
Heimdal—an independent implementation of Kerberos 5

Johan Danielsson
Parallelldatorcentrum, KTH

joda@pdc.kth.se

Assar Westerlund
Swedish Institute of Computer Science

assar@sics.se

Abstract

Heimdal is an independently developed and free implemen-
tation of the Kerberos 5 protocol, unencumbered by US ex-
port restrictions. It is compatible with other implementa-
tions and is close to the MIT Kerberos 5 API. It includes
versions of common applications such as telnet, ftp, rsh,
su, and login. Furthermore, it has some new features not
available in other implementations, such as authenticated
and encrypted X connections, incremental database propa-
gation, and support for IPv6 and Triple DES�. There is also
support for operation in firewalled environments.

1 Introduction

Kerberos, developed primarily at the Massachusetts Insti-
tute of Technology (MIT), has become a popular security
system and is used by many universities and corporations
around the world. One big problem has been its legal sta-
tus. Because of restrictions employed by the United States
government, it is not possible to export the source with-
out first going through a lot of bureaucracy and possibly
not even then. You can get a copy of the MIT Kerberos 5
implementation from sources outside of the US, but it is
unclear how it got there and if you can safely use it. On the
other hand, many vendors have some version of Kerberos 5
available to non-US customers, usually only in binary form
and without the ability to encrypt user data.

With Kerberos 4 the export dilemma was solved by remov-
ing all cryptographic functions and the calls to them, to get
something that could be approved of export. To get some-
thing that was usable, Eric Young took the exported ver-
sion, called Bones, and replaced the missing pieces, call-
ing the new distribution eBones. Since then many different
people have been hacking on this, including the authors,
adding improvements over time.

�When this article is written, work to implement Triple DES in the
MIT Kerberos distribution is in progress.

This export trick has not been repeated with Kerberos 5,
partly because the MIT code just recently went out of beta,
and partly because nobody was willing to do the work.

Since Kerberos 4 is reaching the end of its useful lifetime,
we decided that we needed a replacement. A key require-
ment on a new system was that it could reasonably easy re-
place an existing Kerberos 4 infrastructure. Therefore com-
patibility with eBones has been high on the list of things to
implement. Support for a large number of systems, includ-
ing Cray vector machines, was also important for us.

After a short period of discussions about whether and how
to go about creating such a beast, we started writing the
code that would later become Heimdal. The result is an
independent reimplementation of Kerberos 5 (which has
proved helpful—we have discovered a number of errors
and inconsistencies with the original specification) that is
available to people in all parts of the world.

2 What is Kerberos?

Kerberos is a system for authenticating users and services
on a network. It is built upon the assumption that the net-
work is “unsafe”. For example, data sent over the net-
work can be eavesdropped and altered, and addresses can
be faked. Therefore addresses cannot be used for authenti-
cation purposes.

Kerberos is a trusted third-party service, meaning that there
is a third party (the Kerberos server) that is trusted by all
the entities on the network (users and services, collectively
called principals). The principals each share a secret pass-
word (or key) with the Kerberos server and this enables
principals to verify that the messages from the Kerberos
server are authentic. Trusting the Kerberos server, users
and services can then authenticate themselves to each other.

For specific details on the protocol refer to other documents
on the subject [7, 5, 6, 4].

2.1 The Kerberos server

The central function in a Kerberos environment is per-
formed by the Kerberos server that keeps a copy of the keys
of all principals. This function is sensitive, an attacker that
obtains a copy of a principal’s key can masquerade as that
principal. An attacker that obtains a copy of the server’s
own secret key can masquerade as any principal. Because
of this, it is vital to keep the Kerberos server from being
compromised.

The server is also a single point of failure. If it is unreach-
able, no users will be able to authenticate themselves. The
solution is to keep several copies of the database, the com-
mon way of doing this is with master-slave replication; all
changes are performed to the database at the master and
the database is then periodically copied to one or several
slaves.

3 Services

Included in the Heimdal distribution are the core Kerberos
applications, such as the Kerberos server, applications to
obtain and manipulate tickets (kinit, klist, and kdestroy),
and administration programs.

