
Kawa - Compiling Dynamic Languages to the Java VM

Per Bothner
Cygnus Solutions

1325 Chesapeake Terrace
Sunnyvale CA 94089, USA
<bothner@cygnus.com>

Abstract:
Many are interested in Java for its portable bytecodes
and extensive libraries, but prefer a different language,
especially for scripting. People have implemented other
languages using an interpreter (which is slow), or by
translating into Java source (with poor responsiveness
for eval). Kawa uses an interpreter only for “simple”
expressions; all non-trivial expressions (such as function
definitions) are compiled into Java bytecodes, which are
emitted into an in-memory byte array. This can be saved
for later, or quickly loaded using the Java ClassLoader.

Kawa is intended to be a framework that supports mul-
tiple source languages. Currently, it only supports
Scheme, which is a lexically-scoped language in the Lisp
family. The Kawa dialect of Scheme implements almost
all of the current Scheme standard (R�RS), with a num-
ber of extensions, and is written in a efficient object-
oriented style. It includes the full “numeric tower”, with
complex numbers, exact infinite-precision rational arith-
metic, and units. A number of extensions provide ac-
cess to Java primitives, and some Java methods provide
convenient access to Scheme. Since all Java objects are
Scheme values and vice versa, this makes for a very pow-
erful hybrid Java/Scheme environment.

An implementation of ECMAScript (the standardized
“core” of JavaScript) is under construction. Other lan-
guages, including Emacs Lisp, are also being considered.

Kawa home page: http://www.cygnus.com/

�bothner/kawa.html.

1. Introduction

While Java is a decent programming language, the rea-
son for the “Java explosion” is largely due to the Java
Virtual Machine (JVM), which allows programs to be
distributed easily and efficiently in the form of portable
bytecodes, which can run on a wide variety of architec-
tures and in web browsers. These advantages are largely
independent of the Java language, which is why there
have been a number of efforts to run other languages on
the JVM, even though the JVM is very clearly designed
and optimized for Java. Many are especially interested
in more high-level, dynamic “scripting” languages to use

in a project in conjunction with Java. A language im-
plemented on top of Java gives programmers many of
the extra-linguistic benefits of Java, including libraries,
portable bytecodes, web applets, and the existing efforts
to improve Java implementations and tools.

The Kawa toolkit supports compiling and running vari-
ous languages on the Java Virtual Machine. Currently,
Scheme is fully supported (except for a few difficult fea-
tures discussed later). An implementation of ECMA-
Script is coming along, but at the time of writing it is
not usable.

Scheme [R�RS] is a simple yet powerful language. It
is a non-pure functional language (i.e. it has first-class
functions, lexical scoping, non-lazy evaluation, and side
effects). It has dynamic typing, and usually has an inter-
active read-evaluate-print interface. The dynamic nature
of Scheme (run-time typing, immediate expression eval-
uation) may be a better match for the dynamic Java envi-
ronment (interpreted bytecodes, dynamic loading) than
Java is!

ECMAScript is the name of the dialect of JavaScript
defined by ECMA standard 262 [ECMAScript], which
standardizes JavaScript’s core language only, with no in-
put/output or browser/document interface. It defines a
very dynamic object-based language based on prototype
inheritance, rather than classes. A number of new or pro-
posed Web standards are based on ECMAScript.

Information and source code will be available from
http://www.cygnus.com/�bothner/kawa.html.
(Note that Kawa is also the name of an unrelated com-
mercial Java development environment.)

2. History

Starting in 1995 Cygnus (on behalf of the Free Soft-
ware Foundation) developed Guile, an implementation
of Scheme suitable as a general embedding and exten-
sion language. Guile was based on Aubrey Jaffar’s SCM
interpreter; the various Guile enhancements were ini-
tially done by Tom Lord. In 1995 we got a major contract
to enhance Guile, and with our client we added more
features, including threads (primarily done by Anthony
Green), and internationalization.

The contract called for a byte-code compiler for Guile,
and it looked like doing a good job on this would be a
major project. One option we considered was compil-
ing Scheme into Java bytecodes and executing them by
a Java engine. The disadvantage would be that such a
Scheme system would not co-exist with Guile (on the
other hand, we had run into various technical and non-
technical problems with Guile that led us to conclude
that Guile would after all not be strategic to Cygnus).
The advantage of a Java solution was leveraging off the
tools and development being done in the Java “space”,
plus that Java was more likely to be strategic long-term.

The customer agreed to using Java, and I started active
development June 1996. As a base, I used the Kawa
Scheme interpreter written by R. Alexander Milowski.
He needed an object-oriented Scheme interpreter to im-
plement DSSSL [DSSSL], a Scheme-like environment
for expressing style, formatting, and other processing
of SGML [SGML] documents. DSSSL is an subset of
“pure” Scheme with some extensions. Kawa 0.2 was a
simple interpreter which was far from complete. It pro-
vided a useful starting point, but almost all of the original
code has by now been re-written.

Kawa 1.0 was released to our customer and “the Net”
September 1996. Development has continued since
then, at a less intense pace! The long-term goal is
an object-oriented environment that harmoniously inte-
grates Scheme, Java, EcmaScript, and other languages.

3. Basic implementation strategy

There are three basic ways one might implement some
programming language X using Java:

� One could write an interpreter for X in Java. First
parse the source into an internal “abstract syntax tree”,
and then evaluate it using a recursive eval function.
The advantage of using Java rather than C or C++ is
having garbage collection, classes, and the standard
Java class library makes it easier.

The obvious down-side of the interpreter solution is
speed. If your interpreter for language X is written in
Java, which is in turn interpreted by a Java VM, then
you get double interpretation overhead.

� You could write a compiler to translate language X
into Java source code. You need to define a map-
ping for language X constructs into equivalent Java
constructs, and then write a program that writes out
a parsed X program using corresponding Java con-
structs. A number of implementations take this ap-
proach, including NetRexx, and various “extended

Java” dialects.

This only gives you the single a single (Java VM) layer
of interpretation. On the other hand, most of the ef-
forts that people are making into improving Java per-
formance will benefit your implementation, since you
use standard Java bytecodes.

The biggest problem with that approach is that it is an
inherently batch process, and has poor responsiveness.
Consider a read-eval-print-loop, that is the ability for
a user to type in an expression, and have it be imme-
diately read, evaluated, and the result printed. If eval-
uating an expression requires converting it to a Java
program, writing it to a disk file, invoking a separate
java compiler, and then loading the resulting class file
into the running environment, then response time will
be inherently poor. This hurts “exploratory program-
ing”, that is the ability to define and update functions
on the fly.

A lesser disadvantage is that Java source code is not
quite as expressive as Java bytecodes. While byte-
codes are very close to Java source, there are some
useful features not available in the Java language, such
as goto. Debugging information is also an issue.

� Alternatively, you could directly generate Java byte-
code. You can write out a .class file, which
can be saved for later. You also have the op-
tion of writing to an internal byte array, which
can be immediately loaded as a class using the
java.lang.ClassLoader.defineClass method.
In that case you can by-pass the file system entirely,
yield a fast load-and-go solution, which enables a very
responsive read-eval-print loop.

This solution is the best of both worlds. The main
problem is that more code needs to be written. For-
tunately, by using Kawa, much that work has already
been done.

I will discuss the compiler later, but first we will give an
overview of the run-time environment of Kawa, and the
classes used to implement Scheme values.

