
Weblint: Just Another Perl Hack

Neil Bowers1

Canon Research Centre Europe

Abstract

Weblint is a utility for checking the syntax and style of HTML pages. It was inspired by lint [15], which
performs a similar function for C and C++ programmers. Weblint does not aspire to be a strict SGML
validator, but to provide helpful comments for humans. The importance of quality assurance for web sites is
introduced, and one particular area, validation of HTML, is described in more detail. The bulk of the paper
is devoted to weblint: what it is, how it is used, and the design and implementation of the current
development version.

1 neilb@cre.canon.co.uk

1. Introduction

Web sites are becoming an increasingly critical part of
how many companies do business. For many companies
web sites are their business. It is therefore critical that
owners of web sites perform regular testing and
analysis, to ensure quality of service.

There are many different checks and analyses which
you can run on a site. For example, how usable is your
site when accessed via a modem? An incomplete list of
similar analyses are given at the start of Section 2.

The bulk of this paper is concerned with weblint, a tool
which concentrates on syntactic and stylistic checking
of HTML documents. The second part of Section 2
expands on the reasons why you should consider
validating the HTML content of your site.

In section 3 a selection of other quality assurance tools
is presented, and related to the different tests described
in Section 2. Those presented overlap with weblint in
some way. A more complete list of tools can be found
on the weblint site, and will be described in a
subsequent paper.

Section 4 introduces weblint, and the requirements
which have driven its development. The remainder of
the section describes the user-visible aspects: how to
run weblint, sample output, and how weblint can be
configured to personal taste.

Implementation details are presented in Section 5. The
general algorithm is described, followed by the software
architecture of the current development version.

The conclusion opens with a summary of the
information and opinions given in this paper. A
selection of the lessons learned over the last four years
is given, followed by plans for the future, and related
ideas.

2. Web Site Quality Assurance

The following are some of the questions you should be
asking yourself if you have a web presence. I have
limited the list to those points which are relevant to
weblint.

• Is the HTML content of the pages correct with
respect to a given HTML DTD? I’ll refer to
this as strict HTML validation.

• Do your pages render as you intended on the
browsers which are important to you?

• Do your pages follow your selected style
guidelines, or those generally held by the web
community?

• Is your web site usable by those with
disabilities, or even just people using a text-
only browser?

• How usable is your site by people accessing it
via a modem?

• Are there any dead links (hyperlinks to pages
which have been moved or no longer exist) in
your pages? Conversely, are there any pages

on your server which aren’t referred to (either
by your site, or others)?

• How easy is your site to navigate? It is
important to remember that users may jump to
arbitrary pages on your site, for example as the
result of a search.

• Is the appropriate meta information included
with all pages? For example, your pages can
include <meta> tags (not rendered by
browsers) which provide the short abstract
presented by search engines, and a list of
keywords.

• How secure is your web site?

• How well does your site handle different loads
through the day?

• Has your site been indexed by the major search
engines? Are their records up-to-date?

• Which parts of your site should be disabled for
robot access, for example to prevent their
inclusion by search engines?

• Is the textual content of your site
grammatically correct, and correctly spelled?

• How well do your dynamic pages (for example
CGI scripts) handle unexpected input?

This list is by no means complete; a more detailed
discussion of this topic is planned for a separate paper.

2.1 Why validate your HTML?

As noted above, weblint is primarily concerned with
syntactic and stylistic checking of your HTML
documents. This section expands on the reasons why
validating your HTML is a worthwhile pursuit.

Humans tend to make mistakes, particularly when
performing any repetitive task, and the nature of HTML
makes it hard to inspect visually. Furthermore, web
page creators often have an incomplete knowledge of
HTML, and its correct use. Use of an automated
checking tool will catch most of these mistakes. In my
experience it also helps users learn more about HTML,
and its use.

The only testing many pages get is checking whether
they look acceptable in the creator’s browser. Browsers

are supposed to be lenient in what they accept, doing
their best to render even the most mangled HTML. You
have no way of knowing how different browsers (and
different versions of the same browser) will handle non-
conformant HTML. The two most popular browsers do
not provide any facilities for checking the correctness of
a page. This means that a browser alone is not enough
to check your web page.

