
Freeware for Cluster
Computing

Ron Minnich, Maya Gokhale, Aaron
Marks, Jim Kaba, John Degood

Sarnoff Corporation

Princeton, NJ 08540

rminnich@sarnoff.com

CyClone
• 144 nodes, 272 Pentiums

•1 PII/200

•256 P200MMX

•3 Cyrix 586/200

•12 P90

• “Cluster Fat Tree”:
•25 3COM 3C3000 100Bt switches

•2 3Com 3C9000 1000Bt switches

• Tiled display

• VIA network for 10 nodes (8 switched, 2
point-point)

Applications
• 3D rendering to replace Sarnoff’s 1024-

processor SIMD engine (“Princeton
Engine”)

• MPEG prototype encoding development

• Ray Tracing for Optics

• Creating encoded files

• Other device simulation, data
transformation tasks

• Research in metacomputing

3D rendering to replace a
1024-processor SIMD

engine
• PE is a 1024-processor SIMD

supercomputer

• Equivalent to 16K CM-2 except PE has
very fast video I/O

• PE: 4 fps, 2563 cube

• 128-processors on linux: 2 fps

• 32-node paragon at NASA: .25 fps, 1283
cube

MPEG prototype encoding
development

• MPEG motion vector estimation is
embarassingly parallel with right software

• Limit before we got to sarnoff was 4
machines scaling

• we have “task bag” software with task
dispatch/gather overhead of 2 ms/task

• Task bag supports hierarchy

• Can now easily scale to full CyClone
cluster

Ray Tracing for Optics
• We’re using TNT (The Next Taskbag) to

support an optical simulation

• Rays are traced via lens configurations

• This step follows analytical analyis and
precedes actually building it

• Being used to support a seamless tiled
display

• Before: 10K rays overnight on a powermac

• After: 109 rays in 1-2 hours on full cluster

Creating encoded files
• Can in the limit perform faster-than-real-

time encoding

• Paid for the first cluster in a few months.

• Note: if you have seen parallel MPEG
papers, and they’re not from Sarnoff,
they’re probably wrong (all the ones we’ve
seen to date are wrong ...)

Other device simulation,
data transformation tasks

• They come out of the woodwork as soon
as the cluster appears ...

• Result: our two clusters (‘94 and ‘97
models) paid for themselves in six months

• BUT: none of the apps were traditional
scientific apps such as:

SOR, LU, Matrix Multiply, SPLASH 2, etc.

• These apps don’t scale on most clusters
anyway (unless it’s 4 nodes or so)

Research in
metacomputing

• DARPA paid for half the nodes

• Research in private name spaces, better
control of TCP connections, and “Network
Threads”

Background
• This is fifth in a series, going back to 1991

• Initially we built workstation clusters, but
cut over to Pentiums in 1994

• First 16, then 32, then 48, ...

• Comparison:
•1994, 16 Indys, $327K

•1994, 16 P90s, $36K

•P90s ran at 90% of Indys for apps of interest

•Performance/Price was 8:1

•And we could get source ...

• That ended the need for workstations ...

The case for clusters
• Answer: Clustering became practical in

•1997

•1994

•1991

•1984

• And the question is:

• “What is 1984”

1984-1993
• Mary Mock shows how to beat a 7600

• Tom Nash and others at Fermi Labs start
construction of “Crates”

• By 1991, clusters were making money for
IBM, Sun (in internal use)

• Sun MICA 128-node cluster

• IBM basement full of RS/6000s

• ca. 1993, 1-2% of the world’s
supercomputers were retired by clusters

• HP, IBM, Sun, DEC: 100 TFLOPS box will
be a cluster

Progress since 1984
• What has happened: hand-built clusters for

turnkey applications

• What has happened in some cases:
•cc myprogram.c

•a.out

• We had this environment at SRC in 1994

• But people still can not:
•Watch

•Debug

•Easily control

• their program as an entity

Are Clusters
Multiprocessors?

• Can we pretend:
•Nodes are processors

•Network is backplane bus

•OSes should share name spaces, memory,
paging, PID space, etc.?

• In our experience, no

• The cluster::=multiprocessor analogy does
not work for us

• The two models have different reliability
models, failure modes, latencies, etc.

