCs lack an I/O system capable of de-
livering the appropriate bandwidth to these signal
processing applications. These applications demand
high continuous throughput I/O that smooths the
inter-sample jitter introduced by interrupts, I/O bus
latency, scheduling latency, etc. This paper presents
a system that provides this functionality.

Our system is composed of two tightly integrated
parts: a PCI device that provides high raw I/O bus
throughput and operating system enhancements to
manage the device and provide low overhead trans-
fers across the boundary between kernel and user
space. The performance is excellent, providing up to
512 Mbits/sec of continuous throughput for an ap-
plication. A description of both parts of the system
is given, along with performance measurements,and
a brief description of an application.

1 Introduction

Processors in commodity PCs have reached the
point where they are capable of performing the
signal processing tasks typically left to special-
purpose hardware[SPL92]. The possibility of mov-
ing these tasks from external hardware into software

running on the main CPU presents some exciting
possibilities| TB96]. These include multi-purpose
devices where new functions are possible by adding
or upgrading software, allowing PCs to emulate de-
vices ranging from cellular or cordless phones to ul-
trasound or EKG monitors[Tha97, BCT97]. This
also allows rapid deployment of new or upgraded
standards as well as the ability to rapidly proto-
type new signal processing algorithms or protocols.
Finally, this approach can enable increased perfor-
mance in several ways. The obvious one is to take
advantage of the fact that market factors are driving
rapid improvements in PC performance. However,
this approach also allows the integration of the sig-
nal processing with higher-level applications, pre-
senting the opportunity for system-wide optimiza-
tion, as well as allowing the signal processing func-
tions to be dynamically modified based on measure-
ments of changing system characteristics in order to
improve performance.

There are already industry movements in this di-
rection. Vendors of software modems, for exam-
ple, advocate digitizing the phone line signal and
doing the necessary coding and modulation in high-
priority interrupt handlers[Tra97]. Today’s PCs can
handle these low data rate tasks easily. However, for
the more aggressive applications we envision, such
as those encompassing large bands of the RF spec-
trum, the off-the-shelf PC is not yet a viable plat-
form.

Increasing clock rates, superscalar architectures,
and SIMD techniques such as Intel’s MMX allow
general-purpose processors to dedicate a reasonable
number of cycles to each data sample. Along with
the processors, the internal buses have increased
in both speed and width, allowing high-bandwidth
data to be moved about within the PC. However,
today’s commodity PCs are lacking two important

pieces that enable this sort of signal processing.
The first is an I/O device capable of digitizing (and
perhaps downconverting) a generic wide-band sig-
nal and delivering the samples to the PC’s main
memory (and performing the reverse operation as
well). The second is the ability of current commer-
cially available operating systems to deliver high-
bandwidth, low-jitter, continuous data streams to
the application.

This paper presents a system that fills in these gaps
in current commodity PCs. There are several goals
that our system must satisfy. First, it must provide
high continuous throughput between the digitizing
front-end and the applications. As an example, the
A-side cellular telephony band is 12.5 MHz wide.
When digitized at 25 MHz with a sample size of 16
bits, the data rate necessary to transfer this stream
of samples to the application for processing is 400
Mbits/sec.

Second, the system must provide the applications
with what appears to be a jitterless sample stream.
In standard signal processing systems based on ded-
icated digital hardware or DSPs, the incoming sam-
ples arrive at a constant rate and are processed with
a fixed delay between when a sample enters the sys-
tem and when the output based on that sample
leaves the system. The processing happens in lock
step with the I/O, so the DSP is guaranteed that
it will have a constant stream of regularly spaced
samples on which to do processing. In a personal
computer, however, there are no such simple guar-
antees. Virtual memory, multiple levels of caching,
and competition for the I/O and memory buses add
jitter to the expected amount of time required for
a sample to travel from an I/O device to the pro-
cessor. In addition, using a multi-tasking operating
system ensures that the signal processing applica-
tion will not always be the active process, which
adds jitter to the rate at which samples are pro-
cessed. The jitter introduced by all of these sources
must be smoothed out.

Since many signal processing applications of inter-
est, such as those involving two-way voice commu-
nications, are sensitive to latency, the system must
not introduce an excessive amount of delay between
the time when samples enter the system and when
they are processed. In addition, signal processing
applications are also processing-intensive. As a re-
sult, the system must accomplish the previous goals
with as little processing overhead as possible.