Also included are kerberised versions of clients and servers
for the some network services: rsh, telnet, ftp, and pop.
These programs also support backwards compatibility with
Kerberos 4, One Time Password (OTP) [2], and old-style
address and password-based authentication.

3.1 X11

Another network service that is quite useful but has some
security problems is the X11 protocol [1]. This is a problem
because access to an X11 server is mostly binary: either
you are allowed all the operations (including listening for
key presses) or none at all.

The most commonly used authentication methods are xhost
and xauth.

The problems with xhost are that authentication is done at
host granularity and that it trusts IP addresses. This only
makes it usable in environments where you trust the other
users of multi-users machines and where you have control
over the entire networking infrastructure. Needless to say
this is not often the case in any but the smallest networks,
and specifically not on the global Internet.

Using magic cookies with xauth solves the problems with
xhost, but it is not without problems itself. First it is more
cumbersome than the magical xhost + command. A
deeper problem is that it relies on the cookies being secret,

which is very difficult to ensure given that they are sent in
the clear over the network when initiating an X11 session.

The correct way of solving this problem would be to im-
plement another authentication mechanism that uses Ker-
beros to authenticate the client and server. This has been
specified and implemented in X11R6 [11]. However, these
modifications are not well maintained, and have been slow
to propagate into the vendor releases of X11. Furthermore
they only solve the authentication of the initial connection;
having protection against someone modifying the stream
and against someone being able to read the traffic are re-
quirements that are not addressed.

Our solution to this problem has been to implement authen-
ticated X11-proxies (see figure 1). The client connects to a
local proxy on the same host that forwards the data over an
encrypted channel to another proxy on the server host that
then talks to the real X11 server. So the first proxy looks
like an X11 server to the client and the second one like an
X11 client to the server. This is all quite similar to what
SSH [10] does.

X client

client side
proxy

server side
proxy

X server

:0

:17

Figure 1: kx authentication

There have been a few problems with this setup. First, not
all vendors have compiled in support for using Unix sockets
as a transport protocol in their X libraries (we prefer Unix
sockets since they give a slightly higher level of security
and are more efficient). This is most common with large
machines that does not have any graphics console—such as
Crays. To get this to work with such machines, we have had
to implement support for using TCP connections—with ap-
propriate security precautions. It should also be pointed out
that since we bugged them about this, Cray has added sup-
port for Unix sockets in their libraries.

Another problem is software that does extra magic when
they operate on a local display. One example is the
SGI GL-extensions, that work fine over a normal TCP-
connection, but when detecting a seemingly local display,
insists on talking directly to the X-server. For this particular
problem, there is a workaround that involves more magic.

3.2 PAM, afskauthlib, SIA, etc

A practical problem of deploying Kerberos is getting the
required support into various system commands (like lo-
gin, and su). Included in the Heimdal distribution are
generic versions of these programs that should work on
most systems. However, some systems’ versions of these
programs have special features or do weird magic. Further-
more it would be more elegant with a more dynamic way to
specify which authentication mechanisms should be used.

As usual, there are several different standards for doing
this.

� Pluggable Authentication Modules (PAM): developed
by Sun

� Security Integration Architecture (SIA): developed by
Digital

� afskauthlib: a hack by SGI

PAM and SIA are general ways of configuring different au-
thentication modules and how these should be used by dif-
ferent programs. The third, however, is a very small but
useful hack in the SGI versions of login and xdm pro-
grams that is intended for adding AFS support. We use it
to implement Kerberos authentication in these programs.
PAM has been incorporated by Sun into Solaris and by an
independent group into Linux. Digital Unix is (as far as we
know) the only system that uses SIA.

4 Implementation

4.1 Incremental database propagation

As we mentioned before, there are a number of reasons for
wanting to keep replicated Kerberos servers in a realm (a
realm is an administrative domain). The most important is
of course the added reliability. Load sharing can also be of
a practical importance if there is a very large number of re-
quests. If the realm is spread over a large geographic area,
reducing network traffic can be another reason for keeping
several servers.