In addition to humans surfing the web, your pages are
also ‘viewed’ by robots, agents, and other programs.
Automated processing of web pages is becoming
increasingly important, to handle the volume and
complexity of information on the web. Your pages stand
a better chance of turning up in search engines if the
HTML is well formed, and thus amenable to automatic
processing. Following certain guidelines will also help
your pages look good when they do turn up in search
engines.

More and more HTML is generated from databases and
other sources. Automatic generation improves the
likelihood of a well-formed site, but validation is still
needed to make sure the generators are doing a good
job.

If you’re not convinced yet, there are a number of
articles on this theme [20, 14].

3. Related Work

This section presents a selection of tools which provide
analyses for some of the issues described in Section 2.
In particular, I have included tools which have
functionality which overlaps weblint, or which include
weblint.

3.1 Editors and browsers

Amaya is both a browser and authoring tool, being
developed by the W3C, as a test-bed for new and
emerging standards. Amaya ensures that an HTML page
being edited conforms to a specific DTD [25].

The Arena browser was W3C’s test-bed prior to
Amaya. Arena provides feedback on the quality of the
web page currently being viewed. Arena is now being
developed by Yggdrasil [27].

3.2 SGML parsers and validators

Strict HTML validators are based on an SGML parser,
and require a DTD to validate against. Just about every

strict validator is based on one of James Clark’s parsers,
most recently SP [10].

Strict validators have the obvious advantage that you
are checking against the bible (the DTD). On the down-
side, the warning and error messages are usually straight
from the parser, and require a grounding in SGML to
understand.

Many of the publicly accessible validators also include
weblint output in their response, so are really belong in
the section on meta tools, described below.

3.3 HTML Checkers

An HTML checker is a tool which performs various
analyses of HTML, without attempting to provide strict
HTML validation.

Htmlchek is a perl script (also available in awk) which
performs syntax checking similar to weblint. It hasn’t
been updated in the last few years, so doesn’t support
recent versions of HTML. It still provides useful
comments, and includes a number of other useful
utilities and documentation [9]. An eerie serendipity:
weblint and htmlchek were announced to usenet on the
same day!

Bobby identifies problems which may prevent pages
from displaying correctly on different browsers. As part
of this it will identify changes which would make your
pages more accessible to those with disabilities [8]. For
example, summary annotations can be added to tables,
which is useful for users with speech generating clients

HTML Tidy, by Dave Raggett, is a tool which identifies
a number of common HTML errors, and fixes them for
you. It can also pretty-print the HTML, and will
generate warnings only for problems which it doesn’t
know how to fix [17].

3.4 Web gateways

There are a number of web-based gateways to the
checks and validators listed above. These are usually
forms which let you enter a URL or snippet of HTML.
URLs are retrieved, the HTML checked, and the results
displayed back to the user as HTML. A list of weblint
(and other) gateways can be found on the weblint site.

3.5 Broken link robots

One of the most common, and frustrating, problems
with web sites is broken links, where the target of a

hyperlink no longer exists, or has moved. Broken link
robots traverse a web site and check all hyperlinks to
see whether the target page exists. At its simplest, this
merely consists of sending a HEAD request, and
reporting all URLs which result in a 404 response code.
Smarter robots will handle redirects (fixing the links)
and generate navigational analysis of your site.

The first widely available link validator was
MOMspider [13], which is still available, but requires
an old version of Perl. There are now many such robots
available – a more complete list can be found on the
weblint site. The number of features and price vary
greatly, with no obvious correlation.

There are freely available link validators, such as and
linbot [29]. These tend to provide just link checking
facilities. SWAN (SubWeb ANalyzer) performs link
checking within a site (and other functions), leaving
checking of external links to other programs [30].

Spot is a commercial tool from BT labs which is run on
the web site’s host machine to analyse a web site for
problems. Problems identified include HTML syntax
errors, broken links, missing index files, non-portable
host references, and summary analyses of your site [7].

3.6 Meta tools

Meta tools incorporate two or more of the categories
described above, usually merging the results into a
single report. They will often include additional
measures, for example by running a spell checker on the
text content of a page.