4. Objects and Values

Java [JavaSpec] has primitive types (such as 32-bit int)
as well reference types. If a variable has a reference
type, it means that it can contains references (essentially
pointers) to objects of a class, or it can contain refer-
ences to objects of classes that “extend” (inherit from)
the named class. The inheritance graph is “rooted” (like
Smalltalk and unlike C++); this means that all classes

inherit from a distinguished class java.lang.Object
(or just Object for short).

Standard Scheme [R�RS] has a fixed set of types, with
no way of creating new types. It has run-time typing,
which means that types are not declared, and a variable
can contain values of different types at different times.
The most natural type of a Java variable that can contain
any Scheme value is therefore Object, and all Scheme
values must be implemented using some class that inher-
its from Object.

The task then is to map each Scheme type into a Java
class. Whether to use a standard Java class, or to write
our own is a tradeoff. Using standard Java classes simpli-
fies the passing of values between Scheme functions and
existing Java methods. On the other hand, even when
Java has suitable built-in classes, they usually lack func-
tionality needed for Scheme, or are not organized in any
kind of class hierarchy as in Smalltalk or Dylan. Since
Java lacks standard classes corresponding to pairs, sym-
bols, or procedures, we have to write some new classes,
so we might as well write new classes whenever the ex-
isting classes lack functionality.

The Scheme boolean type is one where we use a stan-
dard Java type, in this case Boolean (strictly speak-
ing java.lang.Boolean). The Scheme constants #f
and #t are mapped into static fields (i.e. constants)
Boolean.FALSE and Boolean.TRUE.

On the other hand, numbers and collections are reason-
ably organized into class hierarchies, which Java does
not do well. So Kawa has its own classes for those, dis-
cussed in the following sections.

4.1. Collections
Kawa has a rudimentary hierarchy of collection classes.

class Sequence
{ ...;
abstract public int length();
abstract public Object elementAt(int i);

}

A Sequence is the abstract class that includes lists, vec-
tors, and strings.

class FString extends Sequence
{ ...;
char[] value;

}

Used to implement fixed-length mutable strings (array
of Unicode character). This is used to represent Scheme
strings.

class FVector extends Sequence
{ ...;
Object[] value;

}

Used to implement fixed-length mutable general one-
dimensional array of Object. This is used to represent
Scheme vectors.

public class List extends Sequencw
{ ...;
protected List () { }
static public List Empty = new List ();

}

Used to represent Scheme (linked) lists. The empty
list ’() is the static (global) value List.Empty. Non-
empty-lists are implemented using Pair objects.

public class Pair extends Sequence
{ ...;
public Object car;
public Object cdr;

}

Used for Scheme pairs.

public class PairWithPosition extends Pair
{ ...;
}

Like Pair, but includes the filename and linenumber in
the file from which the pair was read.

Future plans include more interesting collection classes,
such a sequences implemented as a seekable disk file;
lazily evaluated sequences; hash tables; APL-style
multi-dimensional arrays; stretchy buffers. (Many of
these ideas were implemented in my earlier exper-
imental language Q – see [Bothner88] and ftp://

ftp.cygnus.com/pub/bothner/Q/. I will also inte-
grate the Kawa collections into the new JDK 1.2 collec-
tions framework.

4.2. Top-level environments

class Environment
{ ...;
}

An Environment is a mapping from symbols to bind-
ings. It contains the bindings of the user top-level.
There can be multiple top-level Environments, and an
Environment can be defined as an extension of an ex-
isting Environment. The latter feature is used to imple-
ment the various standard environment arguments that

can be passed to eval, as adopted for the latest Scheme
standard revision (“R�RS”). Nested environments were
also implemented to support threads, and fluid bindings
(even in the presence of threads).

Environments will be combined into a more general
name-table interface, which will also include records and
ECMAScript objects.

4.3. Symbols

Symbols represent identifiers, and do not need much
functionality. Scheme needs to be able to convert them to
and from Scheme strings, and they need to be “interned”
(which means that there is a global table to ensure that
there is a unique symbol for a given identifier). Symbols
are immutable and have no accessible internal structure.

Scheme symbols are reprented using interned Java
Strings. Note that the Java String class implements
immutable strings, and is therefore cannot be used to im-
plement Scheme strings. However, it makes sense to use
it to implement symbols, since the way Scheme symbols
are used is very similar to how Java Strings are used.
The method intern in String provides an interned
version of a String, which provides the characters-to-
String mapping needed for Scheme strings.

5. Numbers
Scheme defines a “numerical tower” of numerical types:
number, complex, real, rational, and integer. Kawa
implements the full “tower” of Scheme number types,
which are all sub-classes of the abstract class Quantity
discussed later.

public class Complex extends Quantity
{ ...;
public abstract RealNum re();
public abstract RealNum im();

}

Complex is the class of abstract complex numbers. It
has three subclasses: the abstract class RealNum of real
numbers; the general class CComplex where the compo-
nents are arbitrary RealNum fields; and the optimized
DComplex where the components are represented by
double fields.

public class RealNum extends Complex
{ ...;
public final RealNum re()
{ return this; }
public final RealNum im()

{ return IntNum.zero(); }
public abstract boolean isNegative();

}

public class DFloNum extends RealNum
{ ...;
double value;

}

Concrete class for double-precision (64-bit) floating-
point real numbers.

public class RatNum extends RealNum
{ ...;
public abstract IntNum numerator();
public abstract IntNum denominator();

}

RatNum, the abstract class for exact rational numbers,
has two sub-classes: IntFraction and IntNum.

public class IntFraction extends RatNum
{ ...;
IntNum num;
IntNum den;

}

The IntFraction class implements fractions in the ob-
vious way. Exact real infinities are identified with the
fractions 1/0 and -1/0.

public class IntNum extends RatNum
{ ...;
int ival;
int[] words;

}

The IntNum concrete class implements infinite-
precision integers. The value is stored in the first ival
elements of words, in 2’s complement form (with the
low-order bits in word[0]).

There are already many bignum packages, including one
that Sun added for JDK 1.1. What are the advantages of
this one?

� A complete set of operations, including gcd and lcm;
logical, bit, and shift operations; power by repeated
squaring; all of the division modes from Common
Lisp (floor, ceiling, truncate, and round); and exact
conversion to double.

� Consistency and integration with a complete “numer-
ical tower.” Specifically, consistency and integration
with “fixnum” (see below).

� Most bignum packages use a signed-magnitude rep-
resentation, while Kawa uses 2’s complement. This
makes for easier integration with fixnums, and also

makes it cheap to implement logical and bit-fiddling
operations.

� Use of all 32 bits of each “big-digit” word, which is
the “expected” space-efficient representation. More
importantly, it is compatible with the mpn routines
from the Gnu Multi-Precision library (gmp) [gmp].
The mpn routines are low-level algorithms that work
on unsigned pre-allocated bignums; they have been
transcribed into Java in the MPN class. If better effi-
ciency is desired, it is straight-forward to replace the
MPN methods with native ones that call the highly-
optimized mpn functions.

If the integer value fits within a signed 32-bit int, then
it is stored in ival and words is null. This avoids the
need for extra memory allocation for the words array,
and also allows us to special-case the common case.

As a further optimization, the integers in the range -100
to 1024 are pre-allocated.