Any system that has a replicated database has to main-
tain some level of consistency between the different sites,
otherwise users get quite confused. It would be possible
to do this with some kind of distributed database, but be-
cause of the lack of freely available, light-weight, and se-
cure databases, Kerberos systems tend to use some ‘propri-
etary’ system. The common way is to propagate the whole
database once every certain amount of time (e.g. 1 hour).
This is not an optimal solution; the slave database could be
out of sync for this amount of time, and the propagation

process uses machine resources and network bandwidth,
making it impractical to have a very short propagation in-
terval.

We have addressed this problem by implementing incre-
mental propagation that will only send database changes
from the master to the slaves. This way, the changes
can also be transferred immediately, keeping the slave
databases more fresh. All changes to the database receive
an increasing version number and are written to a log on
the master. The propagation daemon tries to keep track of
the current version of all the slaves and will send out up-
dates as soon as they are applied to the master database.
The slaves also keep track of the last version number they
have seen and will request all modifications between this
version and the current one when they connect to the mas-
ter daemon. As a fall-back, if a slave falls too far behind,
the whole database will be sent.

4.2 The ASN.1 shop of horror

One of the major hassles with implementing Kerberos 5
turns out to be its use of ASN.1 [3]. ASN.1 is a sys-
tem for encoding structures so they can be sent over the
network to another, possibly architecturely quite different,
machine. While this is a sound thing, ASN.1 is overly
complex, which is made clear by the many bugs in the
encoding you have to be compatible with to successfully
inter-operate with other implementations.

We have chosen to do the ASN.1 support with the help of
a compiler that takes the Kerberos 5 ASN.1 specification,
and produces a set of functions to encode, decode, and oth-
erwise manipulate these structures. There are a few such
compilers available, but since we did not find any of them
likeable enough, we decided to write our own. It does not
have support for the incredibly large number of constructs
available in ASN.1, it supports the small subset that is ac-
tually used in Kerberos 5, and also has a reasonably small
footprint.

4.3 Combating firewalls

Firewalls can be a big problem for Kerberos users. Since
Kerberos is not as commonplace as many other services,
most firewalls have the special ports used by Kerberos
turned off by default, so these will have to be specifically
opened if any packets are to get through. Another problem
is that Kerberos’ default mode is to use UDP as its trans-
port protocol and UDP is commonly regarded by firewall
advocates to be an insecure protocol.

To solve some of these problems, we have added support
for both TCP and HTTP as additional transport mecha-
nisms. The TCP support is compatible with the soon-to-

be updated Kerberos RFC. The HTTP support was added
since we discovered that it can be quite difficult to convince
firewall administrators to open a new port in their firewall
—and very much so if you are just visiting a site. The
choice fell on HTTP since, in our experience, most sites do
permit access to the WWW, even if it is through a proxy.

4.4 Portability

Heimdal should, in principle, be portable to any system that
has:

� an ANSI/ISO C compiler (such as gcc)

� awk

� lex/flex

� yacc/bison

� sh, make, sed, & c:o

� Posix libraries

� Berkeley sockets

� ndbm or Berkeley DB (required by the server)

The build process uses GNU Autoconf to identify the char-
acteristics of the system. More than 50 commonly missing
or broken functions are included in a library and condition-
ally compiled if required on a particular platform.

Heimdal currently builds and runs on most versions of
Unix (AIX, NetBSD, OpenBSD, FreeBSD, Digital Unix,
HP-UX, Irix, Linux, Solaris, SunOS, Ultrix, Unicos, and
UXP/V) and some systems with Unix-like environments
(like Windows 95/NT with cygwin32).

5 Compatibility

We believe that Heimdal is protocol compatible with most
other implementations of Kerberos. It has been tested with
code from MIT, OSF, Cisco, and Microsoft.

6 Future work

Even if it today is possible to penetrate most firewalls, this
doesn’t always allow you access to Kerberised services. A
part of the security of Kerberos requires that the client’s
network addresses are encoded in the ticket, so the client
has to know all possible addresses that it may appear to
come from. When you have a firewall between the client
and server, the connection will often seem to emanate from
the firewall itself. Because of this the client will have to
know the address the firewall uses, and add that to the list of
addresses put into the ticket. There might be more than one
such address. To complicate this, there isn’t an easy way

for the client to find out which those addresses are (other
than via manual configuration).