• Our approach: Process-centric

Process-centric
• We focus on the top-level process, not a

single computer or cluster

• Process locates resources and attaches as
needed (Via Private Name Space)

• Process creates shared memory segments
for export or imports other process’s
shared memory segments (via Zounds)

• Process efficiently creates groups of
processes for remote execution (via vex
library)

• Obviously, this is freeware, or I wouldn’t be
here ...

ZOUNDS
• Quick overview of ZOUNDS

• Rationale

• Programming Interface

• Performance

• Applications

• Conclusions

Zounds is part of a series
of DSMs

• Mether (started 1988)

• MNFS (started 1992)

• CMA (started 1994, dropped 1995)
•User-mode DSM built in C++

•I really don’t like C++ that much any more ...

• To understand ZOUNDS, need to
understand Mether/MNFS

Mether (1988-91)
• Software distributed shared memory

• Use custom protocols on Ethernet

• Supported two page sizes: 32 bytes, 8192
bytes

• Integrated into SunOS VM as a device
driver

• Simple consistency model (WORM)

• User-controlled coherency

Standard cache ops such as purge,
update, invalidate from user-mode

Mether Clients/Servers

• Memory Servers available throughout the
network

• Client applications can run on Servers

• Uses UDP, SunOS device driver layers

Mether Server
Memory Area

Ethernet

Mether Server
Memory Area

Mether Server
Memory Area

Mether Server
Memory Area

Node0 Node1 Node2 Node3

Application 2 Application 2 Application 1 Application 1 Application 1

Node 3 Node 2 Node 1 Node 0 Node 4

MNFS (1992-)
• Modified NFS which supports Mether

model

• Requires modifications to server and
client

• Runs on SunOS, Solaris, Irix, AIX 3.2, and
Solaris, FreeBSD 2.0.5R, NetBSD 0.9

• Use to support applications on:
• 48-node SRC Cluster

•Aurora Gigabit Network Testbed

•100+ nodes at a govt. site

•U. Koeln in Germany

ZOUNDS Goals
• Simple, low-overhead coherency model

•A la DEC Memory Channel, SCRAMNet

• Process-centric, not OS-centric, DSM:
•Clients self-page via SEGV handler (< 10 uS)

•Servers serve from a process image

•Support multiple memory object types

• Designed to be a good match to the MINI
Virtual Interface ATM card

•I.E. Process-driven, not OS-driven, IO

• Not tied to any particular OS or transport

• Provide kernel/user client and server
implementations

ZOUNDS
• Simple library of client and server calls

• Currently supports TCP/IP connections as
well as IP multicast

• Experience has shown that non-DSM
experts can easily parallelize code

• Not OS-Specific

• Use of IP multicast for updates is (to our
knowledge) unique

Zounds library
• All server functions start with the letters zs

• All Client functions start with the letters zc

• Any user program can be a server-- even
an ordinary application

• The program can start the server code and
have it run asynchronously

• Client programs are self-paged: allows
control of policy such as page size

• No special OS support is required for
operation, save on older version of ***BSD

• OS extensions can improve performance

Zounds Server
• Servers are multithreaded or single-

threaded (determined by programmer)

• Any application can be a server

• Servers can issue I/O requests for pages
to clients -- I/O need not be only client-
driven

• Servers track which clients have which
pages

• Any data region can be the backing store:
mapped files, arrays, SYSV shared
memory

Sample Code

 ZSINFO *zs;

 zs = zsalloc();

 zs->maxclients = 1;

 zs->size = 16384;

 zs->key = 0;

 zssetup(zs);

 zservershow(stdout, zs);

 if (nodetach)

 zserve(zs);

 else

 zsdetach(zs);

Pointer declaration

Allocate the server

Set parameters: maxclients

 ... size of the region

... “key”

Set up the server.

Show the server status

Check “nodetach”, run:

Synchronously until done

Asynchronously

Comments on server code
• There can be more than one server set up

for:
•Same region

•Different region

•Overlapping region

• For the asynchronous case, to make the
server exit:

•Set zs->zsexit to 1 (causes that server to exit)

•zsexit to 1 (causes all servers to exit)

• In the asynchronous case, the server can
send updates/invalidates to clients

ZOUNDS Client
• Clients attach one or more segments from

one or more servers

• Clients can attach some or all of the
remote segment

• Clients can page from themselves

• Clients can cause pages to be returned to
servers, and cause the server to send:

•invalidates to other clients

•updates to other clients

Client Code Fragment
 ZCINFO zc;

 char *name = “c097/2000”;

 zc.off = 0;

 zc.v = 0;

 zc.size = 16384;

 zcsetup(&zc, name);

Declare the client structure

This is the name (normally from

 argv)

Set offset into remote segment

Allow zounds to pick location in

client memory

Set the size

Call setup function.