5.1. Mixed-type arithmetic

Many operations are overloaded to have different defini-
tions depending on the argument types. The classic ex-
amples are the functions of arithmetic such as “+”, which
needs to use different algorithms depending on the argu-
ment types. If there is a fixed and reasonably small set of
number types (as is the case with standard Scheme), then
we can just enumerate each possibility. However, the
Kawa system is meant to be more extensible and support
adding new number types.

The solution is straight-forward in the case of a one-
operand function such as “negate”, since we can use
method overriding and virtual method calls to dynami-
cally select the correct method. However, it is more dif-
ficult in the case of a binary method like “+,” since clas-
sic object-oriented languages (including Java) only sup-
port dynamic method selection using the type of the first
argument (“this”). Common Lisp and some Scheme
dialects support dynamic method selection using all the
arguments, and in fact the problem of binary arithmetic
operations is probably the most obvious example where
“multi-dispatch” is useful.

Since Java does not have multi-dispatch, we have to
solve the problem in other ways. Smalltalk has the
same problems, and solved it using “coercive gener-
ality”: Each number class has a generality number,
and operands of lower generality are converted to the
class with the higher generality. This is inefficient be-
cause of all the conversions and temporary objects (see
[Budd91Arith]), and it is limited to what extent you can
add new kinds of number types.

In “double dispatch” [Ingalls86] the expression x-y is
implemented as x.sub(y). Assuming the (run-time)
class of x is Tx and that of y is Ty, this causes the sub

method defined in Tx to be invoked, which just does
y.subTx(x). That invokes the subTx method defined
in Ty which can without further testing do the subtrac-
tion for types Tx and Ty.

The problem with this approach is that it is difficult to
add a new Tz class, since you have to also add subTz

methods in all the existing number classes, not to men-
tion addTz and all the other operations.

In Kawa, x-y is also implemented by x.sub(y). The
sub method of Tx checks if Ty is one of the types it
knows how to handle. If so, it does the subtraction
and returns the result itself. Otherwise, Tx.sub does
y.subReversed(x). This invokes Ty.subReversed
(or subReversed as defined in a super-class of Ty).
Now Ty (or one of its super-classes) gets a chance to
see if it knows how to subtract itself from a Tx object.

The advantage of this scheme is flexibility. The knowl-
edge of how to handle a binary operation for types Tx
and Ty can be in either of Tx or Ty or either of their
super-classes. This makes is easier to add new classes
without having to modify existing ones.

5.2. Quantities

The DSSSL language [DSSSL] is a dialect of Scheme
used to process SGML documents. DSSSL has “quan-
tities” in addition to real and integer numbers. Since
DSSSL is used to format documents, it provides length
values that are a multiple of a meter (e.g. 0.2m), as well
as derived units like cm and pt (point). A DSSSL quan-
tity is a product of a dimension-less number with an inte-
gral power of a length unit (the meter). A (pure) number
is a quantity where the length power is zero.

For Kawa, I wanted to merge the Scheme number
types with the DSSSL number types, and also general-
ize the DSSSL quantities to support other dimensions
(such as mass and time) and units (such as kg and sec-
onds). Quantities are implemented by the abstract class
Quantity. A quantity is a product of a Unit and a pure
number. The number can be an arbitrary complex num-
ber.

public class Quantity extends Number
{ ...;
public Unit unit()
{ return Unit.Empty; }
public abstract Complex number();

}

public class CQuantity extends Quantity
{ ...;
Complex num;
Unit unt;
public Complex number()
{ return num; }
public Unit unit()
{ return unt; }

}

A CQuantity is a concrete class that implements gen-
eral Quantities. But usually we don’t need that much
generality, and instead use DQuanity.

public class DQuantity extends Quantity
{ ...;
double factor;
Unit unt;
public final Unit unit()
{ return unt; }
public final Complex number()
{ return new DFloNum(factor); }

}

public class Unit extends Quantity
{ ...;
String name; // Optional.
Dimensions dims;
double factor;

}

A Unit is a product of a floating-point factor and one
or more primitive units, combined into a Dimensions

object. The Unit name have a name (such as “kg”),
which is used for printing, and when parsing literals.

public class BaseUnit extends Unit
{ ...;
int index;

}

A BaseUnit is a primitive unit that is not defined in
terms of any other Unit, for example the meter. Each
BaseUnit has a different index, which is used for iden-
tification and comparison purposes. Two BaseUnits
have the same index if and only if they are the same
BaseUnit.

public class Dimensions
{
BaseUnit[] bases;
short[] powers;

}

A Dimensions object is a product and/or ratio of
BaseUnits. You can think of it as a data structure
that maps every BaseUnit to an integer power. The

bases array is a list of the BaseUnits that have a non-
zero power, in order of the index of the BaseUnit.
The powers array gives the power (exponent) of the
BaseUnit that has the same index in the bases array.

Two Dimensions objects are equal if they have the
same list of bases and powers. Dimensions objects
are “interned” (using a global hash table) so that they are
equal only if they are the same object. This makes it easy
to implement addition and subtraction:

public static DQuantity add
(DQuantity x, DQuantity y)

{
if (x.unit().dims != y.unit().dims)

throw new ArithmeticException
("units mis-match");

double r = y.unit().factor
/ x.unit().factor;

double s = x.factor + r * y.factor;
return new DQuantity (s, x.unit());

}

The Unit of the result of an addition or subtraction is the
Unit of the first operand. This makes it easy to convert
units:

(+ 0cm 2.5m) ==> 250cm

Because Kawa represents quantities relative to user-
specified units, instead of representing them relative to
primitive base units, it can automatically print quantities
using the user’s preferred units. However, this does make
multiplication and division more difficult. The actual
calculation (finding the right Dimensions and multiply-
ing the constant factors) is straight-forward. The prob-
lem is generating the new compound unit, and later print-
ing out the result in a human-friendly format. There is no
obvious right way to do this. Kawa creates a MulUnit

to represent a compound unit, but it is not obvious which
simplifications should be done when. Kawa uses a few
heuristics to simplify compound units, but this is an area
that could be improved.

6. Procedures

Scheme has procedures as first-class values. Java does
not. However, we can simulate procedure values, by
overriding of virtual methods.

class Procedure
{ ...;
public abstract Object applyN
(Object[] args);

public abstract Object apply0();

...;
public abstract Object apply4

(Object arg1, ..., Object arg4);
}

We represent Scheme procedures using sub-classes of
the abstract class Procedure. To call (apply) a proce-
dure with no arguments, you invoke its apply0 method;
to invoke a procedure, passing it a single argument, you
use its apply1 method; and so on using apply4 if you
have 4 arguments. Alternatively, you can bundle up all
the arguments into an array, and use the applyN method.
If you have more than 4 arguments, you have to use
applyN.

Notice that all Procedure sub-classes have to imple-
ment all 6 methods, at least to the extent of throwing
an exception if it is passed the wrong number of argu-
ments. However, there are utility classes Procedure0
to Procedure4 and ProcedureN:

class Procedure1 extends Procedure
{
public Object applyN(Object[] args)
{

if (args.length != 1)
throw new WrongArguments();

return apply1(args[0]);
}
public Object apply0()
{ throw new WrongArguments();}
public abstract Object apply1

(Object arg1);
public Object apply2

(Object arg1, Object arg2)
{ throw new WrongArguments();}
...;

}

Primitive procedures are generally written in Java as sub-
classes of these helper classes. For example:

class car extends Procedure1
{ // Return first element of list.
public Object apply1(Object arg1)

{ return ((Pair) arg1).car; }
}

A user-defined Scheme procedure is compiled to a class
that is descended from Procedure. For example, a
variable-argument procedure is implemented as a sub-
class of ProcedureN, with an applyN method compris-
ing the bytecode compiled from the Scheme procedure
body. Thus primitive and user-defined procedure have
the same calling convention.

