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Abstract

This paper presents a new asynchronous program-
ming library (libasync-smp) that allows event-driven ap-
plications to take advantage of multiprocessors by run-
ning code for event handlers in parallel. To control the
concurrency between events, the programmer can spec-
ify a color for each event: events with the same color
(the default case) are handled serially; events with dif-
ferent colors can be handled in parallel. The program-
mer can incrementally expose parallelism in existing
event-driven applications by assigning different colors to
computationally-intensive events that do not share muta-
ble state.

An evaluation oflibasync-smpdemonstrates that ap-
plications achieve multiprocessor speedup with little pro-
gramming effort. As an example, parallelizing the cryp-
tography in the SFS file server required about 90 lines
of changed code in two modules, out of a total of about
12,000 lines. Multiple clients were able to read large
cached files from thelibasync-smpSFS server running
on a 4-CPU machine 2.5 times as fast as from an unmod-
ified uniprocessor SFS server on one CPU. Applications
without computationally intensive tasks also benefit: an
event-driven Web server achieves 1.5 speedup on four
CPUs with multiple clients reading small cached files.

1 Introduction

To obtain high performance, servers must overlap
computation with I/O. Programs typically achieve this
overlap using threads or events. Threaded programs typ-
ically process each request in a separate thread; when
one thread blocks waiting for I/O, other threads can run.
Threads provide an intuitive programming model and
can take advantage of multiprocessors; however, they
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require coordination of accesses by different threads to
shared state, even on a uniprocessor. In contrast, event-
based programs are structured as a collection ofcallback
functions which a main loop calls as I/O events occur.
Event-based programs execute callbacks serially, so the
programmer need not worry about concurrency control;
however, event-based programs until now have been un-
able to take full advantage of multiprocessors without
running multiple copies of an application or introducing
fine-grained synchronization.

The contribution of this paper islibasync-smp, a li-
brary that supports event-driven programs on multipro-
cessors.libasync-smpis intended to support the construc-
tion of user-level systems programs, particularly network
servers and clients; we show that these applications can
achieve performance gains on multiprocessors by ex-
ploiting coarse-grained parallelism.libasync-smpis in-
tended for programs that have natural opportunities for
parallel speedup; it has no support for expressing very
fine-grained parallelism. The goal oflibasync-smp’s con-
currency control mechanisms is to provide enough con-
currency to extract parallel speedup without requiring the
programmer to reason about the correctness of a fine-
grained parallel program.

Much of the effort required to make existing event-
driven programs take advantage of multiprocessors is
in specifying which events may be handled in parallel.
libasync-smpprovides a simple mechanism to allow the
programmer to incrementally add parallelism to unipro-
cessor applications as an optimization. This mechanism
allows the programmer to assign acolor to each callback.
Callbacks with different colors can execute in parallel.
Callbacks with the same color execute serially. By de-
fault, libasync-smpassigns all callbacks the same color,
so existing programs continue to work correctly without
modification. As programmers discover opportunities to
safely execute callbacks in parallel, they can assign dif-
ferent colors to those callbacks.

libasync-smpis based on thelibasync library [16].
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libasyncuses operating system asynchronous I/O facil-
ities to support event-based programs on uniprocessors.
The modifications forlibasync-smpinclude coordinating
access to the shared internal state of a fewlibasyncmod-
ules, adding support for colors, and scheduling callbacks
on multiple CPUs.

An evaluation oflibasync-smpdemonstrates that ap-
plications achieve multiprocessor speedup with little
programming effort. As an example, we modified the
SFS [17] file server to uselibasync-smp. This server
uses more than 260 distinct callbacks. Most of the CPU
time is spent in just two callbacks, those responsible for
encrypting and decrypting client traffic; this meant that
coloring just a few callbacks was sufficient to gain sub-
stantial parallel speedup. The changes affected 90 lines
in two modules, out of a total of about 12,000 lines.
When run on a machine with four Intel Xeon CPUs, the
modified SFS server was able to serve large cached files
to multiple clients 2.5 times as fast as an unmodified
uniprocessor SFS server on one CPU.