Finally, we imposed the goal of simplicity on the
system, both on its use and design. Application
programmers should not have to use a new set of
system calls to allocate memory for buffers, transfer
data, and access the device, nor should the system
design require such things to be implemented.

The system is composed of two co-designed parts: a
hardware component described in section 2, and op-
erating system support described in section 3. The
performance of the system is presented in section 4.
Section 5 is a discussion of the previous work related
to this area.

2 The I/O Device

The General Purpose PCI Interface (GuPPI) pro-
vides the necessary high-speed I/O port for PC-
based signal processing. It is a two board sandwich,
consisting of a full-size PCI card which contains the
engine for moving samples to and from memory, and
a A/D card which is capable of sampling an analog
input at 40 million samples/second with a 12 bit
resolution and generating an analog output from a
sample stream of the same rate and resolution.

A block diagram of the data transfer portion of the
GuPPI is shown in figure 1. The core of the GuPPI
is the Xilinx FPGA, which contains the PCI con-
troller and DMA engine. The design provides high
raw bandwidth between the A/D card and the PC’s
main memory.

The A/D card is directly connected to a set of FIFO
buffers in both the input and output directions.
These FIFOs provide the buffering necessary to ab-
sorb jitter caused by the bursty access to the PCI
bus. In the input direction, the FIFO holds incom-
ing samples until the GuPPI acquires the bus and
can transfer them into memory. In the output di-
rection, the FIFO holds excess samples that have
been transfered from memory but are waiting to be
accepted by the daughter card.

As well as absorbing jitter, the FIFOs also serve to
temporally decouple the timing of the GuPPI, which
operates using the PCI clock, from the daughter
card, which typically operates using the A/D sam-
pling clock. This eliminates the need for designers
of daughter cards to worry about synchronization
or metastability issues. It also separates the data

|Xi|inx Config EEPROM |

|]

H

"

.

' Output Data

: P FiFo

. Xilinx : A

: . nalog

: PCI Output Page . Front End
PCl 4 nggm Controler [Address FiFo : (with A/D
Bus | ‘Bndge €| input Page i aem

: Address FIFO H

: |]

: "

. Input Data ¢ .I

E FIFO H

: "

: H

' "

Figure 1: GuPPI Block Diagram.

transfer and processing from the fixed rate realm of
the analog front-end, allowing it to be bursty.

The GuPPI is connected to the PCI bus for its high
throughput. PCI is an example of how the inter-
nal buses in commodity PCs have improved enough
to allow the movement of high speed data; its raw
capacity is just over 1 Gbit/sec, which puts it well
over the bandwidth needed for our initial target ap-
plications. Several other possible points of connec-
tion were possible, such as the ISA bus or the I/O
bus used in some other architecture, such as the
SBus. However, the low bandwidth of the ISA bus
(approximately 140 Mbits/sec) eliminated it. The
SBus, while providing reasonable bandwidth, lim-
ited the GuPPI to operation in Sun workstations.
The PCI bus is a more popular I/O bus architec-
ture that is common to all commercially available
PCs, including Intel and AXP-based machines, and
provided easy potential upgrades to double speed,
double width, and mobility via CardBus.

The GuPPI is a PCI bus master; that is, it has the
ability to initiate transfers on the PCI bus. As such,
the GuPPI can DMA sample streams to/from main
memory at high speed with minimal intervention
from the processor, which supports our goal of low
overhead. The GuPPI implements a new variant
of scatter/gather DMA that we have named page-
streaming. The GuPPI has two page address FIFOs,
one each for input and output, that hold the physi-
cal page addresses associated with buffers in virtual
memory. At the end of a page transfer, the GuPPI
reads the next page address from the head of the
appropriate page address FIFO and begins trans-
ferring data to/from it. Using the programmable
FIFO flags, the GuPPI triggers an interrupt when
the supply of page addresses runs low, and the page
addresses are replenished by the interrupt handler

in the device driver.