The WebTechs service includes strict validation and
optional inclusion of weblint output. It can also generate
a weight for your web page, including estimated
download times for different modem speeds [23].

The Web Consortium runs a meta validator [26] which
uses James Clark’s SGML parser SP [10], and weblint.
This is derived from Gerald Oskoboiny’s earlier
service, The Kinder, Gentler Validator [16].

Web Site Garage offers a number of services, including
checking for broken links, performance measures,
reducing the size of GIFs (GIF Lube!), and more [3].

3.7 Fixer uppers

Fixer uppers are tools which will correct or improve
your web site, usually by modifying the HTML in your
pages. FixIMG is one of several tools available which

will add WIDTH and HEIGHT attributes to any IMG
elements which are missing them [2]. HTML Rename!
renames files and updates hyperlinks to ensure that web
pages are portable between Mac, PC, and Unix systems
[21]. HTML Tidy, mentioned above, can pretty-print
your HTML, and fix a number of common errors [17].

Several users have suggested that weblint should
optionally fix some of the warnings it identifies. My
feeling is that weblint is better kept as a problem
identifier, the same way lint doesn’t try to fix your
source code. Often the HTML is a symptom, and not
the problem (e.g. in tools generating HTML).

4. Weblint

In 1994 I started creating web pages, using a text editor
and almost no knowledge of HTML (or the web). As I
created more pages, I repeatedly made the same basic
mistakes. Furthermore, things which worked fine in my
version of Mosaic had all kinds of weird effects on
other clients.

Being a long-time fan of lint and similar tools, I decided
that a lint-style HTML syntax checker would be helpful
for my colleagues and me. The first version was the
result of a few hours’ hacking in Perl [22]. Perl was
ideally suited to the task, given the rich support for text
processing and regular expressions. I tidied it up and
released the first public version in October 1994.

This was followed by frequent releases, as users
improved my knowledge of HTML, and suggested new
warnings. A mailing list of core users, weblint-victims,
continues to play a major role in the evolution of
weblint.

There have been 21 releases of weblint version 1. The
releases dates were typically clustered around a new
HTML specification, or bursts of enthusiasm. Weblint 2
is now under development, and will shortly be alpha-
tested by members of the weblint-victims list.

Weblint is being used on a wide range of platforms,
including Unix, DOS, Windows, Amiga, Mac,
Archimedes, OS/2, and VMS.

4.1 Weblint requirements and philosophy

There have been a number of requirements and points
of philosophy driving the direction and development of
weblint. This is not a paper about free software
philosophy, but if you’re interested in that area, see Eric

Raymond’s papers on this [18, 19]. The major
requirements are:

• Weblint should not impose any specific
definition of style, but should be useful for any
user, regardless how warped their opinions! As
a result, everything in weblint can be turned
off. Not all warnings are enabled by default;
the warnings enabled by default represent
commonly held good practice.

• Weblint isn’t the only tool, nor should it be.
There are many other tools, some of which are
described in Section 2, which can be used in
conjunction with weblint to test your web site.
One result of this is that the largest part of the
weblint web site is the collection of pointers to
other tools and resources.

• Weblint should be easy to obtain, install, and
use. Use of Perl greatly helped this, as did the
number of users who ported weblint to
platforms like the Amiga and the Mac (with a
GUI), or created web interfaces which let you
generate weblint reports for your pages without
having to install weblint first.

• The output of weblint should be easy to
understand, without requiring intimate
knowledge of HTML or SGML.

• Weblint should be flexible in its use,
facilitating its invocation from different
contexts. It should be easy to run weblint from
the command-line, a batch script (for example
under crontab on Unix), a web page, a robot,
or an application.

4.2 Example usage

Consider the following piece of HTML, which we will
assume is in a file called test.html:

<HTML>
<HEAD>
<TITLE>example page
</HEAD>
<BODY BGCOLOR="fffff" TEXT=#00ff00>

<H1>My Example</H2>
Click here
for more details.
</BODY>
</HTML>

The following illustrates use of weblint from the Unix
command line. The output has been reformatted for
readability.