Even servers without CPU-intensive operations such
as cryptography can achieve speedup approaching that
offered by the operating system, especially if the O/S ker-
nel can take advantage of a multiprocessor. For example,
with a workload of multiple clients reading small cached
files, an event-driven web server achieves 1.5 speedup on
four CPUs.

The next section (Section 2) introduceslibasync, on
which libasync-smpis based, and describes its support
for uniprocessor event-driven programs. Section 3 and 4
describe the design and implementation oflibasync-smp,
and show examples of how applications use it. Section 5
uses two examples to show that use oflibasync-smpre-
quires little effort to achieve parallel speedup. Section 6
discusses related work, and Section 7 concludes.

2 Uniprocessor Event-driven Design

Many applications use an event-driven architecture
to overlap slow I/O operations with computation. Input
from outside the program arrives in the form of events;
events can indicate, for example, the arrival of network
data, a new client connection, completion of disk I/O, or
a mouse click. The programmer structures the program
as a set of callback functions, and registers interest in
each type of event by associating a callback with that
event type.

In the case of complex event-driven servers, such as
named [7], the complete processing of a client request
may involve a sequence of callbacks; each consumes an
event, initiates some I/O (perhaps by sending a request

packet), and registers a further callback to handle com-
pletion of that particular I/O operation (perhaps the ar-
rival of a specific response packet). The event-driven ar-
chitecture allows the server to keep state for many con-
current I/O activities.

Event-driven programs typically use a library to sup-
port the management of events. Such a library maintains
a table associating incoming events with callbacks. The
library typically contains the main control loop of the
program, which alternates between waiting for events
and calling the relevant callbacks. Use of a common li-
brary allows callbacks from mutually ignorant modules
to co-exist in a single program.

An event-driven library’s control loop typically calls
ready callbacks one at a time. The fact that the callbacks
never execute concurrently simplifies their design. How-
ever, it also means that an event-driven program typically
cannot take advantage of a multiprocessor.

The multiprocessor event-driven library described in
this paper is based on thelibasyncuniprocessor library
originally developed as part of SFS [17, 16]. This sec-
tion describes uniprocessorlibasyncand the program-
ming style involved in using it. Existing systems, such
as named [7] and Flash [19], use event-dispatch mecha-
nisms similar to the one described here. The purpose of
this section is to lay the foundations for Section 3’s de-
scription of extensions for multiprocessors.

2.1 libasync

libasync is a UNIX C++ library that provides both
an event dispatch mechanism and a collection of event-
based utility modules for functions such as DNS host
name lookup and Sun RPC request/reply dispatch [16].
Applications and utility modules register callbacks with
the libasyncdispatcher.libasyncprovides a single main
loop which waits for new events with the UNIXse-
lect() system call. When an event occurs, the main
loop calls the corresponding registered callback. Mul-
tiple modules can uselibasyncwithout knowing about
each other, which encourages modular design and re-
usable code.

libasync handles a core set of events as well as a
set of events implemented by utility modules. The core
events include new connection requests, the arrival of
data on file descriptors, timer expiration, and UNIX sig-
nals. The RPC utility module allows automatic parsing
of incoming Sun RPC calls; callbacks registered per pro-
gram/procedure pair are invoked when an RPC arrives.
The RPC module also allows a callback to be registered
to handle the arrival of the reply to a particular RPC call.
The DNS module supports non-blocking concurrent host
name lookups. Finally, a file I/O module allows applica-
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tions to perform non-blocking file system operations by
sending RPCs to the NFS server in the local kernel; this
allows non-blocking access to all file system operations,
including (for example) file name lookup.

Typical programs based onlibasyncregister a callback
at every point at which an equivalent single-threaded se-
quential program might block waiting for input. The re-
sult is that programs create callbacks at many points in
the code. For example, the SFS server creates callbacks
at about 100 points.

In order to make callback creation easy,libasync
provides a type-checked facility similar to function-
currying [23] in the form of thewrap() macro [16].
wrap() takes a function and values as arguments
and returns an anonymous function called awrap. If
w=wrap(fn,x,y), for example, then a subsequent
call w(z) will result in a call tofn(x,y,z). A wrap
can be called more than once;libasyncreference-counts
wraps and automatically frees them in order to save ap-
plications tedious book keeping. Similarly, the library
also provides support for programmers to pass reference-
counted arguments to wrap. The benefit ofwrap() is
that it simplifies the creation of callback structures that
carry state.

