
Dummynet and Forward Error Correction

Luigi Rizzo

Dip� di Ingegneria dell�Informazione � Universita� di Pisa

http���www�iet�unipi�it��luigi�

Email� l�rizzo�iet�unipi�it

Abstract

In this paper we present a couple of tools developed
by the author on FreeBSD� and available from the
author�s Web page in source format� The �rst one�
called dummynet� is a tool designed for the perfor�
mance evaluation of network protocols and appli�
cations� Despite its original design goal� there has
been a lot of interest on using dummynet as a band�
width manager in network servers� dummynet sim�
ulates the e�ect of �nite queues� bandwidth limita�
tions� and queueing delays� and is embedded in the
protocol stack of the host� allowing even complex
experiments to be run on a single machine� using
existing applications and protocol implementations�

The second tool is a software implementation of an
erasure code especially suited for use in network pro�
tocols� Erasure codes are used in Forward Error
Correction �FEC	 techniques to reduce or remove
the need for retransmissions in presence of commu�
nication errors� FEC has been rarely used in net�
work protocols� because of the encoding
decoding
overhead� and also because the underlying theory of
error correcting codes is generally not well known
to network researchers� In this paper we discuss
the theory behind a simple erasure code� and pro�
vide performance data to show that the encod�
ing
decoding overhead is acceptable for many ap�
plications even on low�end machines�

� Introduction

With computer networks becoming more and more
widespread� there is an increasing number of dis�
tributed applications designed to run across net�
works with the most di�erent features� This vari�
ability of operating conditions poses severe chal�
lenges to designer of applications� especially in the

testing phase� where the interaction of the appli�
cation with networks and communication protocols
must be studied to point out potential problems or
unexpected behaviours�

The �rst tool presented in this paper� called dum�
mynet� covers the need� that every designer has� to
evaluate the behaviour of a protocol� or an appli�
cation� in a real network environment� Simulation
is often not an option� because of the requirement
to build a simulation model of the system under
test� whose features might not be fully known� Ex�
periments on a real network might be problematic
as well� because of the unavailability of a suitable
testbed� or di�culties in con�guring the testbed it�
self� dummynet solves many of these problems� by
merging the advantages of simulation and testing on
real networks� thus constituting a �exible and cheap
testing tool�

Another common problem in the development of
distributed applications is to recover from errors
and lost packets� This task is generally accom�
plished by retransmitting missing packets on de�
mand �this technique is called ARQ	� There are sit�
uations where the use of ARQ is impractical e�g�
with mobile equipment� sending the retransmission
requests to the base station drains precious power
from the battery� on unidirectional channels such as
broadcast satellite links� an uplink channel is sim�
ply not available� and in multicast communication�
ARQ might not scale as well as we would like� be�
cause of the presence of uncorrelated losses at dif�
ferent receivers�

An alternative to ARQ relies on encoding data in
a redundant way� such that the receiver can recon�
struct the original data even in presence of missing
packets� This technique� called FEC� is especially
useful for reliable multicast protocols� and
or for
highly asymmetric communication channels� How�
ever� FEC has been rarely used in networking proto�

cols ���� because the encoding
decoding procedures
are commonly believed to be very expensive� and
possibly also because the principles of operation of
such procedures are not well known to the the non�
specialist in coding theory�

The encoder
decoder presented in this paper shows
that FEC can be implemented in software with a
reasonable performance on today�s hardware� thus
opening the way to the design of protocols based on
FEC rather than pure ARQ�While we try to provide
enough details to let the designer fully understand
the operation of our encoder� it is also possible to
use our implementation as a black box in building
new applications�

The paper is structured as follows� In Section � we
present dummynet� starting with a brief description
of its principle of operation� followed by a discus�
sion of its implementation and possible applications�
Section � provides a description of our erasure code
the theory behind the operation of erasure codes is
�rst presented in Sections ��� and ���� followed by
a discussion of various implementation issues� Per�
formance data of our implementation of the code
are shown in Sec� ���� Finally� Section ��� discusses
some applications of our code�

� Dummynet

The study of implementations of network protocols
and application is often done by simulation or by
running experiments in a real network� Both ap�
proaches have their pros and cons� Simulations re�
quire the development of a simulation model of the
system under analysis� The unavoidable inaccura�
cies in the model might adversely a�ect the results
of experiments� and perhaps even prevent the de�
tection of features of the actual implementation �in�
cluding bugs	� Experiments on a real network� on
the other hand� require the availability of a suitable
testbed� which might not exist or might be hard to
con�gure correctly�

To tackle the problem� some simpli�cations can
be made� e�g� considering all phenomena of inter�
est �queueing� delays� bandwidth constraints	 con�
�ned to one or a few bottleneck links� and trying
to run experiments or simulations on such topolo�
gies� Packet level simulators have been built to this
purpose��� �� ��� and successfully used in research�

As an alternative� experiments on real systems are
performed using modi�ed routers acting as a ��ake�
way�� and con�gured to introduce delay� losses and
other perturbations to the tra�c� The tool pro�
posed in this paper acts much like a �akeway� ex�
cept that it operates within the protocol stack of
the system used for experiments� rather than in an
external router�

Network

Application

Pr
ot

oc
ol

 s
ta

ck

R-queue

P-queue

Figure � dummynet operates by intercepting tra�c

in the protocol stack of the host system� and simulat�

ing the e�ects of queueing� bandwidth limitations and

propagation delays�

��� Principle of operation

The presence of a real network between communi�
cating processes a�ects tra�c by one or more of the
following mechanisms

� propagation delays�

� queueing delays� introduced by bandwidth�
limited communication channels�

� losses� due to the queue over�ows and �to a
lesser extent� at least in wired networks	 noise�

� packet reordering� due to the presence of multi�
ple paths between the sender and the receiver�

Most if not all of these phenomena can be replicated
by intercepting packets in their way in or out of

a protocol stack� and simulating delays� losses and
reordering�

In particular� the e�ects of bounded�size queues�
propagation delays� and bandwidth�limited chan�
nels can be simulated by passing packets through
a couple of queues� named R�queue and P�queue�
�see Fig� �	� The queues are inserted at a conve�
nient point in the protocol stack �in our implementa�
tion� this occurs at the upper interface of IP	� They
implement what we call a pipe� characterised by a
bandwidth B� propagation delay tP � and queue size
S� The rules to move packets between queues are
the following

� Packets are �rst put into the R�queue� which
simulates the e�ect of the bounded�size queues
that are usually found in front of a network in�
terface� Insertions in this queue will be done ac�
cording to the queueing policy of choice �FIFO
with tail�drop in our case� so at most S packets
can be in the R�queue at any time	�

� Packets are extracted from the R�queue and
moved into the P�queue� at a maximum rate of
B bytes per second� This simulates the band�
width limitations of the communication link�

� Packets remain in the P�queue for tP seconds�
to simulate the propagation delay associated to
the link� After the delay� packets are delivered
to the next layer in the protocol stack�

Packet reordering can be conveniently simulated by
modifying the policy for insertions in the R�queue�
Losses due to noise or interference are similarly easy
to introduce� by dropping packets at random in their
�ow through the queues�

The transitions of packets between queues are per�
formed by a periodic task run every T second� At
each run� the task moves at most BT bytes from the
R� to the P�queue� and extracts packets from the
P�queue after they have been there for tP �T cycles�
All queue operations require constant time� and this
permits running the periodic task at a conveniently
high frequency with limited overhead�

��� Implementation

dummynet� as presented in the previous Section� has
been originally developed in FreeBSD in late ����

as a module to intercept TCP tra�c ����� and has
been used by the author for research and didactical
purposes� The original tool only included a pair of
pipes� con�gured with the sysctl command�

The core of dummynet is made of about ��� lines of
code� implementing the R� and P� queues and the
procedures to move packets around� Each pipe is
described by a record containing the parameters of
the pipe� and pointers to the R� and P� queues� Ele�
ments of each queue are the packets to be passed to
ip input�� and ip output��� plus any additional
argument required by these functions� The periodic
task to move packets between queues is only active
when there are packets in any pipe� and is run HZ

times per second �we often ran with HZ����� even
on ����class machines	� We have written the code in
such a way to reduce dependencies on other parts of
the operating system� so that the code can be easily
ported of other systems with little e�ort�

The simplicity and low overhead of dummynet soon
suggested its use as a general purpose bandwidth
manager
tra�c shaper for network servers� and we
have received several requests of this kind since we
made our code publicly available� In order to trans�
form dummynet into a practical bandwidth man�
ager� a �exible con�guration and packet �ltering
mechanism was needed� Rather than writing a spe�
cial purpose module for packet �ltering� we have
used for this purpose the ipfw �rewall code already
present in FreeBSD� This gives us the advantage
of reusing existing code and con�guration methods
that the user can be already familiar with� avoids
the duplication of functionalities in the system� and
allows us to bene�t of future improvements to the
�ltering code�

As a result of this integration work� dummynet now
supports multiple pipes� each of them con�gurable
independently from the others� Tra�c is �ltered
according to the rules of the ipfw packet �lter� and
selected packets can be diverted to di�erent pipes�
The ipfw rules allow a packet to be analysed multi�
ple times� so that arbitrary topologies of pipes can
be constructed if needed�

��� Con�guration

Con�guration of dummynet is done using the ipfw
command� which has been extended to allow con�g�
uration of dummynet� A new �ltering rule has been

added
ipfw add R pipe N ���

to forward matching packets to the speci�ed pipe
�multiple rules can point to the same pipe	� Each
pipe has a unique identi�er �a ���bit number	� Con�
�guration of pipes is done using commands starting
with ipfw pipe ���� e�g�
ipfw pipe config N bw ��� delay ��� size 	�

sets the parameters for pipe N to ��� Kbit
s�
��� ms� �� bu�ers� whereas

ipfw pipe list

shows the con�guration of currently de�ned pipes�

Typically� to make machine X appear behind a bot�
tleneck link� one can con�gure a couple of pipes �one
for each direction	� It is not necessary that the pipes
have the same features� e�g� the following commands

ipfw add ���� pipe � ip from any to X in

ipfw add ���� pipe � ip from X to any out

ipfw pipe config � bw ��� delay ��

ipfw pipe config � bw �� delay ���

simulate the behaviour of an asymmetric channel
between node X and the rest of the network�

Thanks to the packet �lter� one can apply delays and
bandwidth limitations to part of the tra�c� while
letting other tra�c �e�g� NFS	 run at full speed�
In this way� a diskless machine �like the one where
dummynet was initially developed and tested	 can
be used for experiments in a very convenient way�

Extensions to the tool� and to the con�guration
program� are relatively straightforward� As an ex�
ample� one can add the already mentioned random
losses and packet reordering� by adding parameters
to set the distribution of such events� Or� random
�uctuations of the bandwidth can be introduced to
simulate the e�ect of competing tra�c without ac�
tually having to generate it with some other appli�
cation�

��� Applications

We implemented dummynet as a testing tool for
evaluating protocol implementations with the �exi�
bility of a simulator� and the simplicity of use of a
real testbed� This motivates its location inside the
kernel� and near the bottom of the protocol stack�
so that all layers above it could be tested�

We believe that the tool ful�lls its design goals� Be�
ing able to run experiments on a real implemen�
tation has several advantages� because it saves the
need to build a model of the system for simulation
purposes� and it can also spot implementation bugs
which might go undetected otherwise� Operation on
a single machine is also useful� because it makes the
tool more convenient to use and also less subject to
interference from other network tra�c�

We �nd especially convenient the ability to run real
applications� and to alter the features of the �sim�
ulated	 network on the �y� With dummynet� ques�
tions like �how would this application work on a link
with ���Kbit
s and ���ms delay� can be answered
by setting up an experiment with a few keystrokes�
This is even more important when the performance
metrics are qualitative �e�g� user�perceived perfor�
mance	 rather than quantitative� and simulation
could not produce useful results� while setting up
a suitable testbed might be not feasible�

� Forward Error Correction

Loss of packets is a fact of life in computer net�
works� be it due to communication errors� or simply
to congestion phenomena� The usual approach to
recover from losses is to retransmit missing packets
on request �ARQ	 ���� There are however environ�
ments where this approach is not ideal� Classical
examples come from the telecommunication world�
where channels are often asymmetric or even uni�
directional� Such channels are becoming more and
more popular in computer networks� e�g� when data
is transferred to mobile equipment or over a wireless
channel�

ARQ has also limitations in multicast communica�
tions� because the possible lack of correlation be�
tween losses at di�erent receivers can cause severe
scalability problems� both in the amount of retrans�
mitted tra�c ���� and in the amount of feedback that
the source has to manage ����� In such situations�
it might be convenient to devise an error recovery
mechanism that can anticipate a certain amount of
losses� and enable the receiver to recover all useful
data without sending explicit requests for missing
packets�

Such a mechanism can be implemented by applying
a redundant encoding to the source data� so that

even in presence of packet losses su�cient informa�
tion is conveyed to the receiver to allow successful
reconstruction of the original data� Such an encod�
ing is called an Erasure Code�

k

k

k

source data

Encoder

encoded data

received data

Decoder

reconstructed data

n

Figure � The principle of operation of an erasure code�

��� Erasure codes

The key idea behind an erasure code is to encode
a set of k source data packets into a set of n � k
encoded data packets� in such a way that any sub�
set of k encoded packets allows the reconstruction
of the original sources �Fig� �	� Such a code is called
an �n� k	 erasure code� and can be used in several
ways to recover from losses in a communication pro�
tocol� as it will be shown in Section ���� The issue
now is how to produce the encoded packets given
arbitrary values for k and n� and to make the encod�
ing
decoding procedure su�ciently fast for practical
use�

The problem is trivial to solve for special values of k
and n� As an example� if n � k��� a simple parity
computed over all packets will do the job� This is
fast to compute� but can tolerate only a single loss
per block of n packets� The case k � � is even
simpler� because merely repeating packets solves the
problem� but in this case the usage of the channel�s
capacity would be very bad�

��� A simple erasure code

For arbitrary k and n� a solution to build an era�
sure code comes from linear algebra we know� in
fact� that a polynomial of degree k � � is com�
pletely speci�ed by its value in k di�erent points�
A simple encoding method is then to consider the
source data packets �we can think of them as in�
teger	 as the coe�cients of a polynomial P of de�
gree k � �� and construct the encoded packets as
the values of P computed in n di�erent points� e�g�
P �p�	� P �p�	 � � � P �pn��	� At the receiver� standard
procedures �e�g� see ���� Sec�����	 can be used to
recover the coe�cients of P given its values in k
points� This code is called a Vandermonde code for
reasons that will be clear in Section ������ There are�
however� a few di�culties in implementing erasure
codes �not only this one	 in practice� We will de�
scribe them in the following sections� together with
the way they can be solved�

����� High precision arithmetic

If packets are large� computations should be per�
formed with high precision� and this is extremely
slow because it is not supported natively by the ar�
chitecture� This problem is relatively easy to solve�
because we can split packets in smaller data units�
e�g� bytes� and execute the same computations on
each set of data units taken from di�erent packets�

����� Operand expansion

But at this point we hit another signi�cant problem�
namely the expansion of operands if the data �i�e�
the coe�cients of P 	 are represented on m bits� the
values of P �pi	 require a larger number of bits to be
represented exactly if ordinary arithmetic is used�
The expansion is roughly of k logn bits� which is ex�
tremely high considering that operands are typically
small ������� bits at most	� Luckily� also this prob�
lem can be solved� although the solution is trickier�
by performing computations in a Finite Field� also
called �Galois Field� or GF �pt	 ����

A �eld is a mathematical structure� de�ned by a set
of �eld elements� and a sum and multiplication op�
eration de�ned on them and satisfying certain prop�
erties� We are well acquainted with the property of
a �eld� because the numbers we operate on everyday

also constitute a �eld� Most of properties of linear
algebra �including those related to polynomial in�
terpolation	 also apply to �nite �eld computations�
There exist �nite �elds with pt elements� with p be�
ing a prime number�

A distinguishing feature of a Finite Field is that� un�
like Integers or Reals� the number of �eld elements
is �nite� The �nite size of the �eld is important for
our purposes because� no matter what computations
we do� we know how many bits we need at most to
represent the results of our computations� in other
words� there is no operand expansion�

One might wonder at this point how to do computa�
tions in a �nite �eld� because the rules for sum and
multiplication �see ���	 are complex at �rst sight�
However� it turns out that for certain Finite Fields
�e�g� when p � �	� the sum reduces to the exclu�
sive OR� whereas multiplication can be implemented
using a simple lookup table �because the �eld has
a �nite number of elements	� This means that we
can forget the intricacies of �nite �eld computations�
and assume that operations in a �nite �eld have at
most roughly the cost of a table lookup� More de�
tails on an e�cient way to perform �nite �eld com�
putations are provided in �����

����� Systematic codes

In some cases we would like the transmission to in�
clude a verbatim copy of the source data� Such an
encoding is called systematic� and has the advan�
tage that no decoding e�ort is necessary in absence
of errors� The code proposed in Sec� ��� is not sys�
tematic� however it can be turned into a systematic
code by simple algebraic manipulations� as follows�

We can look at the Vandermonde code by writing
down the relation between the coe�cients� xi�s� and
the values of the polynomial� yj � P �pj	� as follows

y� � p�
�
x� � p�

�
x� � � � �� pk��

�
xk��

y� � p�
�
x� � p�

�
x� � � � �� pk��

�
xk��

� � �

yn�� � p�n��x� � p�n��x� � � � �� pk��n��xk��

It turns out that the matrix� V � relating xi�s and
yi�s is a Vandermonde matrix ���� Sec���� and as
such has the property that any minor of degree k
extracted from V is invertible� This property still
holds if we do linear combinations of the columns
of V � thus� we can manipulate the matrix� using

a Gaussian elimination procedure� in such a way
that the upper k rows of the matrix become the
identity matrix� After the transformation� we have
that yi � xi� i � � � � � k � �� which means that we
have obtained a systematic code�

��� Performance

We have written a C implementation of the Van�
dermonde code described in this paper� Our code
operates in GF ��t	� the �nite �eld with �t elements
�with l ranging from � to ��	� Field operations have
been implemented using a lookup table for t � �
�the table takes about �� KB	� or using the proper�
ties of logarithms for larger �elds �in this case per�
formance decreases by about a factor of �	� The
performance data we provide in the following refer
to GF ���	 which is a very convenient size for prac�
tical purposes��

Our code implements both encoding and decoding
using a systematic matrix� operating on packets of
user�de�ned size� It can produce redundancy pack�
ets one at a time� which is a convenient feature for
some applications where the amount of redundancy
is not �xed a�priori� The code is extremely com�
pact and has a relatively small memory footprint�
permitting its use even on small memory machines�
and allowing a good interaction with cache memo�
ries�

The encoding and decoding speeds can be roughly
expressed as c�l� where l is the number of non�source
packets produced by the encoder� and the number of
source packets missing at the decoder� respectively�
The value of the constant c varies widely depending
on the architecture� CPU speed� and especially� the
memory bandwidth� Table � presents performance
data for a number of di�erent architectures� rang�
ing from an HP���LX �a small �����based palmtop	
to high end workstations using Pentium� Sparc and
Alpha processors� From these results� we see that
encoding
decoding can be done at high speed �with
the constant c as high as �� MBytes
s even on a
Pentium���	� thus suggesting that FEC�based error
recovery can be implemented e�ectively on modern
machines�

�the choice of the �eld size a�ects the parameter n of the

code� recall from Sec� ��� that we compute the polynomial

in n di�erent points� so the �eld must have at least pt � n

elements�

CPU MHz c �MBytes
s	

SPARC ��� ����
SPARC ��� ����
Alpha ��� ����
PA���� ��� ����
Pentium ��� ���
i��� �� ���
i��� �� ���
���� � ����

Table � Speed of operation of our decoder on dif�
ferent machines�

��� Applications

There are several application of an erasure code in
computer communications� The �rst one that comes
to mind is to use a pure FEC approach to improve
the resilience to losses in unicast protocols assum�
ing we have to deliver k packets to a receiver� and we
expect some amount of losses� we can send uncon�
ditionally a suitable number n � k of packets that
guarantees successful reception of at least k packets
with high probability�

By using the same approach� and a multicast com�
munication infrastructure� we can easily accommo�
date multiple receivers for the same data� even in
presence of di�erent or uncorrelated loss patterns at
the di�erent receivers� All we have to do is to tune
the amount of redundancy according to the features
of the worst receiver�

The scalability of reliable multicast protocols based
on FEC is often much better than those based on
ARQ for loss recovery� As an example� Figure �
shows the average number of transmissions for each
packet in a multicast application where receivers are
subject to random independent losses� with ARQ
or with FEC and di�erent values of k� The advan�
tages of using FEC� even with moderate blocksizes
or small number of receivers� is evident from the
graph� A more detailed discussion of scalability is�
sues is present in �����

Pure FEC is interesting in that it requires no feed�
back at all from the receivers� but has the drawback
of adapting badly to variable network conditions�
In these cases� a hybrid FEC�ARQ approach can

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 10 100 1000 10000 100000 1e+06 1e+07

A
vg

. t
ra

ns
m

is
si

on
s

Receivers

k = 1 (ARQ)
k = 4
k = 8
k = 32
k = 64

Figure � Number of transmissions per packet for a

multicast protocol in presence of �� losses� with ARQ

and with FEC�

be used� which consists in using only a moderate
amount of redundancy by default �or� possibly� even
no redundancy at all	� and sending additional repair
packets on demand� Compared to pure ARQ� the
important di�erence is that all packets are equiv�
alent for recovery purpose� and this is also true in
presence of multiple receivers� As a consequence�
the handling of feedback is highly simpli�ed� be�
cause the receiver does not need to specify which

packets are missing� but only how many of them
are missing� This also increases the chance that re�
transmission requests from di�erent receivers can be
merged� thus alleviating some scalability problems
which might exist in multicast communication pro�
tocols�

n-kk

Figure � Transmission order in RMDP�

An example of such a protocol is RMDP ����� which
is the application for which the Vandermonde code
presented in this paper was originally developed�

RMDP is a multicast �le�transfer application oper�
ating on top of IP multicast� or on wireless channels
were receivers have limited uplink communication
capabilities� Thanks to the FEC encoding� the pro�
tocol scales very well even in presence of highly vari�
able loss patterns at the receivers� or di�erences in
receive bandwidths�

In RMDP� a server accepts requests for a �le from
one �or more	 receivers� and then transmits the �le
as UDP packets over multicast IP ���� The �le is
partitioned in slices of k packets each� and these
packets are passed to an encoder which can pro�
duce up to n di�erent encoded packets� The trans�
mission occurs by picking one �encoded	 packet per
slice �see Fig� �	� Receivers with missing packets
�or late comers	 issue �continuation� requests� ask�
ing for more packets� The transmitter responds by
generating a new packet for each slice using the en�
coder� and sending them� This way� each receiver
can complete reception by accumulating a su�cient
number of packets per slice� no matter which ones�

More recently� we have proposed in ���� the use of
FEC as a mechanism to support layered multicast
congestion control in reliable multicast communica�
tion� using techniques formerly devised only for the
�unreliable	 transfer of continuous streams� Layered
congestion control relies on the transmission of a
data stream over a set of multicast channels� or lay�
ers ����� Data is encoded in a hierarchical fashion�
so that receivers with low bandwidth subscribe only
to the lowest layer �getting a low�quality version of
the stream	� whereas high�bandwidth receiver can
get a higher quality stream by subscribing to more
layers� A congestion control mechanism drives the
process of joining
leaves layers by looking at the
loss patterns experienced by each receiver� We have
adapted this mechanism to reliable multicast by us�
ing an encoder capable of producing a suitably large
number of packets �n � k	� and transmitting dif�
ferent �encoded	 packets across all layers� Thanks
to the encoding� the e�ect of hopping between lay�
ers does not a�ect the e�ciency of the data trans�
fer� because again it is the total number of received
packets� not their identity� that counts�

The erasure code presented in this paper has been in
use since early ���� in a number of research papers
and actual applications �e�g� ���� ���	 for the devel�
opment of scalable multicast communication proto�
cols� Albeit some other erasure codes with better
asymptotic performance have been proposed ��� re�
cently� we believe that our code has many practi�

cal applications being deterministically decodable�
small and simple �we have run it on machines as
small as an HP���LX	� and� especially� not subject
to patents or other impediments to its use�

� Conclusions

We have presented a couple of tools that can be
useful in the design� development and analysis of
networking protocols and applications� Both tools
are available in source format from the author�s Web
page � together with with more detailed documenta�
tion� While developed on FreeBSD� one design goal
was to make the code easily portable to di�erent
operating systems� so that we have avoided the use
of special operating systems features if not strictly
necessary �in particular� in dummynet we did not
use the queue handling macros which are present in
the operating system sources� and we split the core
functionalities from the packet �lter	� The small
size of the sources� both for dummynet and for the
Vandermonde code� is another factor that should
make the porting e�ort relatively simple�

Acknowledgements

This work has been partly supported by the Minis�
tero dell� Universit�a e della Ricerca Scienti�ca e Tec�
nologica �MURST	 in the framework of the Project
�Design Methodologies and Tools of High Perfor�
mance Systems for Distributed Applications��

References

��� A�Albanese� J�Bloemer� J�Edmonds� M�Luby�
M�Sudan� �Priority Encoding Transmission��
��th Annual Symposium on Foundations of
Computer Science� IEEE Computer Science
Press� �����

��� R�E�Blahut� �Theory and Practice of Error
Control Codes� Addison Wesley� MA� �����

��� S�Deering� �Multicast Routing in a Datagram
Internetwork�� PhD Thesis� Stanford Univer�
sity� Dec������

�http���www�iet�unipi�it��luigi�

��� A�Heybey� �The network simulator�� Technical
Report� MIT� Sept�����

��� C�Huitema� �The Case for packet level FEC��
Proc� �th Workshop on Protocols for High
Speed Networks� pp��������� Sophia Antipolis�
France� Oct������

��� S�Keshav� �REAL A Network Simulator��
Technical Report ��
���� Dept� of Computer
Science� UC Berkeley� �����
http���netlib�att�com��keshav�papers�real�ps�Z�
ftp���ftp�research�att�com�dist�qos�REAL�tar

��� S�Lin� D�J�Costello� M�Miller� �Automatic�
repeat�request error�control schemes�� IEEE
Comm� Magazine� v����n���� pp������ Dec�����

��� M�Luby� M�Mitzenmacher� A�Shokrollahi�
D�Spielman� and V�Stemann� �Practical loss�
resilient codes�� Proc� of the Twenty�Ninth
Annual ACM Symp� on Theory of Computing�
El Paso� Texas� ��� May �����

��� S�McCanne� S�Floyd� ns�LBNL Network Simu�
lator �http
��www�nrg�ee�lbl�gov�ns�	

���� S� McCanne� V� Jacobson� and M� Vetterli�
�Receiver�driven Layered Multicast�� ACM
SIGCOMM���� August ����� Stanford� CA�
pp������

���� J� Nonnenmacher� E�W�Biersack� D�Towsley�
�Parity�Based Loss Recovery for Reliable Mul�
ticast Transmission�� SIGCOMM���� Cannes�
France� ����� Sep������

���� J� Nonnenmacher� E�W�Biersack� �Optimal
Multicast Feedback�� Proc� of INFOCOM����
S�Francisco� Mar����Apr�� ����� IEEE�

���� �Numerical Recipes in C the Art of Scienti�c
Computing�� Cambridge University Press�

���� L�Rizzo� �Dummynet a simple approach to
the evaluation of network protocols�� ACM
Computer Communication Review� Vol���� n���
January ����� pp�������

���� L� Rizzo� �E�ective erasure codes for reliable
computer communication protocols�� ACM
Computer Communication Review� Vol���� n���
April ����� pp�������
http
��www�iet�unipi�it�luigi�fec�ps

���� L�Rizzo� L�Vicisano� �RMDP an FEC�based
Reliable Multicast protocol for wireless envi�
ronments�� ACM Mobile Computing and Com�
munications Review� Vol��� n��� April �����

���� E�Schooler� J�Gemmel� �Using Multicast FEC
to Solve the Midnight Madness Problem�� Mi�
crosoft Research Tech� Report MSR�TR�������

���� L�Vicisano� L�Rizzo� J�Crowcroft� �TCP�like
congestion control for layered multicast data
transfer�� Proc� of INFOCOM���� S�Francisco�
Mar����Apr�� ����� IEEE�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[PDF/X-1a:2001]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