% weblint -s test.html

line 1: first element was not
 DOCTYPE specification

line 4: no closing </TITLE> seen
 for <TITLE> on line 3

line 5: value for attribute TEXT
 (#00ffoo) of element BODY
 should be quoted (i.e.
 TEXT="#00ffoo")

line 5: illegal value for BGCOLOR
 attribute of BODY (fffff)

line 6: malformed heading - open
 tag is <H1>, but closing
 is </H2>

line 7: odd number of quotes in
 element

line 7: on line 7 seems to
 overlap <A>,
 opened on line 7.

The DOCTYPE element identifies the definition of
HTML which your page uses. The -s switch requests
short messages, rather than the default traditional lint
style of messages:

test.html(1): blah blah blah

4.3 Categories of output messages

Weblint 1.020 supports 50 different output messages,
42 of which are enabled by default. Most messages are
the result of suggestions from users. There’s rarely a
reason not to add support for a message; if it’s useful
for one user, it’s quite likely to be useful for others. If a
message seems esoteric or overly pedantic (I love ’em!),
it will be disabled by default. There are three categories
of output message:

• Errors, which identify things you should fix.

• Warnings, which identify things you should
think about fixing.

• Style comments, which can be configured to
match your own guidelines.

Errors are generated for incorrect use of syntax and
other serious problems (such as broken links). Some
examples:

• Missing close tags for container elements
which require the closing tag, such as <A>.

• Mis-typed element names, for example
<BLOCKQOUTE>.

• Forgetting required attributes, such as ROWS
and COLS, for the TEXTAREA element.

Warnings are generated for optional syntax which is
recommended, potential portability problems, and
questionable use of HTML. Some examples:

• HTML allows for attribute values to be quoted
using single or double quotes, but many clients
and HTML processors can’t handle single
quotes.

• Weblint can let you know which IMG elements
don’t have the WIDTH or HEIGHT attributes.
Use of these attributes help browsers to layout
a page sooner, giving the impression of a faster
loader page.

• It is perfectly legal to comment-out markup,
but this can be incorrectly parsed by parsers,
particularly those of the quick and dirty kind.
This is less of a problem than it used to be.

• Use of deprecated markup, such as the
<LISTING> element, in place of which you
should use the <PRE> element.

Stylistic comments are used to identify usage which at
least one person thinks is questionable. Some examples:

• Use of “here” and other content-free text
within anchors (as in “click here to read more
about crêpes”). One motivation to fix these is
that many search engines will use anchor text
[6].

• Use of physical markup (e.g.) rather than
logical markup (e.g.).

All output messages have an identifier, which is used
when enabling or disabling it. Weblint 2 will let users
enable and disable all messages of a given category.

4.4 Configuration

There are three ways to provide configuration
information for weblint:

• A site configuration file. This can be useful for
defining the style guide for a company or
group.

• A user configuration file, .weblintrc on
Unix systems. An alternate file can be
specified. The user’s file can either extend or
over-ride the site configuration.

• Command-line switches, which over-ride both
configuration files.

The most usual configuration is to specify which
messages should be enabled, as described above.

4.5 Other ways to run weblint

In addition to the simple usage example above, weblint
can be used in a number of different ways.

The -R switch instructs weblint to recurse in all
directories in the local filesystem, so that a set of pages
or entire site can be checked with one command. The
switch also enables additional warnings, checking
whether directories have index files, and reporting
orphan pages (which are not referred to by any other
page checked).

There are numerous weblint gateways available, which
let you use weblint without having to install it. These
are CGI forms where you provide the HTML by
entering a URL, pasting in the text, or through file
upload. If a URL is given, the gateway script retrieves
the page, usually using a dedicated retrieval program.
The warnings generated by weblint are embedded into
the web page generated by the gateway in response to
the user’s submission.

A robot can be used to invoke weblint on all accessible
pages on a site [24]. I have written one, called poacher,
which is included with the robot module for Perl [5].
Poacher also performs basic link validation.

4.6 Experience with weblint

Weblint 1 is just one large script, almost 2000 lines of
Perl 4. The script’s monolithic nature made it easy to
install, and use of perl 4 made it portable. Both points
made weblint harder to maintain.