2.2 Event-driven Programming

Figure 1 shows an abbreviated fragment of a program
written usinglibasync. The purpose of the application is
to act as a web proxy. The example code accepts TCP
connections, reads an HTTP request from each new con-
nection, extracts the server name from the request, con-
nects to the indicated server, etc. One way to view the
example code is that it is the result of writing a single se-
quential function with all these steps, and then splitting it
into callbacks at each point that the function would block
for input.

main() calls inetsocket() to create a socket
that listens for new connections on TCP port 80. UNIX
makes such a socket appear readable when new con-
nections arrive, somain() calls thelibasyncfunction
fdcb() to register a read callback. Finallymain()
callsamain() to enter thelibasyncmain loop.

The libasync main loop will call the callback wrap
with no arguments when a new connection arrives on
afd. The wrap callsaccept cb() with the other ar-
guments passed towrap(), in this case the file descrip-
tor afd. After allocating a buffer in which to accumu-
late client input,accept cb() registers a callback to
req cb() to read input from the new connection. The
server keeps track of its state for the connection, which
consists of the file descriptor and the buffer, by includ-
ing it in eachwrap() call and thus passing it from one

main()
{

// listen on TCP port 80
int afd = inetsocket(SOCK_STREAM, 80);
// register callback for new connections
fdcb(afd, READ, wrap(accept_cb, afd));
amain(); // start main loop

}

// called when a new connection arrives
accept_cb(int afd)
{

int fd = accept(afd, ...);
str inBuf(""); // new ref-counted buffer
// register callback for incoming data
fdcb(fd, READ, wrap(req_cb, fd, inBuf));

}

// called when data arrives
req_cb(int fd, str inBuf)
{

read(fd, buf, ...);
append input to inBuf;
if(complete request in inBuf){

// un-register callback
fdcb(fd, READ, NULL);

// parse the HTTP request
parse_request(inBuf, serverName, file);

// resolve serverName and connect
// both are asynchronous
tcpconnect(serverName, 80,

wrap(connect_cb, fd, file));
} else {

// do nothing; wait for more calls to req_cb()
}

}

// called when we have connected to the server
connect_cb(int client_fd, str file, int server_fd)
{

// write the request when the socket is ready
fdcb(server_fd, WRITE,

wrap (write_cb, file, server_fd));
}

Figure 1: Outline of a web proxy that useslibasync.

callback to the next. If multiple clients connect to the
proxy, the result will be multiple callbacks waiting for
input from the client connections.

When a complete request has arrived, the proxy server
needs to look up the target web server’s DNS host name
and connect to it. The functiontcpconnect() per-
forms both of these tasks. The DNS lookup itself in-
volves waiting for a response from a DNS server, per-
haps more than one in the case of timeouts; thus the
libasyncDNS resolver is internally structured as a set
of callbacks. Waiting for TCP connection establishment
to complete also involves callbacks. For these reasons,
tcpconnect() takes a wrap as one of its argument,
carries that wrap along in its own callbacks, and finally
calls the wrap when the connection process completes
or fails. This style of programming is reminiscent of the
continuation-passing style [21], and makes it easy for
programmers to compose modules.

A number of applications are based onlibasync; Fig-
ure 2 lists some of them, along with the number of dis-
tinct calls towrap() in each program. These numbers
give a feel for the level of complexity in the programs’
use of callbacks.
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Name #Wraps Lines of Code
SFS [17] 229 39871
SFSRO [13] 58 4836
Chord [22] 65 5445
CFS [10] 87 4960

Figure 2: Applications based onlibasync, along with the
approximate number of distinct calls towrap() in each
application. The numbers are exclusive of the wraps cre-
ated bylibasyncitself, which number about 30.

2.3 Interaction with multiprocessors

A single event-driven process derives no direct ben-
efit from a multi-processor. There may be an indirect
speedup if the operating system or helper processes can
make use of the multiprocessor’s other CPUs.