Using the client segment
• You can reference it as memory or do “I/O”

• I/O and Memory references can be
interspersed and remain consistent

 if (doread)

 zcread(zc, (off_t) 0, size);

 else

 {

 int n;

 n = * (int *) zc->v;

 zcinvalidate(zc, (off_t) 0, size);

 }

doread indicates “I/O” path

read from server

Reference the data

Throw the reference away

Multicast Setup
• Multicast support is useful for many types

of applications

• For servers: set up a server with the
normal path, then add a multicast port to it:

 zsmulti(&zs,mcastip);

• For clients: setu up a client and add a
multicast port:

 zcmulti(&zc, mcastip);

Additional Server Multicast
Ops

• Servers can do multicast sync operations

• Once a second, update all multicast clients

 for(; ! zsexit;) {

 t.tv_sec = 1;

 t.tv_usec = 0;

 zserve_timeout(&zs, &t);

 /* sync all the pages for zs, starting at 0, dirty or not */

 zsmultisync(&zs, (off_t) 0, (size_t) 128, 0);

 }

Multicast Client Ops
• Clients can accept a multicast update:

 Numbytes = zcmultiupdate(zc);

• zcmultiupdate consumes all pending
multicast packets for the client

Applications
• Heat transfer solver

• Distributed tiling using simulated annealing
(used multicast heavily)

• My favorite: world’s most expensive screen
saver (video)

Performance
• SEGV handler performance:

•7 microseconds, Linux

•11 microseconds, FreeBSD

•Times can be reduced with some careful redo in
the kernel fault path:FreeBSD, 5.5 uS

• Page fault on FreeBSD: 1.22 mS/4096
byte page, 2.2 mS/16384 byte page, 512
microsecond/512 byte page

• Page fault on Linux

• Multicast Update: A server can send at
least 200 updates/second without loss at
the client

Conclusions
• Zounds is simple:

To program

To use

To understand performance of

To understand communications of

• Page fault performance is as good as or
better than NFS/MNFS

• Overall performance is quite good

• Policies are easily tuned by the user,
should they be so bold

Global Name Spaces

• Global Name Spaces are a security and
administration nightmare

Machine A Machine B

/adisk1
/adisk2

/bdisk1
/bdisk2

Process is started on Machine ‘A’ from Machine ‘B’

Machine A

/adisk1
/adisk2

(assume that all machines are running an automounter,
 as is the typical case)

/net/b/bdisk1
/net/b/bdisk2

Result: B has access to A’s disks; all processes on A have
access to B’s disks (w.r.t. standard file access
controls). Machine B must export disks possibly across
administrative boundaries. The name of B’s disks changes
as the process moves from machine to machine.

Private Name Spaces
Machine A Process 1 on Machine B

/adisk1
/adisk2

/bdisk1

Process is restarted on Machine ‘A’ from Machine ‘B’. Process

Process 1 on Machine A

/bdisk1

Process 1 sees /bdisk1 at same place in private name space.
No process on machine A can access /bdisk1
Process 1 can not access any file system resources on Machine A

has only /bdisk1 in its private name space

/adisk1
/adisk2

Processes on A

Processes on A

Private Name Space
Advantages

• User-level mount protocol

• Improved security as a result of reduced
unintended sharing and fewer priveleged
processes

• Checkpoint/Restart is much simpler

• Processes need less access to system resources
(e.g. file system) to access files

• No need to convince sysadmins to export
resources across organizations

Current Implementation

• User-mode on some OSes, kernel mode client
on Linux

• One server process per client connection

• Name space inheritance works both locally and
on different machines

• Complete transparency (tested on Linux)

How to get it

• www.sarnoff.com:8000

• Go to the metacomputing page and look for the
source

• Source is covered under the GNU
Programming License

VEX
• Problem: for reasonable numbers of nodes

(say 64 or more) it takes too long to start
up remote processes

• Ideally, ‘Start’ and ‘End’ are zero

WorkStart End
WorkStart End

WorkStart End
WorkStart End

Does this really matter
• Not usually for small numbers (8 or so)