Increasing diversity in the user base requires weblint to
be more configurable and flexible. For example, many
editing and generation tools insert tool-specific markup
(elements and attributes) in the generated HTML. These
result in noise, which hides the useful weblint output.

There are now over 20 public gateways to weblint, and I
regularly receive requests for a standard gateway
distribution, particularly for installation behind
firewalls, e.g. for intranet use.

All of the above points and more prompted the move to
weblint 2, currently in development. The next section,
on implementation, describes this version.

5. Implementation

This section provides a high-level picture of the
implementation of weblint. First the basic algorithm is
described, followed by a summary of the software
architecture for weblint 2. The most important
components of the architecture are summarised, along
with the third party code which underpins some
components.

All of the weblint scripts and modules are implemented
in Perl [22]. All 21 releases of weblint 1 were in Perl 4,
since that was widely available on many different
platforms. For the last few releases this was at times
frustrating, since all my other Perl coding was done
with the latest version of Perl 5.

Weblint 2 is a fairly major rewrite, and requires Perl
5.004 or later, which provides numerous improvements
over Perl 4 [22]. Two of the most significant additions
were support for object-oriented programming, and
richer data structures. One of the main goals for weblint
2 was to split the original weblint script into appropriate
classes (Perl modules). The distribution now follows
CPAN guidelines, which means that installation should
consist of these four commands:

% perl Makefile.PL
% make
% make test
% make install

The build, test harness, and installation support is all
provided by the MakeMaker module [28] and friends,
which are part of the standard Perl distribution.

5.1 Basic weblint algorithm

Weblint is basically a stack machine with an ad-hoc
parser, which uses various heuristics to keep things
together as it goes along. The heuristics are based on
commonly-made mistakes in HTML. The ad-hoc
aspects of weblint are provided in an effort to minimise
the number of warning cascades, where a single
problem generates a flurry of error messages.

The file being processed is tokenised into start tags
(possibly with attributes), text content, and end tags.
When an opening tag is seen, it is pushed onto the main
stack. Closing tags result in the stack being popped.
Certain elements require special processing, such as
comments, SCRIPT and STYLE.

A secondary stack comes into play when unexpected
things happen, like overlapping elements, as with the
example in Section 4.2. The second stack holds
unresolved tags, and where they appeared.

For each token type, a number of checks are made.
These may involve just the token itself, or its context,
which can include the current state of the stack, the
secondary stack, and the history of elements seen.

5.2 Software architecture

This section describes the major components of the
software architecture for weblint 2.

5.3 Scripts

The weblint script is now a wrapper around the modules
described below, with documentation for the user who
doesn’t want to know about the existence of the
modules.

The gateway is a CGI script which provides a web-
based interface for driving the Weblint module. Since
there are many weblint gateways existing, the gateway
script for weblint 2 is designed to facilitate
customisation, modification, and other tinkering.

There are already robots in existence which use weblint
[24, 5]. The Weblint module from weblint 2 makes it
easier to embed weblint functionality in a robot, such as
a link checker. The robot for Canon’s public search
engine uses weblint to check all of Canon’s public web
pages [4].

5.4 Weblint module

The weblint module is a Perl class which encapsulates
the HTML checking functionality. This makes it easy to
embed weblint functionality into any application, where
previously weblint would be run in a separate process.

The simplest use of the module is:

use Weblint;
$weblint = Weblint->new();
$weblint->check_file($filename);

The weblint script is just a fancy version of the above
three lines, to support configuration, online help, etc.

In addition to the check_file method above, it
provides check_string and check_url methods.
The latter requires the LWP modules, described in
Section 5.7. If you don’t have LWP installed, you can
still use weblint, but the check_url method won’t be
available.

5.5 Weblint HTML modules

These modules encapsulate the information which is
needed by weblint when checking against a specific
version of HTML. By default Weblint will check
against HTML 4.0, which is defined in the module
Weblint::HTML40. Other modules define the non-
standard extensions supported by Microsoft (Internet
Explorer) and Netscape (Navigator).

This makes it easier to update support for different
versions of HTML, and for third parties to provide their
own definitions.

The information in an HTML module includes:

• Valid elements, and their content model (are
they containers?)