It is common practice to run multiple independent
copies of an event-driven program on a multiprocessor.
This N-copyapproach might work in the case of a web
server, since the processing of different client requests
can be made independent. The N-copy approach does
not work if the program maintains mutable state that is
shared among multiple clients or requests. For example,
a user-level file server might maintain a table of leases for
client cache consistency. In other cases, running multiple
independent copies of a server may lead to a decrease
in efficiency. A web proxy might maintain a cache of re-
cently accessed pages: multiple copies of the proxy could
maintain independent caches, but content duplicated in
these caches would waste memory.

3 Multiprocessor Design

The focus of this paper islibasync-smp, a multipro-
cessor extension oflibasync. The goal oflibasync-smpis
to execute event-driven programs faster by running call-
backs on multiple CPUs. Much of the design oflibasync-
smpis motivated by the desire to make it easy to adapt
existing libasync-based servers to multiprocessors. The
goal of thelibasync-smpdesign is to allow both the par-
allelism of the N-copy arrangement and the advantages
of shared data structures.

A server based onlibasync-smpconsists of a single
process containing one worker thread per available CPU.
Each thread repeatedly chooses a callback from a set of
runnable callbacks and runs it. The threads share an ad-
dress space, file descriptors, and signals. The library as-
sumes that the number of CPUs available to the process is
static over its running time. A mechanism such as sched-

uler activations [2] could be used to dynamically deter-
mine the number of available CPUs.

There are a number of design challenges to making
the single address space approach work, the most inter-
esting of which is coordination of access to application
data shared by multiple callbacks. An effective concur-
rency control mechanism should allow the programmer
to easily (and incrementally) identify which parts of a
server can safely be run in parallel.

3.1 Coordinating callbacks

The design of the concurrency control mechanisms
in libasync-smpis motivated by two observations. First,
system software often has natural coarse-grained paral-
lelism, because different requests don’t interact or be-
cause each request passes through a sequence of inde-
pendent processing stages. Second, existing event-driven
programs are already structured as non-blocking units of
execution (callbacks), often associated with one stage of
the processing for a particular client. Together, these ob-
servations suggest that individual callbacks are an appro-
priate unit of coordination of execution.

libasync-smpassociates acolor with each registered
callback, and ensures that no two callbacks with the same
color execute in parallel. Colors are arbitrary 32-bit val-
ues. Application code can optionally specify a color for
each callback it creates; if it specifies no color, the call-
back has color zero. Thus, by default, callbacks execute
sequentially on a single CPU. This means that unmod-
ified event-driven applications written forlibasyncwill
execute correctly withlibasync-smp.

The orthogonality of color to the callback’s code eases
the adaptation of existinglibasync-based servers. A typi-
cal arrangement is to run the code that accepts new client
connections in the default color. If the processing for dif-
ferent connections is largely independent, the program-
mer assigns each new connection a new unique color that
applies to all the callbacks involved in processing that
connection. If a particular stage in request processing
shares mutable data among requests (e.g. a cache of web
pages), the programmer chooses a color for that stage
and applies it to all callbacks that use the shared data, re-
gardless of which connection the callback is associated
with.

In some cases, application code may need to be re-
structured to permit callbacks to be parallelized. For ex-
ample, a single callback might use shared data but also
have significant computation that does not use shared
data. It may help to split such a callback; the first half
would use a speciallibasync-smpcall (cpucb()) to
schedule the second half with a different color.
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Figure 3: The single process event driven architecture (left) and thelibasync-smparchitecture (right). Note that in the
libasync-smparchitecture callbacks of the same color appear in the same queue. This guarantees that callbacks with
the same color are never run in parallel and always run in the order in which they were scheduled.

The color mechanism is less expressive than locking;
for example, a callback can have only one color, which
is equivalent to holding a single lock for the complete
duration of a callback. However, experience suggests
that fine-grained and sophisticated locking, while it may
be necessary for correctness with concurrent threads, is
rarely necessary to achieve reasonable speedup on mul-
tiple CPUs for server applications. Parallel speedup usu-
ally comes from the parts of the code that don’t need
much locking; coloring allows this speedup to be easily
captured, and also makes it easy to port existing event-
driven code to multiprocessors.