There are several benefits for signal processing ap-
plications from using page streaming DMA. First,
since the processor replenishes the addresses, the
GuPPI only uses its bus grants to transfer data,
which results in more efficient use of the PCI bus by
the GuPPI. Since DMA transfers are always page-
length and page-aligned, no buffer length informa-
tion needs to be transferred across the bus, reduc-
ing the bus overhead associated with the DMA. In
addition, page streaming simplified the design of
the GuPPI by reducing the complexity of Xilinx
DMA controller. Page streaming also has several
nice characteristics related to the operating system
enhancements, which are described in the next sec-
tion. The lone drawback to page streaming is that
transfer sizes are fixed to page-sized, page-aligned
buffers; however, the continuous nature of the sam-
ple streams ensures that transfers of this size can
always be completed, and page alignment can be
easily arranged by manipulating the beginning of
buffers.

3 Operating System Enhancements

The operating system support consists of a device
driver for the GuPPI and several small additions to
the virtual memory system, all for the Linux ker-
nel!. The total size of the code is just under 1200
lines, with the virtual memory system additions rep-
resenting just 200 of those. Another important as-
pect of the additions is that they do not affect the
performance or functionality of any part of the sys-
tem not related to the GuPPI; all other applications

1The Linux kernel version used is 2.0.31.

run completely unperturbed. The device driver pro-
vides for the continuous transfer of data between the
GuPPI and main memory while absorbing jitter due
to the scheduling of the signal processing applica-
tions. The virtual memory additions provide low
overhead, high-bandwidth transfer of data between
the application and the device driver.

3.1 GuPPI Device Driver

The device driver is responsible for using the raw
burst performance of the GuPPI to provide a con-
tinuous stream of I/O to the application, and to ab-
sorb jitter caused by interrupts and the scheduling
of other processes.

Initially, a purely user-level approach, similar to
[VEBBV95], was implemented and tested. The
GuPPT’s control and status registers were memory-
mapped into the virtual memory space, allowing
the application to completely control the GuPPI.
Application-allocated buffers were locked down in
physical memory and given to the GuPPI for DMA.
While the burst performance was excellent, the con-
tinuous performance suffered, particularly during
periods where either another process received a sub-
stantial portion of the processor time or an interrupt
for another device occurred and a slow interrupt
handler was called. These performance breaks were
due to the inability of the application to keep the
DMA engine supplied with buffers to be transferred.
Ironically, the process was being swapped out while
it was attempting to provide the GuPPI with the
buffers necessary to keep the I/O continuous in the
event that it was swapped out.

The failure of the user-level approach to be able to
maintain a continuous I/O stream of samples moti-
vated the use of an interrupt-driven device driver
within the kernel. This driver made the virtual
memory system additions (described later) neces-
sary. The implementation and performance of the
kernel-level driver are presented in this paper.

3.1.1 Input

The input portion of the GuPPI device driver uses
a ring of buffers into which samples are transfered.
These buffers are part of the kernel virtual mem-
ory space, but are locked down in physical memory.
The driver initially fills the input page address FIFO

with addresses from buffers at the head of the ring.
When this FIFO drains to a certain (programmable)
level, an interrupt is triggered, and the interrupt
handler queues up more buffers from the head of
the ring. The level that triggers the interrupt is set
such that there are sufficient pages remaining to ab-
sorb samples arriving before the interrupt handler
can provide new buffers.

When an application reads data from the driver, it is
given the buffer at the tail of the ring. Rather than
copy the data from the kernel to the user buffer, the
driver uses the virtual memory additions to swap the
buffer provided by the application for the buffer in
the kernel?. The swapping not only avoids the cost
of copying the data, but eliminates the need for the
kernel to allocate a buffer to replace the one given
to the application.

The ring buffers allow the driver to absorb schedul-
ing jitter for those applications attempting to run in
real-time. When the signal processing application is
not scheduled, the head of the ring, which is the last
buffer given to the GuPPI for DMA, will move away
from the tail of the ring, which is the next buffer to
be given to the application. When the application
is once again scheduled, it will need to be able to
read and process buffers faster than the GuPPI can
fill them, moving the head back towards the tail. If
the application cannot do this, it has no chance of
maintaining any real-time operation. The amount
of scheduling jitter that the system can absorb is
dependent on the size of the ring.