A possible workaround for this is for the Kerberos server
to emit address-less tickets—tickets that are valid from any
address. But since the purpose of putting the addresses in
the ticket in the first place was to make it harder to steal a
ticket, this actually reduces the security. By including the
addresses of the firewall, this type of wild card tickets are
eliminated, but since all tickets issued to clients behind a
specific firewall will contain the same addresses, you make
the whole firewalled network look like one machine, thus
reducing security.

The best way of addressing these problems, as well as other
firewall related issues, are still under discussion.

Heimdal is already portable to most Unix like systems, but
unfortunately, the world likes to use other operating sys-
tems too. We foresee that at least a port to Windows will
be done in the future. Other possible systems include the
Macintosh and VMS.

Support for public-key cryptography in the initial authenti-
cation [8] and for cross-realm operation [9] are other items
being considered.

7 Acknowledgments

This work was supported by Parallelldatorcentrum, KTH.

A large number of people have contributed bug-fixes, docu-
mentation, and encouragement. They are mentioned in the
documentation.

8 Availability

Heimdal is freely available under a BSD-style license. See
http://www.pdc.kth.se/heimdal/.

9 Mythological background

Now this Cerberus had three heads of dogs, the
tail of a dragon, and on his back the heads of all
sorts of snakes.
— Pseudo-Apollodorus Library 2.5.12

Kerberos is a monster (or a dog, if you prefer the domesti-
cated version), that guards the exit from the Greek under-
world Hades (named after its ruler), preventing the spirits
from escaping.

Heimdal (also spelt Heimdall) is a god in the Nordic
mythology. He is a watchman on the bridge Bifrost that

leads to Asgard, the realm of the gods. Asgard is also the
location of Valhalla where the men who fall in combat are
taken after their death.

Heimdal’s duty is to stop any giants from entering Asgard,
and he is well suited for this task since he requires less sleep
than a bird, and can see for many miles both by night and
by day; he can also hear the grass grow, as well as the wool
on the sheep’s back.

When the world is about to end, Heimdal will blow his
Gjallar horn calling the gods to the battle field. In this bat-
tle, many of the gods will perish, but a new and better world
will rise from the sea.

References

[1] J. Fisher, Securing X Windows, U.S. Department of
Energy, Computer Incident Advisory Capability doc-
ument CIAC-2316 (1995)

[2] N. Haller, C. Metz, P. Nesser, M. Straw, A One-Time
Password System, Network Working Group (1998)

[3] Burton S. Kaliski Jr., A Layman’s Guide to a Subset of
ASN.1, BER, and DER, RSA Laboratories Technical
Note (1993)

[4] John Kohl, Clifford Neuman, The Kerberos Network
Authentication Service (V5), Network Working Group
(1993)

[5] John T. Kohl, B. Clifford Neuman, and
Theodore Y. T’so, The Evolution of the Kerberos Au-
thentication System, Distributed Open Systems, pages
78-94. IEEE Computer Society Press (1994).

[6] B. Clifford Neuman, and Theodore Ts’o, Kerberos:
An Authentication Service for Computer Networks,
IEEE Communications, 32(9), pages 33-38 (1994)

[7] Jennifer G. Steiner, Clifford Neuman, and Jef-
frey I. Schiller, Kerberos: An Authentication Ser-
vice for Open Network Systems, Proceedings Winter
USENIX Conference, Dallas (1988)

[8] Brian Tung, Clifford Neuman, John Wray, Ari Med-
vinsky, Matthew Hur, Jonathan Trostle Public Key
Cryptography for Initial Authentication in Ker-
beros, Work In Progress, draft-ietf-cat-kerberos-pk-
init-06.txt

[9] Brian Tung, Tatyana Ryutov, Clifford Neuman,
Gene Tsudik, Bill Sommerfeld, Ari Medvinsky, Pub-
lic Key Cryptography for Cross-Realm Authentica-
tion in Kerberos, Work In Progress, draft-ietf-cat-
kerberos-pk-cross-04.txt

[10] Tatu Ylönen, SSH - Secure Login Connections over
the Internet, Sixth USENIX Security Symposium,
San Jose (1996)

[11] Tom Yu, Kerberos Authentication of X Connections,
Proceedings 8th Annual X Technical Conference,
Boston (1994)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[PDF/X-1a:2001]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