3.2 libasync-smpAPI

The API that libasync-smppresents differs slightly
from that exposed bylibasync. Thecwrap() function
is analogous to thewrap() function described in Sec-
tion 2 but takes an optional color argument; Table 1
shows thecwrap() interface. The color specified at the
callback’s creation (i.e. whencwrap() is called) dic-
tates the color it will be executed under. Embedding color
information in the callback object rather than in an ar-
gument tofdcb() (and other calls which register call-
backs) allows the programmer to write modular functions
which accept callbacks and remain agnostic to the color
under which those callbacks will be executed. Note that
colors are not inherited by new callbacks created inside
a callback running under a non-zero color. While color
inheritance might seem convenient, it makes it very diffi-
cult to write modular code as colors “leak” into modules
which assume that callbacks they create carry color zero.

Since colors are arbitrary 32-bit values, programmers
have considerable latitude in how to assign colors. One
reasonable convention is to use each request’s file de-
scriptor number as the color for its parallelizable call-
backs. Another possibility is to use the address of a data
structure to which access must be serialized; for exam-
ple, a per-client or per-request state structure. Depend-
ing on the convention, it could be the case that unrelated

modules accidentally choose the same color. This might
reduce performance, but not correctness.

libasync-smpprovides a cpucb() function that
schedules a callback for execution as soon as a CPU is
idle. Thecpucb() function can be used to register a
callback with a color different from that of the currently
executing callback. A common use ofcpucb() is to
split a CPU-intensive callback in two callbacks with dif-
ferent colors, one to perform a computation and the other
to synchronize with shared state. To minimize program-
ming errors associated with splitting an existing callback
into a chain ofcpucb() callbacks,libasync-smpguar-
antees that all CPU callbacks of the same color will be
executed in the order they were scheduled. This main-
tains assumptions about sequential execution that the
original single callback may have been relying on. Ex-
ecution order isn’t defined for callbacks with different
colors.

3.3 Example

Consider the web proxy example from Sec-
tion 2. For illustrative purposes assume that the
parse request() routine uses a large amount of
CPU time and does not depend on any shared data. We
could re-writereq cb() to parse different requests
in parallel on different CPUs by callingcpucb() and
assigning the callback a unique color. Figure 4 shows
this change toreq cb(). In this example only the
parse request() workload is distributed across
CPUs. As a further optimization, reading requests could
be parallelized by creating the read request callback
using cwrap() and specifying the request’s file
descriptor as the callback’s color.

3.4 Scheduling callbacks

Scheduling callbacks involves two operations: placing
callbacks on a worker thread’s queue and, at each thread,
deciding which callback to run next.
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callback cwrap ((func *)(), arg1, arg2, ..., argN, color c = 0) // Create a callback object with colorc.
void cpucb (callback cb) // Addcb to the runnable callback queue immediately.

Table 1: Sample calls from thelibasync-smpAPI.

Queue
Head

cpucb1 cpucb2 cpucb
Tail

fdcb1 fdcb2 select Queue
Tail

Figure 5: The callback queue structure inlibasync-smp.cpucb() adds new callbacks to the left of the dummy element
marked “cpucb Tail.” New I/O callbacks are added at “Queue Tail.” The scheduler looks for work starting at “Queue
Head.”

// called when data arrives
req_cb(int fd, str inBuf)
{

read(fd, buf, ...);
append input to inBuf;
if(complete request in inBuf){

// un-register callback
fdcb(fd, READ, NULL);

// parse the HTTP request under color fd
cpucb (cwrap (parse_request_cb, fd, inBuf,

(color)fd))
} else {

// do nothing; wait for
// more calls to req_cb()

}
}

// below parsing done w/ color fd
parse_req_cb (int fd, str inBuf)
{

parse_request (inBuf, serverName, file);

// start connection to server
tcpconnect (serverName, wrap(connect_cb, fd, file));

}

Figure 4: Changes to the asynchronous web proxy to take
advantage of multiple CPUs

A callback is placed on a thread’s queue in one of
two ways: due to a call tocpucb() or because the
libasync-smpmain loop detected the arrival of an I/O,
timer, or signal event for which a callback had been reg-
istered. A callbacks with colorc is placed in the queue
of worker threadc mod N whereN is the number of
worker threads. This simple rule distributes callbacks ap-
proximately evenly among the worker threads. It also
preserves the order of activation of callbacks with the
same color and may improve cache locality.