3.1.2 Output

The output portion of the GuPPI driver maintains a
queue of buffers that the application has written to
the driver. The total size of this queue is bounded to
keep applications from using all of physical memory.
Initially, the driver fills the GuPPI’s output page
address FIFO with addresses from buffers at the
head of the queue. Similar to input, when this FIFO
drains to a certain level, an interrupt is triggered
and the interrupt handler replenishes the FIFO from
buffers at the head of the queue, if they exist.

Our early experience with writing applications has

2The application can configure the size and number of
buffers used in the ring; this is the means by which the ap-
plication knows the size of the buffer to provide to the read
system call.

shown that it is usually efficient to generate output
waveforms into buffers on the fly. This allows the
output portion of the driver to use the same vir-
tual memory additions to swap application buffers
with kernel buffers of the same size. In order to
avoid constantly allocating new buffers to swap back
to the application, the driver maintains a queue of
recently-used buffers and only allocates new ones
when a buffer of the proper size is not in the cache.
Since applications tend to use buffers of the same
size, this works quite well.

The output queue plays the same role for output
as the ring buffers do for input. While scheduled,
the application should be able to put several buffers
on the waiting queue. If the application is running
faster than the GuPPI, these buffers will not be
depleted by the next time the application is again
scheduled to run. There is a maximum total mem-
ory size that the driver allows to be on the waiting
and sending queues; writes will return unsuccess-
fully when this point is reached.

3.2 Virtual Memory Additions

The standard Unix approach, when faced with a
new device, is to implement a Unix device driver
to control the device and transfer data to and
from it. However, the performance problems as-
sociated with using the default Unix I/O system
to move data across the kernel/user boundary are
well known. To avoid the expense of performing
the data copy, previous research efforts have relied
on different schemes using virtual memory manipu-
lation and/or shared memory[DP93, CP94, And95,
vEBBV95, BS96, Paio7].

Our approach to this problem uses virtual mem-
ory manipulation but, unlike most of the related
work, avoids adding new buffering and I/O seman-
tics. Systems such as those presented in [DP93,
CP94, Pai97] require the use of a new I/O API in
order to access the high-performance I/O system,
including a new set of system calls, data structures,
etc. In order to maintain a simple and familiar inter-
face for the user, the system was designed to use the
standard Unix API and copy semantics. However,
virtual memory manipulations are used to make the
read and write system calls to the GuPPI copy-
free.

To this end, facilities have been added to the virtual

memory system to swap a buffer in an application’s
virtual memory space with a buffer in the kernel’s
virtual memory space. The choice to swap buffers
rather than share them between the kernel and the
application had several motivating factors. For in-
put (reading), the application may want to per-
form in-place computation on the samples in that
buffer, so the kernel cannot turn around and reuse
the buffer as part of the ring until it sure that the
application has no further need for it. This involves
either an addition to the API for the application
to inform the kernel that a buffer can be reclaimed,
some amount of data copying to keep the buffer from
being overwritten, or allocating a new buffer to be-
come part of the ring. These options all involved
a significant increase in design complexity without
a clear improvement in performance. For output
(writing), since the applications generate data on
the fly, there is no real advantage to sharing be-
tween the application and the kernel.

The ability to easily perform this buffer swap is
due to the unframed, continuous nature of the data
streams; enough data can be acquired such that all
buffers that the GuPPI uses are page aligned and an
integral number of pages long. This makes the vir-
tual memory swap almost trivial as long as the user
provides a buffer of the proper size. Each page in the
user buffer is faulted into a distinct physical page.
The physical addresses in the page table entries for
the kernel and user buffers are then swapped, and
the appropriate TLB entries in the memory man-
agement system flushed. The kernel and user buffers
maintain their same protections, and there is no vio-
lation of protection because only kernel buffers that
are guaranteed to contain only new incoming data
(in the case of input) or stale output data (in the
case of output) are given to the user. The perfor-
mance gain of this swap over a kernel-to-user data
copy is two orders of magnitude; more detail will be
presented in section 4.

The use of page streaming DMA coupled with the
virtual memory swapping has some nice character-
istics. First, the constraint of page-aligned, integral
page-length buffers for both operations means that
buffers used for DMA are ideally suited for transfer
to the application, and vice versa. In addition, since
the physical addresses for both the user and kernel
buffers are determined during the swap, the list of
pages used to be used for the page streaming DMA
is generated for free.

