
Multimedia Driver Support in the FreeBSD Operating System

James S� Lowe

University of Wisconsin�Milwaukee

College of Engineering and Applied Science

james�cs�uwm�edu

http���www�uwm�edu��james

Luigi Rizzo

Universita� di Pisa

Dip� di Ingegneria dell�Informazione

l�rizzo�iet�unipi�it

http���www�iet�unipi�it��luigi

Abstract

In this paper we will discuss the motivation� de�
sign� implementation issues� and applications for the
audio and the video acquisition drivers which are
available in FreeBSD 	
�� Both systems have been
designed from scratch� with special attention paid
to the e�ective transfer and synchronization of data
between the hardware and advanced applications�

The main focus in the design of the audio driver
was for supporting multimedia applications� which
often require full duplex operation and have strict
synchronization requirements� This suggested the
denition of a new software interface� simpler to use
than the previously existing OSS �Voxware� driver�
The driver is backward compatible with the OSS
API due to the large base of applications that use
this API�

The video acquisition driver focuses on providing
�exible access to the acquisition device and the abil�
ity to suit the needs of di�erent applications� from
simple TV viewers to video conferencing programs�
The driver provides memory mapped access to the
capture bu�er� �exible support for synchronization
with the application� and supports the various cap�
ture formats and scaling capabilities that are avail�
able from the video acquisition hardware�

� Introduction

Multimedia applications are becoming more and
more popular everyday due to the increasing per�
formance of workstations and networks� The ability
to run highly demanding compression algorithms in
software has promoted the development of advanced

applications which deliver multimedia streams� re�
quiring synchronization between the application and
the hardware�

Acquisition and rendering of multimedia streams re�
quires special peripherals such as� audio CODECs�

and frame grabbers� as well as� adequate support in
the operating system� In fact� CODECs and frame
grabbers are relatively simple devices� and in prin�
ciple they could be easily supported in an operating
system using the conventional read�� and write��

system calls� plus a small number of ioctl�� calls to
congure the special features of the devices� How�
ever� synchronization is a fundamental requirement
with many advanced applications� so the internal
structure of the driver� and the interface it exports�
must support these requirements in a �exible and ef�
cient way� Furthermore� video streams are highly
demanding in terms of bandwidth� so the conven�
tional read���write�� interface might not be the
most e�cient or e�ective way to transfer data�

In recent years� multimedia support in the FreeBSD
operating system has received a lot of attention�
namely� the addition of support for full duplex au�
dio cards and high performance video grabbers com�
municating through the PCI bus� Most of these
systems have been designed from scratch� In this
process� we had the signicant advantage of already
knowing which applications would likely use these
devices� and what features were required� As a con�
sequence� we could use this information to provide
e�cient support for the applications� without miss�
ing some important features� and without cluttering
the design with features that are of no practical use�

For the video acquisition driver� we were essentially
free to design our software interface from scratch�
For the audio driver� the existence of a relatively

�The term CODEC comes from a hybrid of the words
COmpressor and DECompressor�

large base of applications forced us to implement
a compatibility interface� We decided to look at
compatibility issues only after the architecture of
the driver was designed� so that these issues did not
in�uence our design�

The paper is structured as follows� In Section �
we present the audio driver� starting with a brief
description of audio hardware� followed by a dis�
cussion of the various features implemented by the
driver� and a brief discussion of our design choices�
We discuss the same topics in Section � for video
acquisition support� Finally� Section � discusses the
implementation status of the drivers presented in
this paper and Section � contains our conclusions�

� Audio

The structure of a typical audio device is shown in
Figure
 with two logically independent systems�

providing support for audio record and playback�

In the record section� analog sources are routed
through a mixer to the Analog to Digital Con�
verter �ADC�� whose output is stored into a bu�er�
The hardware dictates the native resolution �� or

� bits�� data formats �linear or ��law�� channels
�mono�stereo� and sampling rate� The software im�
plements the bu�er and may additionally implement
some data format conversion before passing data to
the application program�

The playback section uses a bu�er to hold data that
is sent to the Digital to Analog Converter �DAC��
The output of the DAC is fed to a mixer which
combines together other analog sources and sends
them to the appropriate outputs� Similar to record�
ing� the operating system software implements the
bu�ering strategy and possible format conversions
to supplement the native features supplied by the
hardware�

The DAC and the ADC are usually part of the
same physical device referred to as the CODEC�
The transfer of samples between the CODEC and
the bu�ers supplied by the operating system can be
done in several ways� Most of the time� the audio
device uses a DMA channel which is present on the

�Except for cases where hardware limitations make the
system share resources thus preventing full duplex operation
or odd mixer characteristics�

CD

DMA
RDY FREE

DMA
RDY FREE

CD
AUX

Input
Mixer

ADC

Record buffer

Mixer
Output

DAC

Playback buffer

Figure
� A model of a typical full duplex audio device�
On the left is the record �or input� section� on the right
the playback �or output� section�

system�s mainboard �as in the case of Intel�based
PC�s�� In some other cases� the audio device has
an internal DMA engine which acquires control of
the bus and performs the data transfer �devices on
a PCI bus generally operate in this way�� As an al�
ternative� the audio device could have some internal
memory where data is bu�ered �e�g� under control
of a specialized processor�� and the main processor
has only to transfer blocks of data at given intervals�
possibly using programmed I�O�

In some cases the audio device has an on board Digi�
tal Signal Processor �DSP� which can be used to run
data compression algorithms� o�oading the main
processor from this task� This is� in general� a useful
because some algorithms �e�g� GSM or MPEG en�
coding�decoding� are expensive and it is cheaper to
run them on a DSP �which has become a commod�
ity device because it is extensively used in cellular
phones and other digital audio devices��

There are large variations in the capabilities of the
mixers as well� Some simple devices just have one
input and one output channel� directly connected to
the ADC and the DAC� respectively� with no vol�
ume controls� The majority of audio devices for
PC�s have a simple multiplexer with only a master
volume control on the input section� and a full fea�
tured mixer with independent volume controls for
the various channels on the output section� Newer
devices have separate full�featured mixers on both
the input and output paths containing a large se�
lection of sources and destinations along with the
ability of performing miscellaneous functions such
as swapping left and right channels� muting sources�
etc�

Appl.

Hardware (CODEC, DSP, ...)

Device driver

Library

Appl.

Server

Appl.

Figure �� Possible structure of applications using the
audio device� Application access to the driver can be
direct� via a library� or through a server�

��� Audio Device Initialization

The �device driver� layer in Figure �� is responsible
for the transfer of data between the applications and
the audio hardware� Prior to using the audio device
for data transfer� applications will need to acquire
the capabilities of the device �supported sampling
rates� data formats� number of channels� full du�
plex operation� and any other device�specic �fea�
tures���� and set the desired data formats� These
operations are usually done by means of ioctl��
calls� whose name and format change from system
to system� Although some approaches �e�g� those
where all parameters are read or set at once� using
a single call� appear to be more elegant and e�cient
than others� there are in practice no di�erences be�
cause this is generally a one�time operation�

Another one�time operation� for audio devices that
include a programmable DSP� might be the down�
loading of appropriate rmware to the DSP to per�
form the required function �e�g� running some com�
pression or decompression algorithm�� Dedicated
software interfaces are often used for this purpose�
and e�ciency is generally not a primary concern�

Finally� appropriate ioctl�� calls are necessary to
control the mixers which are present in the signal
paths� This is an area which would really bene�
t from some standardization e�ort� given the sig�
nicant di�erences in capabilities of these devices�
However� the control of mixer devices is conceptu�

�There are signi�cant di�erences among audio cards� As
an example� some CODECS can only work in full duplex un�
der some constraints� others have bugs that are triggered by
certain operating modes� and so on� The driver can block er�
roneous requests� but the only way to make good use of the
available hardware is to have the driver provide a unique iden�
ti�er for the actual hardware and applications �or libraries	
can map these identi�ers to a list of features and adapt to
them�

ally simple because the requested operation �e�g�
setting a volume or selecting an input source� gener�
ally takes place in real time� and the only signicant
issue is to have an interface which can ease the port�
ing of software to di�erent systems�

��� Audio Access Granularity

The natural representation of sound is a stream of
data� Our driver emulates this natural representa�
tion by supplying the application with the appropri�
ate tools to manipulate a circular queue rather than
requiring the application to collect and manipulate
the data in blocks�

The audio driver has two modes of operation� char�
acter and block mode� In character mode� the device
produces a stream of bytes� and select�� returns
when one byte can be transferred� To enter the block
mode �not to be confused with blocking mode� which
is an orthogonal feature�� the AIOSSIZE ioctl�� is
used to specify the granularity to be used for the
select�� operation� The latter will return success�
fully only when at least a whole block of data can be
transferred� AIOSSIZE ioctl�� call can modify the
requested value if it is not an acceptable one� and it
returns the block size in use� A block size of � or

will set the device driver into character mode�

We want to point out that the AIOSSIZE function
only species the behavior of the select�� call�
both read�� and write�� retain the usual byte
granularity� We found this to be a necessary feature
because it permits applications to control the data
transfer rate with ne granularity� rather than being
forced to use multiples of the block size� For robust�
ness reasons� the user shouldn�t make further as�
sumptions on the behavior of read�� and write���
In particular� it should not be assumed that they
always transfer the requested amount of data� or
that they always work on multiples of the block size�
Similarly� the user should make no assumptions on
the internal operation of the driver �e�g� that the
size of DMA transfers equals the value specied with
AIOSSIZE��

����� Non�Blocking I�O for Audio

Traditionally� device drivers provide support for non
blocking I�O� This operating mode can be selected
by issuing the FIONBIO ioctl��� In non�blocking

mode� read and write operations will never block�
at the price of possibly returning a short transfer
count�� Non blocking reads are possible� even in
blocking mode� by invoking the FIONREAD ioctl��

rst� and then reading no more than the amount of
available data�

There is no standard function which is equiva�
lent to FIONREAD for write operations� In our
driver we have implemented such a function� called
AIONWRITE�� which returns the free space in the
playback bu�er� A write of this many bytes will not
block� even if blocking mode is selected� In our im�
plementation� both FIONREAD and AIONWRITE track
the status of a DMA transfer�

DMAFREE READY

trigger

PLAYOUT

DMA FREEREADY

trigger

CAPTURE

FIONREAD

AIONWRITE

read()

write()

Figure �� A view of the record and playback bu�ers�
with the indication of events which trigger the actions
requested with AIOSYNC� The thick vertical bar indicates
the current position of the DMA pointer� Also indicated
are the e�ect of read�� and write��� and the values
returned by FIONREAD and AIONWRITE�

��� Audio Synchronization

It is important for some applications to know the
exact status of the internal bu�ers in the device
driver� both in terms of ready and free space� be�
cause some other activities could be synchronized
with the audio streams� As an example� a player
program may want to avoid the condition that the
playback bu�er becomes empty in the middle of op�
eration� or� a telephone�like application might need
to control the amount of data bu�ered� in order to
limit the end�to�end latency�

In principle� when the data transfer occurs at a con�
stant nominal rate� the amount of data bu�ered can

�This can happen in blocking mode as well�
�We should have really used the name FIONWRITE because

this function is very general and not peculiar to audio devices�
E�g� it could be useful on tty devices� on network sockets
and everywhere we have some amount of bu�ering in the
hardware or the kernel�

be derived by using a real time clock� In prac�
tice� this method is imprecise because of deviations
between the nominal and the actual sample rate�
clock drifts� or bu�er over�ows�under�ows which
cause samples to be missed� Furthermore� variable�
rate compression schemes� or dynamically�changing
bu�er sizes� might render the use of timers for de�
termining queue occupation completely useless�

FIONREAD and AIONWRITE only provide limited infor�
mation on the status of bu�ers� and are used mainly
when the application would like to avoid blocking on
the device� We would also like to have alternative
mechanisms which either notify a process �e�g� us�
ing a Unix signal� or wake it up when a specied
event occurs� Figure � shows in detail the record
and playback bu�ers� The boundary between the
FREE and READY regions� which we call the cur�
rent DMA pointer� moves with time� Applications
may be interested when the current DMA pointer
reaches a given position relative to either the begin�
ning or the end of the bu�er and be notied when
this event occurs� as well as� knowing the exact po�
sition of the current DMA pointer relative to either
end of the bu�er�

To support these functionalities we have introduced
a single new ioctl��� AIOSYNC� which takes the
specication of an event �the current DMA pointer
reaching a given position in either bu�er� and an
action to execute when the event occurs� The event
can be specied relative to either end of the bu�er�
while the action can be any of the following �in all
cases� upon return� the current DMA pointer will
be reported� relative to the same bu�er end as used
in the request��

No operation� This function is blocking �unless
the event has already occurred� and will return
when the desired event occurs� This function
is very powerful and �exible� it can be used to
wait for a bu�er to drain or ll up to a cer�
tain level� or just to report the status of the
transfer �duplicating to some extent the infor�
mation supplied by FIONREAD and AIONWRITE�
although with AIOSYNC we can read the current
size of either the FREE or the READY region
of the bu�er��

Send a signal� This function is non�blocking�
It schedules a signal to be sent to the process
when the bu�er reaches a given mark� This pro�
vides an asynchronous notication which can
be handled while a process is active� or wakes

up a process blocked on a system call�

Wakeup a selecting process� This function is
non�blocking� It causes a process blocked on
a select�� call to be woken up if the desired
event occurs� Note that this action is not an
exact duplicate of the previous one� while a
signal scheduled with the previous function
can wake up a selecting process� there is a po�
tential race condition in that the sequence

ioctl�fd� AIOSYNC� �����

ret � select� ��� ��

might be interrupted in the middle� and the sig�
nal be delivered before the select�� call� The
problem can be solved but at the price of some
obfuscation in the code� With this function�
we simply request a select�� for exceptional

conditions on the le descriptor �specied us�
ing the fourth parameter of select��� to wake
up when the desired event occurs� This makes
us a�ected by timing issues because the event
is possibly logged in the device driver and re�
ported to the application as soon as select��
is invoked�

AIOSYNC covers all practical needs for synchroniza�
tion� and the cost of implementing the di�erent no�
tication methods is minimal because they share al�
most the same code paths�

The resolution of the AIOSYNC calls depends a lot on
the features of the underlying hardware� On some
devices� the DMA engine can be reprogrammed on
the �y to generate an interrupt exactly when the de�
sired event occurs� On other devices� this cannot be
done� so if the desired event falls within the bound�
aries of an already started DMA transfer� there is
no alternative but to periodically poll the status of
the transfer� In this case� the resolution which can
be achieved depends on the granularity of the sys�
tem�s timer� because the poll is generally done once
per timer tick� Common values for the timer fre�
quency correspond to a granularity of
 to
� ms�
which are acceptable for the coarse synchronization
of streams��

�Consider that
� ms corresponds� at the speed of sound�
to about � meters which is comparable to the distance be�
tween players in an orchestra� the refresh rate of video devices
is in the
� to � ms range� so a synchronized video out�
put with higher resolution would be useless� moreover� non
real�time operating systems would make a higher resolution
useless because of the jitter in scheduling processes�

The last ioctl�� we use to support synchroniza�
tion is AIOSTOP� The function takes the indication
of a channel and immediately suspends the trans�
fer on that channel� �ushing the content of the ker�
nel bu�er� The return value from the function is
the amount of data queued in the bu�er when the
channel was stopped� This function allows the ap�
plication to suspend a recording when it decides that
no more data is required and directly supports the
PAUSE function in audio players� It is responsibil�
ity of the application to reload any data that was
�ushed in the play bu�er� There is no explicit func�
tion to start a transfer after a pause� because this
action is implicit when issuing a read��� write��
or select�� call�

Function Description

FIONBIO Selects blocking or non�blocking
mode of operation for the device

FIONREAD Returns the amount of data which
can be read without blocking�

AIONWRITE Returns the amount of data which
can be written without blocking�

AIOSSIZE Selects character or block mode of
operation for the device� setting the
threshold for select�� to return�

AIOGSIZE returns the block size currently in
use�

AIOSYNC Schedules the requested action �re�
turn� signal� or enable select� at the
occurrence of the speci�ed event�
Returns the current status of the
bu�er�

AIOSTOP Immediately stops the transfer on
the channel� and 	ushes the bu�er�
Returns the residual status of the
bu�er�

read�� Returns at most the amount of data
requested� Might return a short
count even in blocking mode� Also
starts a paused recording�

write�� Writes at most the amount of data
requested� Might return a short
count even in blocking mode� Also
starts a paused playback�

select�� In character mode� will return when
at least one byte can be exchanged
with the device� In block mode�
will return when at least a full block
�of the size speci�ed with AIOSSIZE�
can be exchanged with the device�
Also start a paused recording�

Table
� Functions supported by our audio driver for
data transfer and synchronization�

For reference� Table
 summarizes all the functions
related to synchronization and data transfer sup�
ported by our driver� There is not a function to set
the size of the kernel bu�er in the device driver� we
did not implement it on purpose� because we do not
believe it to be desirable or useful� In fact� bu�er�
ing within the device driver serves to avoid requir�
ing applications to communicate with the CODEC
at many small intervals� The amount of bu�ering
required to avoid loss of data depends mainly on
the speed and load of the system� and is much bet�
ter decided by the operating system� rather than
by the application� Also� these bu�ers are used by
the DMA engine and reside in non�pageable mem�
ory� so it is again up to the OS to decide how many
resources can be dedicated to this purpose�

It follows from the above that applications with spe�
cial bu�ering requirements can not rely on kernel
resources which might not be available to the same
degree on all systems� and will need to implement
bu�ering on their own� this also gives them greater
control over bu�ers� and improves portability of the
code� These are the same reasons which suggest
not to include functions to manipulate the content
of the internal bu�ers of the device driver�

��� Related Work

There is unfortunately relatively little published
work on audio device drivers� Most work on multi�
media devices focuses on video acquisition and ren�
dering� which has more demanding requirements in
terms of processing and data�movement overhead�
Most operating systems implement a primitive in�
terface to the audio hardware� giving only access to
the basic features of the CODEC 	��� and with little
or no support for synchronization�

The mapping of kernel bu�er in the process� mem�
ory space has gained some popularity in recent
times� on the grounds that this technique can save
some unnecessary copies of data 	�� �� ��� Having the
bu�er mapped in memory also gives the �false� sen�
sation that programs can gain functionality� As an
example� the typical use of memory mapped bu�ers
in audio conferencing programs is to pre�initialize
the playback bu�er with signicant data �e�g� white
noise� or silence� to minimize the e�ect of missing
audio packets� For games� things can be arranged so
that some background music is placed in the bu�er
and played forever without further intervention�

We believe that memory mapped access to the au�
dio bu�er is not important in a modern system�
where the memory bandwidth is orders of magni�
tude greater than the required data rate� Provided
a suitable synchronization mechanism exists� such
as AIOSYNC� the pre�initialization of the bu�er de�
scribed above can be easily implemented in the ap�
plication using the conventional read���write��
interface� also gaining in programming clarity� Ad�
ditionally� for special applications such as audio con�
ferencing� pre�lling the bu�er can be e�ciently
done in the driver itself �as we in fact do�� Finally�
separate processes or threads can be used to gener�
ate background audio in a �exible way�

In many systems� access to the audio device is medi�
ated through a library 	�� which provides additional
functionalities such as mixing multiple streams�
playing entire les in the background� etc�� This
approach is certainly advisable� although a libraries
can only export and simplify the use of functionali�
ties existing in the device driver�

Another popular approach for audio applications
is to mediate access to the audio device through
a server process 	�� ��� similar to the X�Windows
server� The very nature of audio poses some limita�
tions to this approach� Multiplexing audio output is
not as simple as for video� where multiple indepen�
dent windows can be created� Thus� mechanisms
are required to move the �focus� of the server from
one application to the other� either manually or au�
tomatically� The second� more important� problem
is related to the real�time nature of audio� medi�
ating data transfers through an additional process�
and possibly through a communication channel� can
introduce further� unpredictable� delays in the com�
munication with negative e�ects on some applica�
tions�

� Video acquisition

Video acquisition devices capture data from ana�
log video sources� encoded as PAL� NTSC� or SE�
CAM standard color signals� The typical structure
of these devices is described in Section ��
�

The analog encoding standards for video signals are
based on the sensitivity of the human eye with re�
spect to intensity �luminance� and color �chromi�
nance� information� Human eye receptors� nerves�

are called rods and cones� The rods detect lumi�
nance or grey scale� and are used for peripheral vi�
sion� The cones detect color� details and far�away
objects 	��� There are less cones than rods� and the
cones have signicantly less spatial resolution 	���
As a consequence� analog video standards encode
separately the luminance and chrominance signal�
and may utilize less bandwidth for chrominance in�
formation�

I/O Bus

FormatterDecoder Scaler Interface
Bus

Luminance ADC

Chrominance ADC

Video
Input

Figure �� Typical Video Acquisition Board

��� Video Hardware Description

Analog PAL� NTSC� or SECAM standard color sig�
nals are decoded� scaled to the desired value� sent
through a formatter and written to system memory
via the I�O bus interface as shown in Figure �� The
decoder contains a luminance processor� a chroma
processor� and a synchronization and clock proces�
sor� The decoder also extracts timing information
from the video signals� The output from the de�
coder consists of samples of the luminance �Y� and
chrominance �U�V� components of the signal� to�
gether with timing information� The scaler accepts
the YUV data from the decoder� interpolates the
samples� scales the video downward to the desired
size� and lters the data in both the horizontal and
vertical domains� It is extremely important that
this function is done by the hardware because this
operation is expensive� and scaling the image to the
desired size beforehand also reduces the amount of
data to be transferred to memory�

����� Video Color Space Representation

The formatter performs digital color space conver�
sion of the YUV data into several output formats�

to suit the needs of the applications in both color
space representation �e�g� YUV or RGB� and data
arrangement �e�g� planer or packed��

The YUV representation is oriented on the human
perception of visual information� and it is the pre�
ferred format for doing compression or similar pro�
cessing� The RGB representation is based on the re�
production of color information for peripherals� and
it is better suited for applications like displaying on
CRTs� The most common formats are RGB and
YUV as described in Table ��

RGB stands for Red� Green� and Blue which are the
principle signal components of color cameras� scan�
ners� or CRTs�

CMYK stands for Cyan� Magenta� Yellow� and Black�
It describes which color component is removed from
white to generate a certain color� K is de�ned as
the minimum of CMY� The relationship of CMY
to RGB us given as

�
�
�
�
�

C
M
Y

�
�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�

R
G
B

�
�
�
�
�

YUV is a color di�erence component representation� Y
stands for luminance information and is compatible
to a grey or black and white signal� U and V are the
color di�erence signals� U � CB � �B � Y �����
and V � CR � �R � Y �������� The direct and
inverse matrixes for YUV and RGB conversion ���
are

�
�
�
�
�

Y
U
V

�
�
�
�
�
�

�
�
�
�
�

����� ���� �����
������ ������ �����
����� ������ ������

�
�
�
�
�
�

�
�
�
�
�

R
G
B

�
�
�
�
�

and
�
�
�
�
�

R
G
B

�
�
�
�
�
�

�
�
�
�
�

� � �����
� ������ �����
� ��� �

�
�
�
�
�
�

�
�
�
�
�

Y
U
V

�
�
�
�
�

HSI� HSV� or HSL stands for Hue� Saturation� and
Intensity� �V for Value� or L for Luminance�� The
Intensity� Luminance� or Value is equivalent to the
Y value of YUV space� The Hue and Saturation
describe the chrominance �UV� plane in polar co�
ordinates by means of a vector� its length �S �
Saturation� and its angle �H � Hue� ����

Table �� Color Representations

Data can be arranged by packing samples together
in a pixel�by�pixel basis �packed format� or in
a component�by�component basis �planer format��
The choice depends on the type of processing that

the application requires� Packed formats are pre�
ferred when doing color space conversion or render�
ing� and processing is done on all components of
each pixel� Planer formats are generally used for
computations that involve only one of the compo�
nents at a time �e�g� DCT�� in order to improve the
pattern of access to memory�

Table � describes the color formats supported by the
video acquisition driver in FreeBSD� Other formats�
such as� YUV ��
�
� YUV ������ and RGB � are
utilized by some video capture hardware� but are
not supported by our driver� Many of these formats
and data types are described on the FOURCC	
��
home page�

����� Frames and Fields

Analog video is interlaced and captured as two
elds� Each eld is denoted by either the odd
or even designation� NTSC elds are separated
by
���th second and PAL elds are separated by

���th of a second� To capture a full size frame� two
elds �both even and odd� are interlaced and stored
in memory� Thus� a NTSC input signal generates
�� frames�second and a PAL input signal generates
�� frames�second�

The time di�erential between even and odd elds in
a frame may create some undesirable e�ects in the
stored video image� These interlaced elds cause
high frequency components to be introduced when
compression algorithms are used� There are several
methods of eliminating these undesired e�ects� one
simple method� which is commonly used� is to only
capture and encode the even �or odd� elds in a
frame�

��� Applications Interface to the Video
Hardware

Application programs may request one of three
video capture methods� single frame capture�
asynchronous continuous capture� or synchronous
pipelined capture which captures into a circular
bu�er with low and high water marks� Along with
the type of capture� the application program must
specify the size of the image to capture and what
format �see Table �� to store the captured data� Ta�
ble � describes the standard video sizes�

YUV ����� � Y is sampled at every pixel� U � V are
sampled at every second pixel horizontally on each
line� This format may either packed or planer�
The packed pixel format has the following order

�U� Y� V� Y� U� Y� V� Y� ���� The planer
format is a width�height Y plane followed by
width���height�� U and V planes�

YUV �� � Y is sampled at every pixel� U � V are
sampled at every second pixel horizontally on each
line and every second pixel vertically� The format
is planer with a width�height Y plane followed by
a width���height�� U and V planes�

YUV � � Y is sampled at every pixel� U � V are
sampled at every fourth pixel horizontally and
every fourth pixel vertically� The format is
planer with a width�height Y plane followed by
a width���height�� U and V planes�

RGB �� � There are two formats for RGB �� data�
The most commonly used format is RGB �
�
��
Each format represents �� bits per pixel�

RGB ����� � Each component� red� green� or
blue� are represented by � bits giving �� di�er�
ent levels of each or ���� possible colors� the
most signi�cant bit is �� The format is packed
as follows �xRRRRRRGG GGGBBBBB��

RGB ����� � The red component is represented
by � bits� the green by �� and the blue is
represented by � bits� The format is packed
as follows �RRRRRGGG GGGBBBBB� �this
format is not supported by the driver� but in�
cluded here for completeness��

RGB 	� � Each component� red� green� or blue� are
represented by � bits giving ��� di�erent levels of
each or ��� million colors� The format is packed
as follows
 �xxxxxxxx RRRRRRRR GGGGGGGG
BBBBBBBB�

Table �� Common Digital Video Formats

Format Full CIF QCIF
NTSC ��� x ��� ��� x ���
�� x
��
PAL ��� x ��� ��� x ���
�� x
��

Table �� Standard Square Pixel Video Sizes ���

����� Video Capture Modes

The FreeBSD video acquisition driver provides three
modes of capture operation� the conventional Unix
read�� interface� memory mapped single capture
or asynchronous continuous capture� and memory
mapped synchronous multi�frame ring bu�er cap�
ture�

Conventional Unix read�� interface� This
method of capture may be used with little pro�
gramming cost and is used for capturing a sin�
gle frame of data� In this mode� the applica�
tion opens the device� sets the capture mode
and size� and uses the read�� system call to
load the data into an application dened bu�er�
The hardware copies video data into a system
memory location� When a full frame is avail�
able� the system copies this data from system
memory into the user data bu�er and returns
control to the application program�

Memory mapped single capture or asyn�
chronous continuous capture� In this
mode� the application opens the device� sets
the capture mode and size� memory maps the
frame bu�er into the user process space� and is�
sues either the single�capture or the continuous�
capture ioctl�� to load the data into the mem�
ory mapped bu�er� The hardware copies video
data into a system memory location� In single�
capture mode� the ioctl�� call returns once
the data capture is complete� In continuous�
capture mode� the ioctl�� call returns imme�
diately and the memory bu�er is updated con�
tinuously until the application requests video
capture be discontinued�

Memory mapped synchronous multi�frame
ring bu�er capture� The application opens
the device� sets the geometry� memory maps the
common control structure and the data� denes
the frame size� number of frames� high and low
water marks and starts synchronous continuous
capture mode�

Table � describes the memory model used by
the video capture driver to synchronize the ker�
nel with the application program� The kernel
synchronizes by incrementing the count of the
number of active frames and marking the frame
as active in the active bitmap� If the number of
active frames exceeds the high water mark� the
driver ceases to capture data until the number

of active frames falls below the low water mark�
It is the applications responsibility to clear the
active bitmap and decrement the number of ac�

tive frames count�

Frame size Rows � Columns � Depth�
Number of frames Number of frames in the bu�er�
Low water mark Capture stops when the number

of active frames is � than this
number�

High water mark Capture starts when number of
active frames is �� this number�

Active bitmap Bit mask of active frames� kernel
sets� application clears�

Number of active

frames

Count of active frames� kernel in�
crements� application decrements�

Frame �

���

Frame N

Table �� Memory Map of Synchronous Capture Mode

The memory mapped interface to video data was
motivated by the overhead of copying the video data
from system space to user space� Depending on the
size and format of the requested data� there may be
a substantial savings of both CPU time and mem�
ory bandwidth by avoiding this copy and directly
accessing the data� More detail on this subject is
discussed in the performance section ������

Multiple frame bu�ers are useful so that the applica�
tion program can utilize the current frame while the
system is capturing the next frame� On slower ma�
chines several frames may be captured while the ap�
plication is processing a previously acquired frame�
By utilizing multiple frame bu�ers� the application
can elect to skip intermediate frames and process
the most recently acquired frame while maintaining
synchronization with the video stream�

��� Video Synchronization

There are several synchronization tools that the
video device driver supplies to application pro�
grams�

Signals� The driver will send a signal to the ap�
plication program each time a frame is com�
plete� This is useful for asynchronous notica�
tion of frame completion �in continuous mode�
or frame available �in synchronous mode��

Time�stamps� The driver will append a time�
stamp to each frame� The time�stamp is the
time the capture of the frame was completed�
Time is expressed in seconds and microseconds
since midnight �� hour�� January
�
���� This
is useful for combining video streams with time�
stamped audio streams�

Common Bitmap� In synchronous capture mode
when a frame is captured� the frame number is
marked as active in a bitmap� It is up to the
application to clear the bit� This is useful for
determining the most recent frame� as well as�
how many frames have been captured since the
last comparison of the bitmap�

��� Video Performance Issues

The video capture driver is able to capture frames
into system memory at full NTSC or PAL speeds�
provided the I�O bus can sustain the data rates re�
quired for full speed capture� These rates are shown
in Table �� With the introduction of the Intel Tri�
ton chip set ����TX�� full speed� full frame video
acquisition was possible on the PC�

Analog Speed Size Rate �RGB ���
Format �f�s� �pix�f� �MBytes�sec�
NTSC �� ���x��� ������ MB�s
PAL �� ���x��� �
���� MB�s

Table �� Data Rates for Video Acquisition

One possible application for the video acquisition
device would be to have the acquisition hardware
place the digitized video data into memory and then
copy this data to the video display device �e�g� a TV
viewer�� This application would not have to com�
press the data� but would have to move the data
from memory to the frame bu�er on the video dis�
play device�

Memory bandwidth on a common PC can range
from
� MB�s to
�� MB�s 	
��� More recent PC
interface chipsets have memory bandwidths on the
order of ��� MB�s 	
�� �� On some machines� just
the simple movement of the video data� such as a

�At the time of writing of this paper� a newly introduced
Intel chip set ����BX	 has been reported to have a memory
bandwidth of ��� MB�s and CPUs are running at ��� Mhz�
Even at these rates it will be di�cult to encode� decode�

TV viewer� may consume the entire memory band�
width� Other applications� that require compression
and decompression of the video data� will take ad�
ditional memory bandwidth and CPU power�

Because of the bandwidth required for full size� full
motion video ���� MBytes�second�� limited mem�
ory bandwidths� and available CPU power� it is dif�
cult to achieve full motion compression of video in
real�time without hardware support�

� Availability and Implementation

Status

The audio driver presented in this paper is now a
standard component of the FreeBSD operating sys�
tem� and it is in widespread use� with most legacy
applications already working with it either unmodi�
ed� or with minor modications to the audio mod�
ule� Because the new driver has better support
for full duplex operation than the previously ex�
isting Voxware driver� audio conferencing tools like
vat 	
�� and rat 	
��
�� can now be used on a wide
range of hardware� Compared to the previously ex�
isting driver� the new one has a much simpler con�
guration� because a single device pcm ��� entry
in the kernel conguration le brings in support for
a number of di�erent cards� The task of identifying
the correct card type� and doing specic resource
conguration� is now left to the driver rather than
to the user at system conguration time�

Newer and beta releases of the driver� to support
more cards and x bugs� are available from the au�
thor�s home page 	
��� At the time of this writing�
all of the supported cards use the services of the ISA
DMA controller to support DMA operations� As a
consequence� most of the functionalities described in
this paper could be supported by using some simple
code to fetch the transfer status from the ISA DMA
controller� In order to obtain the asynchronous no�
tications needed to wake up sleeping processes� two
approaches have been followed� If the audio device
supports interrupting a DMA operation on the �y�
then the device is reprogrammed to generate an in�
terrupt when the desired event occurs� When this
is not possible� a periodic handler is scheduled to
process the event within one timer tick from its oc�
currence� The overhead for the periodic handler is

and display video streams on a single PC without hardware
assistance�

very small� and the resolution is
� ms with the de�
fault timer frequency �
�� Hz��

The video acquisition driver is part of the standard
distributions of FreeBSD�� Separate device���

entries are required for the two most popular PCI�
based frame grabbers� the Matrox meteor which
based on the Philips chipsets� and the bktr which
based on the Brooktree ������� chipsets�

Many applications can utilize the digitized video
provided by the video acquisition driver in FreeBSD�
The motivation for writing the driver was to work
with network streaming video conferencing pro�
grams such as nv 	
��� and vic 	
��� Both of these
programs use the video acquisition driver in contin�
uous capture mode and incorporate software com�
pression algorithms� Because of the performance of
PC memory architecture �see section ���� and the
amount of data �see Table ��� full frame� full rate
data compression is di�cult to achieve on a current
day PC�

Fxtv 	��� is a recent application that uses the video
acquisition device to write digitized video data di�
rectly to the linear frame bu�er of the video display
device� Both the meteor and the bktr drivers sup�
port direct PCI to PCI bus transfers� Because this
application doesn�t require real�time compression�
and it utilizes the PCI to PCI transfer capabilities�
it can maintain full speed� full motion video on the
display device without a�ecting available memory
bandwidth or processor power�

The video driver interface does not currently imple�
ment the select system call� For consistency and
synchronization purposes� this call should be added
to the video driver�

� Conclusions

We have described software interfaces for audio and
video acquisition devices to improve support for
multimedia applications� In dening these inter�
faces we have tried to pursue the following goals�

� look at the requirements of applications� rather
than trying to extend an existing software in�
terface�

�The meteor driver has also been ported to the Linux
operating system�

� only specify the external interface of the de�
vice driver� do not rely or make assumptions
about the internal structure of the driver or of
the hardware� Do not export information which
could lead to non�portable code to be written�

� keep the number of functions small�

� avoid duplication of functionalities in the inter�
face� so that there is no doubt on what is the
preferred method to achieve a given result�

We believe we have achieved the above goals� be�
cause our interfaces are small� powerful and simple
to use� and resulted in a very compact implementa�
tion�

Hardware compression and decompression solutions
will have to be implemented in order to allow real�
time storage and retrieval of video data� �Cur�
rently� there are too many compression algorithms
and standards and too few low�cost boards that im�
plement the major standards 	�
��� One hardware
solution which looks promising is the MPACT 	���
chipset�

The video interface functions well and has been
extended to work with the Brooktree ��� 	

�
video capture chip� however� an extensible generic
multimedia kernel level interface with integrated
and synchronized audio� video� compression� and
decompression will be required for advanced ap�
plications� Some thought has been given to
this interface and it still under discussion on the
freebsd�multimedia�freebsd�org mailing list�

Acknowledgments

This work has been partly supported by the Min�
istero dell� Universita� e della Ricerca Scientica
e Tecnologica �MURST� in the framework of the
Project �Design Methodologies and Tools of High
Performance Systems for Distributed Applications��
It has also been partially supported by the Electri�
cal Engineering and Computer Science Department
at the University of Wisconsin�Milwaukee�

The authors wish to thank Mark Tinguely� co�
author of the meteor device driver� and Amancio
Hasty� who wrote the Bt��� device driver and has
provided invaluable support to many of the multi�
media drivers and applications� There are many

users on the freebsd�multimedia�freebsd�org

mailing list who have also provided invaluable sup�
port�

References

	
� �The FreeBSD operating system home page��
http���www�freebsd�org��

	�� P� Bahl� �The J��� Family of Video and Au�
dio Adapters� Software Architecture�� Digital
Technical Journal vo�� n���
���� pp�����

	�� The Open Sound System �OSS� Web page�
http���www�	front�tech�com��

	�� Microsoft Corp�� Documentation on
the DirectSound SDK� available at
http���www�microsoft�com�DirectX��

	�� T�M� Levergood� A�C� Payne et al�� �Au�
dioFile� Network�Transparent System for Dis�
tributed Audio Applications�� USENIX Sum�
mer Conference
���� June
����

	�� J� Fulton� G� Renda� �The Network Audio
System�� �th Annual X Technical Conference�
in �The X Resource� Issue Nine� January

�����

	�� �Flight Training Handbook�� U�S� Depart�
ment of Transportation� Federal Aviation Ad�
ministration� pp
���
��� AC �
��
A�
����

	�� �Color space� digital coding� and sampling
schemes for video signals�� Desktop Video
Data Handbook� Philips Semiconductors�
Data Handbook IC��� pp ���
����

	�� CCIR �Consultative Committee on Interna�
tional Radio� �Recommendation ��
��� En�
coding Parameters of Digital Television for
Studios��
����
����
����

	
�� �The FOURCC �Four Character Code� home
page�� http���www�webartz�com�fourcc��

	

� �Bt���� Single�Chip Video Capture for PCI��
Data Sheet� Brooktree Corporation� August

����

	
�� Ron Frederick� �Experiences with real�time
software video compression�� in Sixth Interna�
tional Workshop on Packet Video� July
����

	
�� Steve McCanne and Van Jacobson� �vic� A
�exible framework for packet video�� in Proc�
of ACM Multimedia ���� Nov�
����

	
�� Larry McVoy and Carl Staelin� �lmbench�
Portable tools for performance analysis��
Usenix proceedings� January
����

	
�� John D� McCalpin� �Memory bandwidth and
machine balance in current high performance
computers�� IEEE Technical Conference on
Computer Architecture newsletter� December

����

	
�� V�Jacobson� S�McCanne� �The
LBL audio tool vat�� Manual page�
http���www�nrg�ee�lbl�gov�vat��

	
�� V�Hardman� M�A�Sasse� M�Handley�
A�Watson� �Reliable audio for use over
the Internet�� INET��� conference�

	
�� V�Hardman� I�Kouvelas� M�A�Sasse�
A�Watson� �A packet loss Robust Audio
Tool for use over the Mbone�� Research
Note RN������ Dept� of Computer Science�
University College London�
����

	
�� �Luigi Rizzo�s FreeBSD home page��
http���www�iet�unipi�it�
luigi�

FreeBSD�html�

	��� �Randall Hopper�s FreeBSD
X TV home page��
http���multiverse�com�
rhh�fxtv��

	�
� L�A� Rowe� �Video Compression for Desk�
top Applications����� Informationstechnik und
Technische Informatik� Vol ��� No �� pp ��
��
August
����

	��� �The MPACT home page�� Chromatic Re�
search� http���www�mpact�com��

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[PDF/X-1a:2001]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