If a worker thread’s task queue is empty it attempts to
steal work from another thread’s queue [9]. Work must
be stolen at the granularity of all callbacks of the same
color and the color to be stolen must not be executing
currently to preserve guarantees on ordering of callbacks
within the same color.libasync-smpconsults a per-thread
field containing the currently running color to guarantee
the latter requirement.

When a color is moved from one thread to another, fu-
ture callbacks of that color will be assigned to the new
queue; otherwise, callbacks of the same color might ex-
ecute in parallel. To ensure that all callbacks with the

same color appear on the same queue, the library main-
tains a mapping of colors to threads: thenth element of
a 1024 element array indicates which thread should exe-
cute all colors which are congruent ton (mod 1024).
This array is initialized in such a way as to give the initial
distribution described above.

Eachlibasync-smpworker thread uses a simple sched-
uler to choose a callback to execute next from its queue.
The scheduler considers priority and callback/thread
affinity when choosing colors; its design is loosely based
on that of the Linux SMP kernel [8].

The scheduler favors callbacks of the same color as the
last callback executed by the worker in order to increase
performance. Callback colors often correspond to par-
ticular requests, solibasync-smptends to run callbacks
from the same request on the same CPU. This processor-
callback affinity leads to greater cache hit rates and im-
proved performance.

When libasync-smpstarts, it adds a “select callback”
to the run queue of the worker thread responsible for
color zero. This callback callsselect() to detect I/O
events. The select callback enqueues callbacks in the
appropriate queue based on which file descriptorsse-
lect() indicates have become ready.

The select callback might block the worker thread that
calls it if no file descriptors are ready; this would pre-
vent one CPU from executing any other tasks in its work
queue. To avoid this, the select callback usesselect()
to poll without blocking. Ifselect() returns some file
descriptors, the select callback adds callbacks for those
descriptors to the work queue, and then puts itself back
on the queue. If no file descriptors were returned, ablock-
ing select callback is placed back on the queue instead.
The blocking select callback is only run if it is the only
callback on the queue, and callsselect() with a non-
zero timeout. In all other aspects, it behaves just like the
non-blocking select callback.

The use of the two select callbacks along with work
stealing guarantees that a worker thread never blocks in
select() when there are callbacks eligible to be exe-
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cuted in the system.

Figure 5 shows the structure of a queue of runnable
callbacks. In general, new runnable callbacks are added
on the right, butcpucb() callbacks always appear to
the left of I/O event callbacks. A worker thread’s sched-
uler considers callbacks starting at the left. The sched-
uler examines the first few callbacks on the queue. If
among these callbacks the scheduler finds a callback
whose color is the same as the last callback executed on
the worker thread, the scheduler runs that callback. Oth-
erwise the scheduler runs the left-most eligible callback.

The scheduler favorscpucb() callbacks in order to
increase the performance of chains ofcpucb() call-
backs from the same client request. The state used by
a cpucb() callback is likely to be in cache because
the creator of thecpucb() callback executed recently.
Thus, early execution ofcpucb() callbacks increases
cache locality.

4 Implementation

libasync-smpis an extension oflibasync, the asyn-
chronous library [16] distributed as part of the SFS file
system [17]. The library runs on Linux, FreeBSD and
Solaris. Applications written forlibasyncwork without
modification withlibasync-smp.

The worker threads used bylibasync-smpto execute
callbacks are kernel threads created by a call to the
clone() system call (under Linux),rfork() (under
FreeBSD) orthr create() (under Solaris).

Although programs which uselibasync-smpshould
not need to perform fine grained locking, thelibasync-
smpimplementation uses spin-locks internally to protect
its own data structures. The most important locks protect
the callback run queues, the callback registration tables,
retransmit timers in the RPC machinery, and the memory
allocator.

The source code forlibasync-smpis available as part
of the SFS distribution athttp://www.fs.net on
the CVS branch mp-async.

5 Evaluation

In evaluatinglibasync-smpwe are interested in both
its performance and its usability. This section evaluates
the parallel speedup achieved by two sample applica-
tions usinglibasync-smp, and compares it to the speedup
achieved by existing similar applications. We also evalu-
ate usability in terms of the amount of programmer effort
required to modify existing event-driven programs to get

good parallel speedup.