4 Performance

The performance numbers presented in this section
demonstrate the effectiveness of our system. The
experiments were all performed with warm caches
on an unloaded 200 MHz Pentium Pro system run-
ning Debian Linux. The CPU on-chip cycle counter
was used to measure throughput and the processing
requirements generated by the GuPPI. Due to our
lack of a front-end for transmit, most of the appli-
cations which have been developed are receive only,
and so the receive performance has been studied sig-
nificantly more.

4.1 Throughput and Overhead

The maximum rate at which an application using
the GuPPI driver can maintain a continuous flow
of input samples from the GuPPT is 512 Mbits/sec.
This number was determined using an application
that only accessed enough samples per input buffer
to verify data continuity. This number provides an
upper bound on the possible throughput that an
application can achieve using the GuPPI. At rates
above this point there is insufficient depth in the
input data FIFO on the GuPPI to absorb jitter due
to the PCI bus, but a new revision of the GuPPI will
increase the maximum continuous throughput. For
output samples, the maximum throughput is only
260 Mbits/sec. The output data FIFO is half the
size of the input data FIFO, and so is not able to
absorb as much PCI bus jitter; increasing this FIFO
size will similarly increase the output throughput.

Input | Output
930 850

Table 1: Raw GuPPI Performance (Mbits/sec)

In order to provide high continuous throughput, the
GuPPI must have higher raw throughput. Table 1
shows the maximum input and output burst per-
formance of the GuPPI. These numbers reflect the
amount of time required for the GuPPI to DMA ap-
proximately 1.2 MB of data. The measurements in-
clude only the amount of time required to DMA the
data, not the time required to write page addresses
into the appropriate page address FIFO. The max-
imum PCI throughput available is 1056 Mbits/sec,
so the GuPPI is coming reasonably close to saturat-
ing the workstation’s PCI bus. The lower maximum

throughput for output is due to the larger latency
required to initiate a read from main memory to the
GuPPI.

x 10* Cost of Virtual Memory Swap (Cycles)

2 T T T

CPU Cycles

I I I I
0 50 100 150 200 250 300

x 10° Cost of Memory Copy (Cycles)
6 T T T T
2ol /
Q
>
6]
=)
&2t |
0
0 50 100 150 200 250 300

Buffer Size (Pages)

Figure 2: Virtual Memory Swap vs. Memory Copy

The performance benefits of using a virtual memory
swap rather than a data copy to move samples from
kernel to user buffers are shown in figure 2. The val-
ues for both cases are the average number of cycles
over 100 buffer reads from the GuPPI. The same
user buffer is recycled for each read, so after the
first iteration all the pages in that buffer have been
faulted into physical memory. Since it is expected
that applications will frequently reuse their input
buffers, this should not be a performance issue.

Figure 3 shows the average processing overhead im-
posed on the workstation by using the GuPPI to
generate input. This measurement reflects the num-
ber of cycles required to perform the read system
call (which includes the virtual memory swap) and
the number of cycles required to handle interrupts
generated by the input page address FIFO running
near empty. The average number of cycles per sam-
ple is very low; for standard buffer sizes that appli-
cations might handle (30 to 300 pages), the process-
ing overhead of the GuPPI is less than a half cycle
per sample.

4.2 Latency

Another performance issue to consider is that of la-
tency. By adding buffering, both FIFOs and I/0
kernel buffers, to smooth the jitter in the system,
we have added to the delay between when samples

GuPPI Overhead

0.3 4

Cycles / Sample

0.05 L

. . 1 |
50 100 150 200 250 300
Buffer Size in Pages (2048 samples / page)

Figure 3: GuPPI Processing Overhead (Input)

Input Latency
250 T T T

+ 40 MHz Sampling Rate
* 20 MHz Sampling Rate

[

a

=]
T

milliseconds

=

Q

=]
T

501

0 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Buffer Size (Pages)

Figure 4: GuPPI Latency (Input)

are generated by the A/D converter and when they
are processed. Figure 4 shows a graph of the in-
put latency as a function of buffer size. To generate
these values, a sampled step function was sampled
by the GuPPI and streamed into memory. An appli-
cation monitored the incoming buffers for the step
and strobed a pin on the parallel port when it was
detected.