If a nested procedure references a lexical variable in an
outer procedure, the inner procedure is implemented by a

“closure”. Kawa implements a closure as a Procedure
object with a “static link” field that points to the inher-
ited environment. In that case the lexical variable must
be heap allocated, but otherwise lexical variables use lo-
cal Java variable slots. (This is conceptually similar to
the “Inner classes” added in JDK 1.1.)

class ModuleBody extends Procedure0
{ ...;
public Object apply0()
{ return run(Environment.current());}
public abstract Object run
(Environment env);

}

Top-level forms (including top-level definitions) are
treated as if they were nested inside a dummy procedure.
A ModuleBody is such a dummy procedure. When a file
is loaded, the result is a ModuleBody; invoking run

causes the top-level actions to be executed.

7. Overview of compilation

These are the stages of compilation:

Reading

The first compilation stage reads the input from a
file, from a string, or from the interactive command
interpreter. The result is one or more Scheme forms
(S-expressions), usually lists. If reading commands
interactively, only a single form is read; if reading
from a file or string, all the forms are read until
end-of-file or end-of-string; in either case, the re-
sult is treated as the body of a dummy function (i.e.
a ModuleBody).

Semantic analysis

The source form is rewritten into an Expression

object, specifically a ModuleExp. This stage han-
dles macro expansion and lexical name binding.
Many optimizations can be done in this phase by
annotating and re-arranging Expressions.

Code generation

The resulting ModuleExp is compiled into one or
more byte-coded classes. This is done by invok-
ing the virtual compile method recursively on the
Expressions, which generates instructions (using
the bytecode package) to evaluate the expression
and leave the result on the Java operand stack. At
the end we ask the bytecode package to write out

the resulting classes and methods. They can be
written to a file (for future use), or into byte arrays
in memory.

Loading

The compiled bytecodes are loaded into the Kawa
run-time. In the case of code that is compiled and
then immediately executed, the compiled code can
be immediately turned into Java classes using the
Java ClassLoader feature. (That is how the read-
eval-print loop works.) An instance of the com-
piled sub-class of ModuleBody is created and run,
which normally produces various side-effects.

8. Expressions

The abstract Expression class represents partially pro-
cessed expressions. These are in principle indepen-
dent of the source language, though there are still some
Scheme assumptions wired in.

class Expression
{ ...;
public abstract Object eval

(Environment e);
public abstract void compile

(Compilation comp, Target targ);
}

The eval method evaluates the Expression in the
given Environment. The compile method is called
when we are compiling the body of a procedure. It is re-
sponsible for generating bytecodes that evaluate the ex-
pression, and leave the result in a result specified by the
Target parameter. This is usually the Java evaluation
stack, but we will go into more detail later.

class QuoteExp extends Expression
{ ...;
Object value;
public QuoteExp(Object val)
{ value = val; }
public Object eval(Environment env)
{ return value; }
public void compile

(Compilation comp, Target target)
{ comp.compileConstant (value, target); }

}

A QuoteExp represents a literal (self-evaluating form),
or a quoted form.

class ReferenceExp extends Expression
{ ...;

Symbol symbol;
Declaration binding;

}

A ReferenceExp is a reference to a named variable.
The symbol is the source form identifier. If binding is
non-null, it is the lexical binding of the identifier.

class ApplyExp extends Expression
{ ...;
Expression func;
Expression[] args;

}

An ApplyExp is an application of a procedure func to
an argument list args.

class ScopeExp extends Expression
{ ...;
ScopeExp outer; // Surrounding scope.
public Declaration add_decl(Symbol name)
{ ...Create new local variable... }

}

A ScopeExp is a abstract class that represents a lexi-
cal scoping construct. Concrete sub-classes are LetExp
(used for a let binding form) and LambdaExp.

class LambdaExp extends ScopeExp
{ ...;
Symbol name; // Optional.
Expression body;
int min_args;
int max_args;

}

The Scheme primitive syntax lambda is translated into
a LambdaExp, which represents anonymous procedures.
Each LambdaExp is compiled into a different bytecoded
class. Invoking eval causes the LambdaExp to be com-
piled into a class, the class to be loaded, an instance
of the class to be created, and the result coerced to a
Procedure.

Other sub-classes of Expression are IfExp (used
for conditional expressions); BeginExp (used for com-
pound expressions); SetExp (used for assignments); and
ErrorExp (used where a syntax error was found);

9. Semantic analysis

The translation phase takes a top-level form (or body),
and generates a ModuleExp, which is a top-level expres-
sion. This is done using a Translator, which keeps
track of lexical bindings and other translation state.

class Translator

{ ...;
public Expression rewrite(Object exp)
{ ... }
public Expression syntaxError
(String message) { ... }

}

The rewrite method converts a Scheme source form to
an Expression. The syntaxError method is called
when a syntax error is seen. It prints out the cur-
rent source filename and line number with the given
message.

9.1. Syntax and Macros

class Syntax
{ ...;
public abstract Expression rewrite

(Object obj, Translator tr);
}

The rewrite method in Translator checks for syn-
tactic keywords and macros. If the car of a “call” is a
Syntax or if it is a Symbol that is bound to a Syntax,
then its rewrite method is called.

As an example, this trivial class implements quote:

class quote extends Syntax
{ ...;
public Expression rewrite

(Object obj, Translator tr)
{ // Error-checking is left out.

return new QuoteExp(((Pair)obj).car);
}

}

Much more complicated is the Syntax that implements
define-syntax.

class define_syntax extends Syntax
{ ...;
public Expression rewrite

(Object obj, Translator tr)
{ enter (new SyntaxRules (...)); }

}

The result is a SyntaxRules object, which contains an
encoded representation of the patterns and templates in
the syntax-rules. This is in its own right a Syntax

object.

class SyntaxRules extends Syntax
{ ...;
SyntaxRule[] rules;
public Expression rewrite

(Object obj, Translator tr)
{

Object[] v = new Object[maxVars];
for (int i = 0; i < rules.length;)
{
SyntaxRule r = rules[i++];
if (r.match (obj, v))
return r.execute_template(v, tr);

}
return tr.syntaxError
("no matching syntax-rule");

}
}

Contrast evaluating a procedure definition (lambda),
which causes a new sub-class of Procedure to be cre-
ated and compiled, while evaluating a define-syntax
only causes a new instance of SyntaxRules to be cre-
ated.

10. Interpretation: Eval

Many people think of Scheme, Lisp, and ECMAScript
as “interpreted” languages. However, many of these lan-
guages have compilers. What these languages do have is
eval - that is a command that at run-time takes a source
program, and evaluates it. They may also have an in-
teractive read-eval-print interface. For such uses a tradi-
tional interpreter is easiest and most responsive. There-
fore, high-end Lisp systems traditionally provide both a
compiler and an interpreter. Such duplication is expen-
sive, in terms of size, development effort, and testing.
If one has load-and-go capabilities, that is the abilility to
efficiently load a compiled program into a running appli-
cation, then one can simply implement eval as a com-
pile followed by a load.