The two sample applications are the SFS file server
and a caching web server. SFS is an ideal candidate for
achieving parallel speedup usinglibasync-smp: it is writ-
ten usinglibasyncand performs compute intensive cryp-
tographic tasks. Additionally, the SFS server maintains
state that can not be replicated among independent copies
of the server. A web server is a less promising candidate:
web servers do little computation and all state maintained
by the server can be safely shared. Accordingly we ex-
pect good SMP speedup from the SFS server and a mod-
est improvement in performance from the web server.

All tests were performed on a SMP server equipped
with four 500 MHz Pentium III Xeon processors. Each
processor has 512KB of cache and the system has
512MB of main memory. The disk subsystem consists
of a single ultra-wide 10,000 RPM SCSI disk. Load was
generated by four fast PCs running Linux, each con-
nected to the server via a dedicated full-duplex gigabit
Ethernet link. Processor scaling results were obtained by
completely disabling all but a certain number of proces-
sors on the server.

The server runs a slightly modified version of Linux
kernel 2.4.18. The modification removes a limit of 128
on the number of new TCP connections the kernel will
queue awaiting an application’s call toaccept(). This
limit would have prevented good server performance
with large numbers of concurrent TCP clients.

5.1 HTTP server

To explore whether we can uselibasync-smpto
achieve multiprocessor speedup in applications where
the majority of computation is not concentrated in a
small portion of the code, we measured the performance
of an event-driven HTTP 1.1 web server.

The web server uses an NFS loop-back server to per-
form non-blocking disk I/O. The server process main-
tains two caches in its memory: a web page cache and
a file handle cache. The former holds the contents of re-
cently served web pages while the latter caches the NFS
file handles of recently accessed files. The page cache
is split into a small number (10) of independent caches
to allow simultaneous access [6]. Both of the file handle
cache and the individual page caches must be protected
from simultaneous access.

5.1.1 Parallelizing the HTTP server

Figure 6 illustrates the concurrency present in the web
server when it is serving concurrent requests for pages
not in the cache. Each vertical set of circles represents a
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single callback, and the arrows connect successive call-
backs involved in processing a request. Callbacks that
can execute in parallel for different requests are indicated
by multiple circles. For instance, the callback that reads
an HTTP request from the client can execute in paral-
lel with any other callback. Other steps involve access
to shared mutable data such as the page cache; callbacks
must execute serially in these steps.

When the server accepts a new connection, it colors
the callback that reads the connection’s request with its
file descriptor number. The callback that writes the re-
sponse back to the client is similarly colored. The shared
caches are protected by coloring all operations that ac-
cess a given cache the same color. Only one callback
may access each cache simultaneously; however, two
callbacks may access two distinct caches simultaneously
(i.e. one request can read a page cache while another
reads the file handle cache). The code that sends RPCs to
the loop-back NFS server to read files is also serialized
using a single color. This was necessary since the un-
derlying RPC machinery maintains state about pending
RPCs which could not safely be shared. The state main-
tained by the RPC layer is a candidate for protection via
internal mutexes; if this state were protected within the
library the “read file” step could be parallelized in the
web server.

While this coloring allows the caches and RPC layer
to operate safely, it reveals a limitation of coloring as a
concurrency control mechanism. Ideally, we should al-
low any number of callbacks to read the cache, but limit
the number of callbacks accessing the cache to one if the
cache is being written. This read/write notion is not ex-
pressible with the current locking primitives offered by
libasync-smpalthough they could be extended to include
it [4]. We did not implement read/write colors since di-
viding the page cache into smaller, independent caches
provided much of the benefit of read/write locks without
requiring modifications to the library.

The server also delegates computation to additional
CPUs using calls tocpucb(). When parsing a request
the server looks up the longest match for the pathname
in the file handle cache (which is implemented as a hash
table). To move the computation of the hash function out
of the cache color, we use acpucb() callback to first
hash each prefix of the path name, and then, in a callback
running as the cache color, search for each hash value in
the file handle cache.