The input latency of the system is heavily depen-
dent on the sampling rate; larger buffer require more
time to fill with samples before they can be deliv-
ered to the user, while higher sampling rates cause
buffers to fill more quickly. The graph shows the lin-
ear relationship between the buffer size (with ring
size fixed at 4 buffers) and the latency, as well as
the effect of reducing the sampling rate in half; the

numbers are consistent with our expectations.

The minimum input latency measured was just over
1 millisecond for a two page buffer. While the la-
tency measured for smaller buffer sizes is accept-
able for a two-way voice application or a point-to-
point data connection, it is not sufficiently small for
multiple-access schemes such as CSMA or TDM. In
these cases, some additional hardware may be nec-
essary to synchronize the transmitter with the re-
ceiver.

4.3 A Real Application

Along with these abstract measurements, we were
also able to measure the performance of an actual
real-time signal processing application that used our
I/O system. This application is an AMPS cellu-
lar telephony receiver using a data rate of 204.8
Mbits/sec (8 bit samples at 25.6 MHz). The ap-
plication selects a single AMPS channel from a 10
MHz wide band, demodulates it, and plays the au-
dio to the workstation speaker in real-time. The ap-
plication is processor-limited; our I/O system is able
to supply it with the sample stream for the entire
cellular band but the application cannot currently
demodulate more than one channel. On the original
200 MHz Pentium Pro platform, the application was
not even able to meet the full AMPS-specified chan-
nel selection filter because the amount of processing
required caused it to quickly fall behind the data
provided by our I/O system. However, the entire
system has been ported to a 533 MHz AXP-based
system which can meet the required specifications
for one channel. So, there is still a bottleneck in
our system, but it has shifted from I/O to process-
ing, allowing us to ride the curve of improved pro-
cessor performance. It is important to note that,
although specialized DSPs can ride this same per-
formance curve, they do not track it nearly as well.
DSP clock rates are just reaching 200 MHz; Digital
has had AXP processors which operate at 600 MHz
for quite some time now. In addition, porting the
I/0 system and the AMPS application to the AXP
system required less than a week, something which
would have taken significantly longer moving from
one DSP architecture or generation to another.

5 Related Work

5.1 Data Acquisition Devices

For many years, data acquisition cards for PCs have
been available; these have been capable of storing
samples on-board in a circular buffer until some trig-
ger condition is met, and then dumping the contents
of the buffer into memory on the workstation. These
cards have typically been ISA bus devices, with no
support for the direct streaming of samples into the
PC’s memory. Recently, however, several compa-
nies have released PCI variants of these data ac-
quisition cards which are capable of streaming sam-
ples directly into memory[Ins98, Sci98]. These de-
vices are capable of high burst data transfers; the
Gage CompuScope 8500 is capable of bursts of 933
Mbits/sec. However, these devices are still based on
the trigger/capture model; after a trigger, the de-
vice transfers samples into PC memory rather than
onboard memory for some fixed period of time. In
addition, these devices are input-only devices, and
do not have the operating system support required
for continuous high throughput to/from the appli-
cation.

5.2 Host Adapter Research

Most of the research into high performance host
adapters is related to network adapters. [DDP94]
presents the experience of integrating Osiris, one of
the first experimental ATM host adapters, with the
high performance I/O work presented in [DP93].
The authors describe the ability to tune the pro-
grammable logic on the host adapter in order to
simplify the task of writing efficient operating sys-
tem software. Our approach to designing the GuPPI
and its operating system support is very similar;
however, we had the luxury of designing both the
hardware and the software concurrently, and so very
little tuning was actually necessary. There are also
several similarities between the operation of the
Osiris board and the GuPPI. Both boards imple-
ment fixed-size DMA transfers, both boards use a
FIFO queue, fed by the host processor, to provide
buffers for input or output, and both boards use an
interrupt-driven mechanism for replenishing input
buffers. However, the need to support network data
rather than sample streams causes different func-
tionality in the two boards. The performance of

this pairing of host adapter and I/O system is quite
high, with the ability to transfer up to 516 Mbits/sec
from the adapter to the host and 325 Mbits/sec in
the opposite direction.

[DPC9I7] presents another high-performance ATM
adapter. The paper describes a technique for per-
forming zero-copy data transfers between the host
adapter and user buffers. The authors are devel-
oping a special ATM protocol that provides page
aligned, integral page length data in each packet.
This is essentially the same approach as that used
by the GuPPI, except the continuous input stream
removes the need for any special protocol.