When we compile to Java bytecodes, we create one or
more files in the .class format. There is a standard Java
method java.lang.ClassLoader.defineClass

that takes a byte array laid out in the format of a .class,
and from it dynamically creates a new class in the ex-
isting Java run-time. (This facility is used for “ap-
plets” downloaded accross the Network.) Kawa uses
this scheme to implement eval, and it works well.
Because ClassLoader.defineClass takes an array,
rather than a file, we can compile and load entirely in-
side the Kawa run-time, without having to go via the
filesystem for temporary files, as a traditional compiler
batch does. The result is near-instant response.

There is a tradeoff, though. Doing a compile+load is a
very heavy-duty operation, compared to a simply inter-
preting an expression. It creates a lot of temporary ob-
jects. Worse, it also creates some temporary classes, and
many Java environments do not garbage collect unused

classes.

Kawa uses a compromise strategy. If the Expression

is “simple”, it is interpreted directly, using the
Expression.eval. Otherwise, it is compiled. Simple
expressions include literals, (global) variable access, as-
signment, and function application. Implementing eval
in those cases is trivial. Expressions that define new lo-
cal bindings (such lambda expressions and let forms)
do not implement eval. If the user types in such an
expression, it is wrapped inside a dummy function, com-
piled to bytecodes, and immediately executed. This is to
avoid dealing with lexical binding in the evaluator.

A ModuleExp represents a top-level form:

class ModuleExp extends LambdaExp
{ ...;
public Object eval_module

(Environment env) {
if (body_is_simple) // Optimization

return body.eval (env);
Object v = eval (env);
return ((ModuleBody) v).run (env);

}
}

ModuleExp is a sub-class of LambdaExp, since it is ac-
tually a dummy function created by wrapping the top-
level forms in an implicit lambda. The eval_module

method evaluates the top-level forms. If the body
is not simple, it invokes the eval in LambdaExp

(which invokes the compiler). The result of eval is a
ModuleBody, which we can run.

11. Code generation

A Compilation object manages the classes, methods,
and temporary state generated as a result of compiling a
single top-level ModuleExp.

class Compilation
{ ...;
ClassType[] classes;
boolean immediate;
public ClassType addClass

(LambdaExp lexp, String name)
{ ... }
public ClassType(ModuleExp exp, ...)
{ ...; addClass (exp, ...); }

}

Each Compilation may create one or more
ClassType objects, each of which generates the byte-
codes for one class. Each ClassType is generated
from a LambdaExp, including the top ModuleExp. The

boolean immediate is true if we are compiling for im-
mediate loading, and is false if the target is one or more
.class files.

The addClass method does all the work to compile a
given LambdaExp. It creates a ClassType, adds it to
Compilation’s classes array, and generates Method
objects for the constructor and the main applyX method.
Once the applyX Method has been created, addClass
emits some bytecodes to set up the incoming parame-
ters, and then invokes the virtual compile method on
the body of the LambdaExp, which generates the code
that does the actual work of the procedure.

The Compilation constructor gets a ModuleExp,
which it passes to addClass. The compile method
of LambdaExp (which gets called for all lambdas ex-
cept the dummy top-level) also calls addClass to gen-
erate the class corresponding to the lambda, and then it
emits instructions to create a new instance of the gener-
ated Procedure class, and pushes it on the Java stack.

11.1. Targets

Most operations in the Java VM leave their result on
the VM stack, where they are available for succeeding
operations. The obvious and general way to compile
an expression is therefore to generate bytecode instruc-
tions that leave the result (in the form of a Object ref-
erence) on the stack. This handles most cases quite well,
but we can do better. We specify a Target parameter
when invoking the compile method; the Target speci-
fies where to leave the result.

public abstract class Target
{ ...;
public abstract void compileFromStack
(Compilation comp, Type stackType);

public static final Target Ignore
= new IgnoreTarget();

}

The compileFromStack method supports the least-
common-denominator: A compilemethod can generate
code to leave the result on the VM stack, and then invoke
compileFromStack, which is responsible for moving
the result to the actual target.

The simplest Target is an IgnoreTarget. It is used
when the result of an expression will be ignored, but we
still need to evaluate it for possible side-effects. The im-
plementation of IgnoreTarget.compileFromStack
just emits an instrcution to pop a value from the VM
stack. Expressions that have no side-effects can check
if the target is an IgnoreTarget, and then immediately
resturn. This saves a useless push-pop pair.

The usual Target is an StackTarget. This specifies
that an expression should leave the result on the VM
stack. Normally, the type of the result is Object, but
a StackTarget can specify some other expected type,
when that can be determined. The implementation of
StackTarget.compileFromStack is also trivial: If
the type of the result on the stack is a sub-type of the ex-
pected target type, nothing needs to be done; otherwise,
it generates code to do the type conversion.

Things get more interesting when we come to
ConditionalTarget.

public class ConditionalTarget
extends Target

{ ...;
public Label ifTrue, ifFalse;

}

A ConditionalTarget is used when compiling the
test expression in a conditional. The expression is evalu-
ated as a boolean value; if the result is true, control trans-
fers to ifTrue; otherwise control transfers to ifFalse.
Using ConditionalTarget makes it straight-forward
to generate optimal code for nested conditionals, includ-
ing and and or macros, and (when inlining) functions
such as not and eq?.

Finally, TailTarget is like a StackTarget, but in
“tail” position. (I.e. it is the last thing done in a function.)
It is used to do (restricted) tail-recursion-elimination.

11.2. The bytecode package

The ClassType and Method classes are in a separate
gnu.bytecode package, which is an intermediate-level
interface to code generation and Java .class files. It is
essentially independent of Scheme or the rest of Kawa.

class ClassType extends Type
{ ...;
CpoolEntry[] constant_pool;
Method methods; // List of methods.
Field fields; // List of fields.
public Field addField

(String name, Type type, int flags)
{ ...Create new field... }
public method addMethod(String name,...)
{ ...Create new method... }
public void writeToStream

(OutputStream stream) { ... }
public void writeToFile(String filename)
{ ... }
public byte[] writeToArray()
{ ... }

}

The ClassType class is the main class of the bytecode
package. It manages a list Fields, a list of Methods, and
the constant pool. There are utility methods for adding
new fields, methods, and constant pool entries.

When the ClassType has been fully built, the
writeToFile method can be used to write out the con-
tents into a file. The result has the format of a .class

file [JavaVmSpec]. Alternatively, the class can be writ-
ten to an internal byte array (that has the same layout as
a .class file) using the writeToArray method. The
resulting byte array may be used by a ClassLoader to
define a new class for immediate execution. Both of the
these methods are implemented on top of the more gen-
eral writeToStream.

Each method is represented by a Method object.

class Method implements AttrContainer
{ ...;
Type[] arg_types;
Type return_type;
Attribute attributes;

}

An AttrContainer is an object that contains zero or
more Attributes. The Java .class file format is quite
extensible. Much of the information is stored in named
attributes. There are standard attributes, but an applica-
tion can also define new ones (that are supposed to be ig-
nored by applications that do not understand them). Each
class file may have a set of top-level attributes. In addi-
tion, each field and method may have attributes. Some
standard attributes may have nested sub-attributes.

public abstract class Attribute
{ ...;
AttrContainer container;
String name;

}

An Attribute’s container specifies who owns the at-
tribute. The attribute also has a name, plus methods to
gets its size, write it out, etc.