• Valid attributes, and legal values for attributes
(expressed as regular expressions)

• Legal context for elements

The HTML modules are basically sets of tables which
are used to drive the operation of the Weblint module.
At the moment the tables are not generated from DTDs,
though this is something I plan to investigate further.
Some of the information in the HTML modules cannot
be automatically inferred from DTDs, given the sorts of
checks which weblint performs.

5.6 Warnings module

All warnings generated by weblint are encapsulated in
the Weblint::Warnings module. The module
provides methods for emitting warnings, as well as
configuring the supported set of warnings. The Weblint
class uses this by default, but a different class can be
used in its place.

The warnings module can be sub-classed, and the new
warnings class installed in Weblint. This might change
the wording of warnings (e.g. verbose warnings), or
change the way warnings are emitted. The gateway
script uses a subclass to provide warnings more
appropriate to the web page context.

5.7 Other modules

A key tool in the development of weblint has been the
test-suite. This serves two purposes: basic testing of the
different modules, and a large test set of HTML
samples, which are believed to be valid or invalid for
specific versions of HTML. The test-suites use support
routines from the Weblint::Test module.

The Weblint::Config module encapsulates the
configuration parameters for weblint. This is used to
handle parsing of command-line parameters, as well as
configuration files. Weblint supports a site-wide
configuration file, and user-specific configuration.

The Weblint::Constants module defines constants which
are used in the different weblint modules.

All retrieving of pages and similar operations are
performed using Gisle Aas’ excellent LWP package.
LWP is a collection of modules and scripts for dealing
with HTTP, HTML, and friends [1].

6. Conclusion

Weblint is a useful script for performing syntax and
style checking (as opposed to strict validation) on web
pages. It can be invoked in several different ways, and
the warnings generated configured to personal taste. It

has been widely used since 1994, on a surprisingly wide
range of platforms.

Weblint does not try to provide a complete solution, but
is intended to be used in conjunction with other tools,
such as fixer uppers, link analysers, strict validators,
logfile analysis tools, etc.

Weblint has evolved according to the Bazaar model, as
defined by Eric Raymond in his paper The Cathedral
and the Bazaar [18]. The bazaar model is characterised
by groups of individuals working together on a program
or system, as typified by the Linux development and
evolution. The cathedral model is characterised by
development by individual wizards or small groups.

A key element of this model for weblint has been the
weblint victims, a list of the most active users. The
victims have educated me about HTML, what
constitutes a useful tool, and provided the inspiration
and source for much within weblint. Various branch
versions of weblint have been created by members of
this community, with all of them offered for folding
back into the standard version. This model is further
expounded in Eric’s second paper on the open software
process [19].

6.1 Future plans and ideas

The following list gives some of the things on my ‘todo
list’ related to weblint. Some of them have been there
for a while, and will likely stay there for a while longer
yet. Some will be addressed in weblint 2.

• Much greater configurability. For example, to
provide additional examples of content-free
text, custom elements and attributes, etc.

• Driving weblint with a DTD: generating the
HTML modules used by weblint, and test-
cases for the test-suite.

• Internationalisation and localisation. Masayasu
Ishikawa has done a lot of work in this area,
which is being folded into Weblint 2.

• Support for ‘plugins’ which are used to
validate non-HTML content (e.g. to validate
stylesheets). This may require an outer
framework, where weblint is just one such
plugin, for HTML.

• Better tracking of other tools and resources,
using a database, submission form, and some
kind of robot.

• A style guide for web sites and pages, based on
the checks performed by weblint and other
tools.

• An article on the complete picture of validating
a web site.

• Page-specific configuration of weblint:
configuration information embedded in
comments, which traditional lint supports [11].

I am always happy to hear suggestions for improving
weblint.

7. Getting weblint

You can get the latest version of weblint, and more
information, from the weblint home page:

http://www.cre.canon.co.uk/~neilb/
weblint/

The site also contains links for all of the resources
mentioned in this paper:

• online versions of papers.

• the tools and other software described.

8. Acknowledgements

I would like to thank the weblint victims for all their
effort on weblint, and patience with me.