• But: consider a 128-minute job

• Need fast, efficient encapsulation of
remote processors for scalable computing

• Need easy ways to specify aggregates

Time 8 4 2 1

Procs 16 32 64 128

Over-
head

7 3 1.5 .6

Hostlists
• Efficient way to specify, select, and

communicate with aggregates of remote
hosts

• Model is to create a hostlist, then apply
filters to it

• Filters can be specified by regular
expressions on host names or by selecting
idle hosts via vector RPC

• Can generate code for static, initialized
hostlists

• At end of filter step(s), operate on the
hostlist

Basic Types
• A host:
struct host
{
 char *hostname;
 struct sockaddr_in hostaddr;
 /* other good stuff */
 char *hosttype; /* quote string of the form "sun4c", "rs/6000", etc.*/
 int mbytes; /* number of mbytes of virtual memory */
 int pmbytes; /* number of mbytes of physical memory */
 int avenrun[3]; /* from avenrun stats */
 int lastmouse, lastkbd;
};

• A list of hosts
struct hostlist
{
int numhosts;
struct host **hostarr; /* array of pointers to host entries */
};

• A hostlist can be sparse

Basic functions
• Many return a hostlist

• Either:

Take a hostlist as an arg, for filtering

Filter to refine the hostlist, to select only
certain hosts (via regex or load or ...)

Add information to the list (.e.g given a set
of names, fill in the IP addresses)

Netexec
• Used to manage aggregates of remote

programs
struct netexec

 {

 struct sockaddr_in s;

 char *hostname;

 char *argv, *envp;

 int arglen, argc;

 int envlen, envc;

 int results;

 int fd0, fd1, fd2;

 };

Vector RPC
• Used to efficiently call RPC for aggregates

of hosts

• hostlists library can generate vector RPC
structures and perform vector RPC calls
starting with a hostlist

Simple example: alloc a
hostlist, filter by RE, run /
bin/date on those hosts

struct hostlist *hl;

struct netxec *pn;

char *name, *pass, *cmd = “/bin/date”;

char *linuxclusterhosts[] = {“c0[012345].”, “c06[0123]”, 0};

hl = hostlistfromhosts();

selecthostsbynamelist(hl, linuxclusterhosts);

nprocs = hl->numhosts;

res = rexechl(hl, &nx, &nprocs, &name, &pass, cmd, /* numcmds */ 1,

 exec_port, use_priv_port, /* no stderr */ 0);

Details
• We only show one command

can have arrays of commands

e.g. run odd/even hosts w/different

• nprocs is filled in with successful procs

• nx is filled in with useable netexec struct

• We found with more than 40 or so
machines that hostname lookup hurt
scaling, so:

Compiled-in host-IP
mappings

• Host->IP address lookup was killing
scaleup

• IP addresses in most environments are
static for years (esp. true for cluster)

• so:
 hl = hostlistfromhosts(); /* create a hostlist */

 selecthostsbynamelist(hl, selections); /* select hosts we want */

 gencode(file, "allhosts", hl); /* gen code for inclusion at compile-time*/

Gencode output
struct host allhostshosts [] = {

{ "p0", {2, 0, {0xb80a2182}}, "NOTYPE", 0, 0,

 {0, 0, 0}, 0, 0},

{ "p1", {2, 0, {0xb90a2182}}, "NOTYPE", 0, 0,

 {0, 0, 0}, 0, 0},

 /* etc. */

• Typical use: hl = clonehl(allhostshosts);

• Then filter hl

• Reduces lookup time for 100 hosts from 5-
12 seconds to “zero”

• Removes hostname lookup as a factor

VEX: making it easy
• VEX encapsulates hostlist and netexec in

one object

• Code looks like this:
vex = vexalloc();

vexaddpplist(vex, argv[0], /* regular expression ? 1 */ 1);

if (vexexec(vex) <= 0)

 exit(1);

 while (vex->succ) /* vex->succ is number of active remote execs */

 {

 vexioloop(vex); /* handles stdin->remote and remote->stdout */

 }

Things we don’t do
• Signal propagation

This is for efficient remote exec: we didn’t
want to pay the overhead

We can revisit this decision ...

Conclusions
• Successful cluster computing on a large

scale requires low-overhead, process-
oriented support systems

• Clusters aren’t multiprocessors

• We have shown three such systems

• Two (ZOUNDS, hostlist) have been in use
for years for real work

• Private name spaces is just coming into
use, but solves major problems we have
experienced

• This is all open source

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 5
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[PDF/X-1a:2001]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