The most interesting (and large) standard Attribute

occurs in a method and has the name "Code". It contains
the actual bytecode instructions of a non-native non-
abstract method, and we represent it using CodeAttr.

class CodeAttr extends Attribute
{ ...;
Variable addLocal(Type t, String name)
{ ... }
public void emitLoad(Variable var)
{ ... }
public void emitPushInt(int i)
{ ... }

public void putLineNumber(int lineno)
{ ... }

}

As an example of the level of functionality,
emitPushInt compiles code to push an integer i on
stack. It selects the right instruction, and if i is too big
for one of the instructions that take an inline value, it
will create a constant pool entry for i, and push that.

The method addLocal creates a new local variable (and
makes sure debugging information is emitted for it),
while emitLoad pushes the value of the variable on the
stack.

Kawa calls putLineNumber to indicate that the current
location corresponds to a given line number. These are
emitted in the .class file, and most Java interpreters
will use them when printing a stack trace.

We mainly use gnu.bytecode for generating .class

files, but it also has classes to read .class files, and
also classes to print a ClassType in readable format.
The combination makes for a decent Java dis-assembler.

There are other toolkits for creating or analyzing.class
files, but gnu.bytecode was written to provide a lot of
support for code generation while having little overhead.
For example, some assemblers represent each instruction
using an Instruction instance, whereas CodeAttr

just stores all the instruction in a byte array. Using
a linked list of Instructions may be more “object-
oriented”, and it does make it easier to do peep-hole op-
timizations, but the time and space overhead compared
to using an array of bytes is huge. (If you do need to
do peephole optimizations, then it makes sense to use a
doubly-linked list of Instructions, but to use that in
conjunction with CodeAttr. You will in any case want
a byte-array representation for input and output.)

11.3. Literals

A Scheme quoted form or self-evaluating form expands
to a QuoteExp. Compiling a QuoteExp would seem a
trivial exercise, but it is not. There is no way to em-
bed (say) a list literal in Java code. Instead we create
a static field in the top-level class for a each (different)
QuoteExp in the body we are compiling. The code com-
piled for a QuoteExp then just needs to load the value
from the corresponding static field. The tricky part is
making sure that the static field gets initialized (when
the top-level class is loaded) to the value of the quoted
form.

The basic idea is that for:

(define (foo) ’(3 . 4))

we compile:

class foo extends Procedure0
{
Object static lit1;
public static
{ // Initializer
lit1 = new Pair(IntNum.make(3),

IntNum.make(4));
}
public Object apply0()
{ return lit1; }

}

When the compiled class foo is loaded, we do:

Class fooCl = Class.forName("foo");
Procedure fooPr
= (Procedure) fooCl.newInstance ();

// Using foo:
Object result = fooPr.apply0 ();

How does the Kawa compiler generate the appropriate
new Pair expression as shown above? A class whose
instances may appear in a quoted form implements the
Compilable interface:

interface Compilable
{
Literal makeLiteral(Compilation comp);
void emit(Literal l, Compilation comp);

}

The makeLiteral creates a Literal object that repre-
sents the value of this object. That Literal is later
passed to emit, which emits bytecode instructions that
(when evaluated) cause a value equal to this to be
pushed on the Java evaluation stack.

This two-part protocol may be overkill, but it makes it
possible to combine duplicate constants and it also sup-
ports circularly defined constants. (Standard Scheme
does not support self-referential constants, but Common
Lisp does. See section 25.1.4 “Similarity of Constants”
in [CommonLisp2].)

It is possible that the Compilable interface will be re-
placed or augmented with JDK 1.1’s serialization fea-
ture.

If we are compiling for immediate execution, we do not
need to generate code to regenerate the literal. In fact, we
want to re-use the literal from the original source form.
The problem is passing the source literal to the byte-
compiled class. To do that, we use the CompiledProc
interface.

interface CompiledProc

{
public abstract void setLiterals

(Object[] values);
}

An immediate class compiled from a top-level form im-
plements the CompiledProc form. After an instance
of the ModuleBody has been created, it is coerced to a
CompiledProc, and setLiterals is called. The argu-
ment to setLiterals is an array of the necessary literal
values, and the method that implements it in the com-
piled code causes the array of literal values to be saved
in the ModuleBody instance, so it can be accessed by the
compiled code.

12. Class, types, and declarations

Java support “reflection”, that is the ability to determine
and examine the class of an object, and use the class at
run-time to extract fields and call methods using names
specified at run-time. Kawa, like some other Scheme im-
plementations, also supports reflection.

It seems plausible to represent a type using a
java.lang.Class object, since that is what the Java
reflective facility does. (Nine static pseudo-classes rep-
resent the primitive non-object types.) Unfortunately,
there are at least three reasons why Kawa needs a dif-
ferent representation:

� We may need to refer to classes that do not exist yet,
because we are in the process of compiling them.

� We want to be able to specify different high-level
types that are represented using the same Java type.
For example, we might want to have integer sub-
ranges and enumerations (represented using int), or
different kinds of function types.

� We want to associate different conversion (coersion)
rules for different types that are represented using the
same class.

Kawa represents types using instances of Type:

public abstract class Type
{ ...;
String signature; // encoded type name
int size;
public final String getName() { ... }
public boolean isInstance(Object obj)
{ ... }
public void emitIsInstance(CodeAttr c)
{ ... }

}

The method isInstance tests if an object is a member
of this type, while emitIsInstance is called by the
compiler to emit a run-time test. Note that the earlier
mentioned ClassType extends Type.

Kawa follows the convention (used in RScheme
[RScheme] and other Scheme dialects) that identifiers
of the form <typename> are used to name types.
For example Scheme vectors are members of the type
<vector>. This is only a convention and these
names are regular identifiers, expect for one little fea-
ture: If such an identifier is used, and it is not
bound, and typename has the form of a Java type,
then a corresponding Type is returned. For example
<java.lang.String[]> evaluates to a Type whose
values are references to Java arrays whose elements are
references to Java strings.

As a simple example of using type values, here is the
definition of the standard Scheme predicate vector?,
which returns true iff the argument is a Scheme vector:

(define (vector? x)
(instance? x <vector>)

The primitive Kawa function instance? imple-
ments the Java instanceof operation, using Type’s
isInstance method. (In compiled code, if the sec-
ond operand is known at compile-time, then the com-
piler uses Type’s emitIsInstance method to generate
better code.)

The traditional benefits of adding types to a dynamic lan-
guage include better code generation, better error check-
ing, and a convenient way to partially document inter-
faces. These benefits require either type inference or
(optional) type declarations. Kawa so far has neither,
but the compilation framework is being gradually made
more type-aware. There are some hooks to support “un-
boxed” types, so the compiler could (potentially) use raw
double instead of having to allocate a DFloNum object.

Kawa includes the record extension proposed for R�RS.
This allows a new record type to be specified and cre-
ated at run-time. It is implemented by creating a new
ClassType with the specified fields, and loading the
class using ClassLoader.defineClass. The record
facility consists of a number of functions executed at
run-time. Many people prefer an approach based on dec-
larations that can be more easily analysed at compile-
time. (This is why the record facility was rejected for
R�RS.) A more declarative and general class definition
facility is planned but not yet implemented.

13. Low-level Java access

Many implementations of high-level language provide
an interface to functions written in lower-level language,
usually C. Kawa has such a “Foreign Function Inter-
face”, but the lower-level langauge it targets is Java. A
PrimProcedure is a Procedure that invokes a speci-
fied Java method.

public class PrimProcedure
extends ProcedureN

{ ...;
Method method;
Type retType;
Type[] argTypes;

}

The following syntax evaluates to a PrimProcedure

such that when you call it, it will invoke the static method
named method-name in class class with the given
arg-types and result-type:

(primitive-static-method class method-name
return-type (arg-type ...))