I would also like to thank Jane Haslam, Gareth Rees,
Ave Wrigley, Martin Portman, and Andy Wardley, who
reviewed this paper on extremely short notice, and
provided excellent comments.

9. References

[1] Gisle Aas, LWP – Library for WWW access in Perl.
http://perl.com/CPAN/modules/by-
module/LWP/

[2] Patrick Atoon, FixIMG – add WIDTH and
HEIGHT to IMG tags.
http://www.sci.kun.nl/guide/

[3] AtWeb, Web Site Garage.
http://www.websitegarage.com/

[4] Neil Bowers, CS-Web: A search engine for
Canon’s web sites.
http://csweb.cre.canon.co.uk/

[5] Neil Bowers, WWW::Robot – a perl class which
implements the traversal engine for a web robot.
Available from the Comprehensive Perl Archive
Network: http://www.perl.com/CPAN/

[6] Sergey Brin & Lawrence Page, The anatomy of a
large-scale hypertextual Web search engine.
Proceedings of the 7th International World Wide
Web Conference.

[7] British Telecom, Spot – Server Problem Overview
Tool.
http://transend.labs.bt.com/spot/

[8] Center For Applied Special Technology (CAST),
Bobby. http://www.flfsoft.com/bobby/

[9] Henry Churchyard, htmlchek.
http://uts.cc.utexas.edu/~churchh/
htmlchek.htm

[10] James Clark, SP – An SGML System.
http://www.jclark.com/sp/

[11] I. F. Darwin, Checking C Programs with lint.
O’Reilly & Associates, 1991.

[12] Electronic Software Publishing Corporation,
LinkScan.
http://www.elsop.com/linkscan/

[13] Roy T. Fielding, Maintaining distributed hypertext
infostructures: Welcome to MOMspider’s Web.
Proceedings of the 1st International World Wide
Web Conference.

[14] Mark Gaither, Why validate your HTML.
http://www.webtechs.com/html/valid
ate.html

[15] S. C. Johnson, lint, a C Program Checker.
Computer Science Technical Report Number 65,
1978.

[16] Gerald Oskoboiny, A Kinder, Gentler Validator.
http://ugweb.cs.ualberta.ca/~geral
d/validate/

[17] Dave Raggett, Clean up your Web pages with HP’s
HTML Tidy. Poster, 7th International World Wide
Web Conference.
hhtp://w3.org/people/Raggett/tidy

[18] Eric S. Raymond, The Cathedral and the Bazaar.
Presented at the first Perl conference, and
elsewhere. See www.opensource.org

[19] Eric S. Raymond, Homesteading the Noosphere.
The sequel paper to Cathedral and the Bazaar. See
www.opensource.org

[20] Tom Sanders, Why Validate Your HTML
http://www.earth.com/bad-
style/why-validate.htm

[21] VisionTec Communications, HTML Rename!
http://www.visiontec.com/rename/

[22] Larry Wall, Tom Christiansen, & Randal Schwartz,
Programming Perl. Published by O’Reilly &
Associates, 2nd edition, 1997.

[23] Web Techs, Web Techs Validation Service.
http://valsvc.webtechs.com/

[24] Allison Woodruff, Paul M. Aoki, Eric Brewer, Paul
Gauthier, & Lawrence A. Rowe, An Investigation
of Documents from the World Wide Web. Presented
at the 5th International World Wide Web
Conference.
http://epoch.cs.berkeley.edu:8000/
~woodruff/inktomi/

[25] W3C, Amaya – W3C’s Browser / Editor.
http://www.w3.org/Amaya/

[26] W3C, W3C Validator.
http://validator.w3.org/

[27] Yggdrasil, The Arena Web Browser.
http://www.yggdrasil.com/Products/
Arena/

[28] Andy Dougherty, Andreas Koenig & Tim Bunce,
ExtUtils::MakeMaker – create an extension
makefile. Module included in the standard Perl
distribution.

[29] Marduk Enterprises, Linbot.
http://home1.gte.net/marduk/linbot

[30] Tom Verhoef, SWAN – SubWeb Analyser.
http://www.win.tue.nl/cs/wstomv/sw
an/swan.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[PDF/X-1a:2001]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