5.3 Operating System I/O Research

A significant amount of research has been directed
at optimizing the data transfer across the ker-
nel/user boundary. [BS96] provides a taxonomy for
the various ways in which the kernel/user boundary
can be crossed, as well as discussing possible opti-
mizations, implementing them in the Genie system,
and providing some quantitative analysis of the var-
ious methods. The operating system modifications
for the GuPPI provide facilities that are similar to
the emulated copy semantics described in this pa-
per, with some optimization based on the applica-
tion characteristics.

[DP93] investigates the use of virtual memory
remapping applied to system-allocated buffers,
called fbufs, as a means of efficiently moving data
across protection domains. Several optimizations
are applied to this strategy, including caching and
shared memory. 10-Lite[Pai97] is a system that at-
tempts to unify all I/O related buffering and caching
into a single efficient, copy-free system. IO-Lite is
based on aggregates of the fbufs and uses identical
methods (virtual memory remapping, shared mem-
ory) to move buffers made of these aggregates be-
tween domains. Either of these systems could re-
place the emulated copy mechanism as the mecha-
nism for crossing the kernel/user boundary. How-
ever, the need for a new I/O API to support them
makes them unattractive for our use.

Universal Continuous Media I/O (UCM I/0)[CP94]
and Container Shipping[And95] are two more sys-
tems that seek to provide more generic I/O sup-
port. These systems also use virtual memory ma-
nipulations to avoid copying, but with move, rather

than share or copy semantics; output data disap-
pears from and input data appears in the applica-
tion’s virtual memory space. Several optimizations
are presented in each, including the recycling of vir-
tual memory information (page tables, addresses,
pages), the elimination of unnecessary zero-filling of
allocated buffers, and the selective mapping of only
the used portions of buffers. The move semantics
make this sort of system unattractive in our con-
text for two reasons. First, the loss of ring buffers
in the driver reintroduces the overhead of allocating
new buffers to replace those moved to the applica-
tion. Second, the loss of the application’s buffers
makes the output buffer reuse that is characteristic
of many of the signal processing applications impos-
sible without a data copy.

UCM I/0 also provides buffers shared between the
kernel and the application as part of the support for
continuous media. To use this support, the applica-
tion allocates a ring of buffers and attaches them to
a control buffer. The kernel uses a clock interrupt to
schedule the I/O of the next buffer in the ring. The
approach used to support input from the GuPPI is
similar to the UCM I/O’s continuous media sup-
port, but with some important differences. First,
the ability to use the GuPPI’s interrupts rather
than a fixed period clock interrupt allows the sys-
tem to adapt to variance in the time required to fill
a buffer. Swapping the kernel ring buffers with the
buffer provided by the application allows the appli-
cation to hold the contents of a buffer without the
contents being bashed by the kernel when the ring
wraps around. In the output direction, the need to
reuse the output buffers in arbitrary orders by the
application makes using a ring buffer system virtu-
ally impossible without adding data copies.

6 Conclusion

The GuPPI and its operating system support close
the gaps preventing today’s PCs from being an ef-
fective platforms for intensive signal processing. By
designing the hardware and software in tandem,
we were able to create a system which is small
and low in complexity, yet achieves excellent per-
formance for the applications for which it was in-
tended. Together, the hardware and software pro-
vide an application-level interface that simplifies the
construction of software radios and related applica-
tions by making the analog front-end appear to be

a conventional Unix device.

The GuPPI hardware provides a high bandwidth,
low latency connection between an analog front-
end and the I/O bus of a PC; it makes use of a
new variant of scatter/gather DMA, page-streaming
that simplifies the hardware and provides for effi-
cient use of the PCI bus. The software drives the
GuPPI, smooths jitter, and makes the data trans-
ferred by the hardware accessible to applications
in user space. While essential, the operating sys-
tem support needed to make this functionality avail-
able to applications is minimal, and has been imple-
mented in such a way as to have no impact on the
functionality provided to other applications.