When such a function is called, Kawa makes sure to con-
vert the arguments and result between the Scheme types
and Java types. For example:

(primitive-static-method
<java.lang.Character> "toUpperCase"
<char> (<char>))

This is a function that converts a Scheme char-
acter (represented using a <kawa.lang.Char>

object), to a Java char, applies the standard
java.lang.Character.toUpperCase method,
and converts the result back to a Scheme char-
acter. Normally, the Java reflection features are
used to call the specified method. However, if the
primitive-static-method is used directly in the
function position of an application, then the compiler
is able to inline the PrimProcedure, and emit effi-
cient invokestatic bytecode operations. That is the
usual style, which is used to define many of the standard
Scheme procedures, such as here char-upcase:

(define (char-upcase ch)
((primitive-static-method

<java.lang.Character> "toUpperCase"
<char> (<char>))

ch))

Similar forms primitive-virtual-method and
primitive-virtual-method are used to gener-
ate virtual method calls and interface calls, while
primitive-constructor is used to create and ini-
tialize a new object.

You can access instance and static fields of an object us-
ing similar macros. For example, to get the time-stamp
from an Event, do:

((primitive-get-field <java.lang.Event>
"when" <long>)
evt)

Kawa also has low-level operations for working with
Java arrays. All these primitive operations are inlined to
efficient byte code operations when the compiler knows
that the procedure being called is a primitive; otherwise,
the Java reflection features are used.

14. Scheme complications

Scheme has a few features that are difficult to implement,
especially when you cannot directly manipulate the call
stack. Some people think that first class functions with
lexical scoping is one complication, but it is actually
straight-forward to implement a “closure” as an object.
In Kawa, such an object is a sub-class Procedure that
includes an instance variable which references to the sur-
rounding environment. The JDK 1.1 “inner classes” fea-
ture is (intentionally) quite similar to closures.

The two features that really cause problems are “con-
tinution capture”, and tail-call elimination. The next two
sub-sections will discuss how we currently implement
very restricted (but useful) subsets of these feature, and
then I will briefly discuss a planned more complicated
mechanism to handle the general cases.

14.1. Continuations

Scheme continuations “capture” the current execution
state. They can be implemented by copying the stack,
but this requires non-portable native code. Kawa contin-
uations are implemented using Java exceptions, and can
be used to prematurely exit (throw), but not to implement
co-routines (which should use threads anyway).

class callcc extends Procedure1
{ ...;
public Object apply1(Object arg1)
{
Procedure proc = (Procedure) arg1;
Continuation cont

= new Continuation ();
try { return proc.apply1(cont); }
catch (CalledContinuation ex)
{
if (ex.continuation != cont)

throw ex; // Re-throw.
return ex.value;

}
finally

{
cont.mark_invalid();

}
}

}

This is the Procedure that implements
call-with-current-continuation. It creates
cont, which is the “current continuation”, and passes
it to the incoming proc. If callcc catches a
CalledContinuation exception it means that proc
invoked some Continuation. If it is “our” continu-
ation, return the value passed to the continuation; oth-
erwise re-throw it up the stack until we get a matching
handler.

The method mark_invalid marks a continuation as in-
valid, to detect unsupported invocation of cont after
callcc returns. (A complete implementation of con-
tinuations would instead make sure the stacks are moved
to the heap, so they can be returned to an an arbitarry
future time.)

class Continuation extends Procedure1
{ ...;
public Object apply1(Object arg1)
{

throw new CalledContinuation
(arg1, this);

}
}

A Continuation is the actual continuation object that
is passed to callcc’s argument; when it is invoked, it
throws a CalledContinuation that contains the con-
tinuation and the value returned.

class CalledContinuation
extends RuntimeException

{ ...;
Object value;
Continuation continuation;
public CalledContinuation

(Object value, Continuation cont)
{

this.value = value;
this.continuation = cont;

}
}

CalledContinuation is the exception that is thrown
when the continuation is invoked.

14.2. Tail-calls

Scheme requires that tail-calls be implemented without
causing stack growth. This means that if the last ac-
tion of a procedure is another function call, then this
function’s activation frame needs to be discarded before
the new function’s frame is allocated. In that case, un-
bounded tail-recursion does not grow the stack beyond
a bounded size, and iteration (looping) is the same as
tail-recursion. Making this work is easy using a suitable
procedure calling convention, but this is difficult to do
portably in Java (or for that matter in C), since imple-
menting it efficiently requires low-level porcedure stack
manipulation.

Compiler optimizations can re-write many tail-calls into
gotos. The most important case is self-tail-calls or tail
recursion. Kawa rewrites these to be a simple goto to
the start of the procedure, when it can prove that is safe.
Specifically, it does optimize Scheme’s standard looping
forms do and named-let.

14.3. Re-writing for tail-calls

Implementing general tail-calls and continuations re-
quire being able to manipulate the procedure call stack.
Many environments, including the Java VM, do not al-
low direct manpulation of stack frames. You have the
same problem if you want to translate to portable C,
without assembly language kludges. Hence, you cannot
use the C or Java stack for the call stack, but instead have
to explicitly manage the call graph and return addresses.
Such re-writing has been done before for ML [MLtoC]
and Scheme [RScheme].

In Java we have the extra complication that we do not
have function addresess, and no efficient way to work
with labels. Instead, we simulate code labels by using
switch labels. This is more overhead than regular method
calls, so the regular Procedure interface discussed ear-
lier will probably remain the default. Thus some proce-
dures use the regular calling convention, and others the
“CPS” (Continuation Passing Style) calling convention.
The rest of this section explains the planned CPS calling
convention.

public abstract class CpsFrame

{

CpsFrame caller;

int saved_pc;

}

Each CpsFrame represents a procedure activation.
The caller field points to the caller’s frame, while
saver_pc is a switch label representing the location in
the caller.

There is a single “global” CpsContext which owns
the generalized call “stack”. There may be many
CpsContext if there are multiple threads, and in fact
one CpsContext is allocated each time a regular (non-
CPS) method calls a procedure that uses the CPS calling
convention.

public class CpsContext
{
CpsFrame frame;
int pc;
Object value;

Object run()
{

while (frame != null)
frame.do_step(this);

return value;
}

}

Each CpsContext has a frame which points to the cur-
rently executing procedure frame, and pc which is a case
label for the code to be executed next in the current pro-
cedure. The result of a function is left in the value

field. All of these these fields may be consider to be
like global (or per-thread) registers, which is how you
would ideally like to implement a CPS calling conven-
tion if you had access to machine registers. The frame,
pc, and value fields simulate the frame pointer register,
the program counter, and the function result register in a
typical computer. After creating a CpsContext with an
initial frame and pc, you would call run, which uses the
do_step method to execute each step of a function until
we return from the initial frame with a final value.

Consider a simple Scheme source file, which defines two
functions:

(define (f)
(g)
(h))

(define (g)
...)

This would get compiled into:

public foo extends CpsFrame
{
void do_step(CpsContext context)
{

CpsFrame fr;
switch (context.pc)
{

case 0: // top-level code
define("f", new CpsProc(this, 1);
define("g", new CpsProc(this, 3);
return;

case 1: // beginning of f
// do a (non-tail) call of g:
fr = g.allocFrame(context);
fr.caller = this;
fr.saved_pc = 2;
context.frame = fr;
return;

case 2:
// then do a tail call of h:
fr = h.allocFrame(context);
fr.caller = this.caller;
fr.saved_pc = this.saved_pc;
context.frame = fr;
return;

case 3: /* beginning of g */
...;

}
}

}

The entire code of the Scheme compilation unit is com-
piled into one large switch statement. Case 0 represents
the top-level actions of the program, which defines the
functions f and g. Next comes the code for f, followed
by the (omitted) code for g. When f is called, a new foo

frame is allocated, and the context’s pc is set to 1, the
start of f.

The body of f makes two function calls, one a non-tail
function, and finally a tail-call. Either call allocates a
CpsFrame and makes it the current one, before returning
to the the main loop of CpsContext’s run method. The
regular (non-tail) call saves the old current frame in the
new frame’s return link. In contrast, the tail call makes
the return link of the new frame be the old frame’s return
link. When we return then from do_step, the old frame
is not part of the call chain (unless it has been captured
by callcc), and so it has become garbage that can be
collected.

At the time of writing, the CPS calling convention has
not been implemented, but I am filling in the details. It
has some extra overhead, but also a few side benefits.
One is that we compile an entire source file to a single
Java class, and it is more convenient when there is a one-
to-one correspondence between source files and binary
files (for example in Makefiles).

Another exciting possibility is that we can write a de-
bugger in pure Java, because we can run do_step un-
til some condition (break-point), examine the CpsFrame
stack, and optionally continue.

15. Current and Future Work

The main current priorities of Kawa are making it fully
compatible with standard (R�RS) Scheme, and mak-
ing the ECMAScript support usable. The major tasks
for R�RS-compatibility are the rewrite to support gen-
eral continuations and tail-calls, plus a redesign of how
macros are implemented.

The ECMAScript implementation in May 1998 includes
a complete lexer, and an almost-finished recursive-
descent parser (with an optimization to handle binary op-
erators). A few operations are implemented, enough to
demonstrate a very limited read-eval-print loop. ECMA-
Scripts objects are dynamic mappings from names to
properties, and will be implemented using a framework
that generalizes ECMAScript objects, Scheme environ-
ments and records, database records, and more (just like
a collections framework unifies lists and vectors). Some-
one else has an an existing ECMAScript implementa-
tion; if the lawyers let us, I plan to integrate their stan-
dard objects and functions, with my Expression and
compilation framework.

Implementing ECMAScript requires moving Scheme-
specific code out of the Kawa core. We also need a more
general interface to plug in new parsers, pre-defined
functions, data types, and output formatting. That will
make it easier to add new languages and dialects. Of
special interest is re-implementing some of the ideas
and syntax from my earlier Q language [Bothner88].
These include a line-oriented syntax with fewer paren-
theses, and high-level sequence and array operations (as
in APL).

Also of interest is support for Emacs Lisp. This would
require an extensive library to implement the Emacs data
types (such as buffers and windows), in addition to the
challenges of the Emacs Lisp language itself (it has dif-
ferent data types and name binding rules than Scheme),
but may be a good way to build a next-generation Emacs.

There is very preliminary threads support in Kawa. It
provides an interface to Java threads that looks somewhat
like delay, except that the delayed expression is evalu-
ated in a new thread. (The model is similar to to the “fu-
tures” concept of MultiScheme [Miller87], but there is
no implicit force, at least yet.) Recent re-implementation
of core classes (such Environment and Translator)
has been done to support threads with optionally separate
top-level environments.

An interface to graphics primitives is needed. The new
Swing toolkit seems like a more powerful base then the
old Abstract Windowing Toolkit.

More sophisticated Scheme code rewriting, optimiza-
tions, and inlining are also on the wishlist.

16. Conclusion

Kawa is a solid implementation of Scheme with many
features. It is portable to any environment that can run
Java applications. It has active use and development, a
75-member mailing list, and is used for a number of dif-
ferent projects. Most people seem to be using it as a
scripting language for Java packages. Other people just
prefer to use Scheme, but have to co-exist with Java.
Scheme is beginning to get wider notice, partly because
it is the basis for DSSSL [DSSSL], the standard style
and formatting language for SGML. Kawa implements a
number of the DSSSL extensions.

There are no benchmark results in this paper, because the
state of the art in Java implementation is in such flux, be-
cause many optimizations are planned but have not been
implemented, and because the different feature sets of
the various Scheme implementations makes them diffi-
cult to compare fairly. But Kawa has the potential of
being a reasonably fast Scheme implementation (though
probably never among the very fastest), and will reap
benefits from current efforts in Java compilation [Gcc-
Java].

Bibliography

[Bothner88] Per Bothner. Efficiently Combining Logical
Contraints with Functions. Ph.D. thesis, Depart-
ment of Computer Science, Stanford University,
1988.

[Budd91Arith] Timothy Budd. Generalized arithmetic
in C++. Journal of Object-Oriented Program-
ming, 3(6), 11-22, February 1996.

[CommonLisp2] Guy L. Steele Jr.. Common Lisp –
The Language. Second edition, Digital Press and
Prentice-Hall, 1990.

[DSSSL] International Standards Organization. Doc-
ument Style Semantics and Specification Lan-
guage. 1996, International Standard ISO/IEC
10179:1996(E).

[ECMAScript] ECMA. ECMAScript Language Spec-
ification. http://www.ecma.ch/stand/

ecma-262.htm.

[GccJava] Per Bothner. A Gcc-based Java Imple-
mentation. IEEE Compcon 1997 Proceedings,
174-178, February 1997, See also http://

www.cygnus.com/product/javalang.

[gmp] Torbjörn Granlund. The GNU Multiple Precision
Arithmetic Library. 1996, (Gmp and its manual are
available on most GNU archives.).

[Ingalls86] Daniel Ingalls. A Simple Technique for Han-
dling Multiple Polymorphism. ACM SIGPLAN
Notices, 21(11), 347-349, November 1986.

[JavaSpec] James Gosling, Bill Joy, and Guy Steele. The
Java Language Specification. Addison-Wesley,
1996.

[JavaVMSpec] Tim Lindholm and Frank Yellin. The
Java Virtual Machine Specification. Addison-
Wesley, 1996.

[Kaffe] Tim Wilkinson. Kaffe - a free virtual machine to
run Java code. http://www.kaffe.org/.

[Kawa] Per Bothner. Kawa, the Java-based Scheme
System. http://www.cygnus.com/�bothner/
kawa.html.

[Miller87] James Miller. MultiScheme: A Parallel Pro-

cessing System based on MIT Scheme. Ph.D.
thesis, Department of Electrical Engineering and
Computer Science, MIT, 1987.

[MLtoC] David Tarditi, Peter Lee, and Anurag Acharya.
No Assembly Required: Compiling Standard ML
to C. ACM Letters on Programming Languages
and Systems, 1992, 1(2), 161-177.

[R�RS] Revised� Report on the Algorithmic Language
Scheme. Richard Kelsey, William Clinger, and
Jonathan Rees (editors). 1998.

[RScheme] Donovan Kolbly, Paul Wilson, and others.
http://www.rscheme.org/.

[SGML] International Standards Organization. SGML
(Standard Generalized Markup Language) ISO
8879.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[PDF/X-1a:2001]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