For future commodity systems, we imagine that
hardware similar to the GuPPI, coupled with an ap-
propriate, flexible front-end, would be an invaluable
I/0 device to integrate into a system, with the pos-
sibility of becoming as ubiquitous as serial and par-
allel ports are today. In addition, we have demon-
strated that the necessary operating system support
to make this functionality available to applications
is minimal, and can be implemented in such a way
as to have no impact on the functionality provided
to other applications. Software modems, while a
step in the right direction, are only focussed on the
limited bandwidth of a telephone line and will have
little application beyond it; a system like the GuPPI
would continue to enable interesting and useful ap-
plications for many years to come.

Acknowledgements

The author would like to thank the many individ-
uals who have influenced and contributed to the
development of this project. First, David Tennen-
house and John Guttag for their guidance; Vanu
Bose for providing a testbed for this work; and Matt
Welborn, Alok Shah, and Andrew Chiu for find-
ing bugs by using the system for their work. This
research was supported by the Advanced Research
Projects Agency under contract No. DABT-6395-C-
0060 (monitored by US Army, Fort Huachuca) and
by equipment grants from Intel Corporation.

References

[And95]

[BCT97]

[BS96]

[CPY4]

[DDPY4]

[DP93]

[DPC97]

[Ins98]

[Paig7]

Eric Anderson. Container Shipping: A
Uniform Interface for Fast, Efficient,
High-bandwidth I/0. PhD thesis, Uni-
versity of California, San Diego, 1995.

Vanu G. Bose, Andrew G. Chiu, and
David L. Tennenhouse. Virtual Sam-
ple Processing: Extending the Reach
of Multimedia. Multimedia Tools and
Applications, 5(3):259-276, November
1997.

Jose C. Brustoloni and Peter
Steenkiste. Effects of Buffering
Semantics on I/O Performance. In
Proceedings of the Second Symposium
on Operating Systems Design and
Implementation (OSDI’96), pages
277-291, Seattle, WA, October 1996.
USENIX.

Charles D. Cranor and Gurudatta M.
Parulkar. Universal Continuous Me-
dia I/O: Design and Implementation.
Technical Report TR 94-34, Washing-
ton University Department of Com-
puter Science, December 1994.

Bruce S. Davie, Peter Druschel, and
Larry L. Peterson. Experiences with a
High-Speed Network Adaptor: A Soft-
ware Perspective. In Proceedings of
SIGCOMM 94, September 1994.

Peter Druschel and Larry Peterson.
Fbufs: A High Bandwidth Cross-
Domain Transfer Facility. In Proceed-
ings of the 14th Symposium on Operat-
ing Systems Principles, pages 189-202,
Asheville, NC, December 1993.

Zubin D. Dittia, Guru M. Parulkar,
and Jerome R. Cox. The APIC Ap-
proach to High Performance Network
Interface Design: Protected DMA and
Other Techniques. In Proceedings of
IEEFE Infocom 1997, April 1997.

National Instruments. NI5102 PCI Dig-
ital Oscilloscope Data Sheet, 3 98.

Vivek S. Pai. IO-Lite: A Copy-free
UNIX I/O System. Master’s thesis,
Rice University, January 1997.

[Sciog]

[SPL92]

[TB96)]

[Tha97]

[Tra97]

[VEBBV95]

Gage Applied Sciences. CompuScope
8500/PCI Hardware Installation and
Reference Manual, March 1998.

Lawrence C. Stewart, Andrew C.
Payne, and Thomas M. Levergood. Are
DSP Chips Obsolete ? Technical Re-
port CRL 92/10, Cambridge Research
Labratory, Cambridge, MA, 1992.

David L. Tennenhouse and Vanu G.
Bose. The SpectrumWare approach to
Wireless Signal Processing. Wireless
Networks, 2:1-12, 1996.

Samir R. Thadani. A Software-Based
Ultrasound System for Medical Diag-
nosis. Master’s thesis, MIT, May 1997.

Mike Tramontano. Host Signal Pro-
cessing: A New Way to Communicate.
Technical report, Motorola ISG, 1997.

Thorsten von Eicken, Anindya Basu,
Vineet Buch, and Werner Vogels. U-
Net: A User-Level Network Inter-
face for Parallel and Distributed Com-
puting. In Proceedings of the 15th
ACM Symposium on Operating Sys-
tems Principles, Copper Mountain,
CO, December 3-6 1995.