In all, 23 callbacks were modified to include a color
argument or to be invoked via acpucb() (or both). The
web server has 1,260 lines of code in total, and 39 calls
to wrap.
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Figure 6: The sequence of callbacks executed when the
libasync-smpweb server handles a request for a page not
in the cache. Nodes represent callbacks, arrows indicate
that the node at the source scheduled the callback repre-
sented by the node at the tip. Nodes on the same vertical
line are run under distinct colors (and thus potentially in
parallel). The stacked circles in the “Check page cache”
stage indicate that a small number of threads (less than
the number of concurrent requests) can access the cache
simultaneously). Labels at the top of the figure describe
each step of the processing.

5.1.2 HTTP server performance

To demonstrate that the web server can take advantage
of multiprocessor hardware, we tested the performance
of the parallelized web server on a cache-based work-
load while varying the number of CPUs available to the
server. The workload consisted of 720 files whose sizes
were distributed according to the SPECweb99 bench-
mark [20]; the total size of the data set was 100MB
which fits completely into the server’s in-memory page
cache. Four machines simulated a total of 800 concurrent
clients. A single instance of the load generation client
is capable of reading over 20MB/s from the web server.
Each client made 10 requests over a persistent connec-
tion before closing the connection and opening a new
one. The servers were started with cold caches and run
for 4 minutes under load. The server’s throughput was
then measured for 60 seconds, to capture its behavior in
the steady state.

Figure 7 shows the performance (in terms of total
throughput) with different numbers of CPUs for the
libasync-smpweb server. Even though the HTTP server
has no particularly processor-intensive operations, we
can still observe noticeable speedup on a multiprocessor
system: the server’s throughput is 1.28 times greater on
two CPUs than it is on one and 1.5 times greater on four
CPUs.

To provide an upper bound for the multiprocessor
speedup we can expect from thelibasync-smp-based
web server we contrast its performance with N inde-
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Figure 7: The performance of thelibasync-smpweb
server serving a cached workload and running on dif-
ferent number of CPUs relative to the performance on
one CPU (light bars). The performance of N copies of
a libasyncweb server is also shown relative the perfor-
mance of the thelibasyncserver’s performance on one
CPU (dark bars)

pendent copies of a single process version of the web
server (where N is the number of CPUs provided to the
libasync-smp-based server). This single process version
is based on an unmodified version oflibasyncand thus
does not suffer the overhead associated with thelibasync-
smplibrary (callback queue locking, etc). Each copy of
the N-copy server listens for client connections on a dif-
ferent TCP port number.

The speedup obtained by thelibasync-smpserver is
well below the speedup obtained by N copies of the
libasyncserver. Even on a single CPU, thelibasyncbased
server achieved higher throughput than thelibasync-smp
server. The throughput of thelibasyncserver was 35.4
MB/s while the libasync-smpserver’s throughput was
30.4 MB/s.

Profiling the single CPU case explains the base penalty
that libasync-smpincurs. While running thelibasync-
smpweb server under load, roughly 35% of the CPU
time is spent in user-level includinglibasync-smpand
the web server. Of that time, at least 37% is spent per-
forming tasks needed only bylibasync-smp. Atomic ref-
erence counting uses 26% of user-level CPU time, and
task accounting such as enqueuing and dequeuing tasks
takes another 11%. The overall CPU time used for atomic
reference counting and task management is 13%, which
explains thelibasync-smpweb server’s decreased single
CPU performance.

The reduced performance of thelibasync-smpserver
is partly due to the fact that many of thelibasync-smp
server’s operations must be serialized, such as accepting
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Figure 8: The performance of several web servers on
multiprocessor hardware. Shown are the throughput of
thelibasync-smpbased server (light bars), Apache 2.0.36
(dark bars), and Flash (black bars) on 1,2,3 and 4 proces-
sors.

connections and checking caches. In the N-copy case, all
of these operations run in parallel. In addition, locking
overhead penalizes thelibasync-smpserver: some data is
necessarily shared across threads and must be protected
by expensive atomic operations although the server has
been written in such a way as to minimize such sharing.

Because the N-copy server can perform all of these
operations in parallel and, in addition, extract additional
parallelism from the operating system which locks some
structures on a per-process basis, the performance of the
N-copy server represents a true upper bound for any ar-
chitecture which operates in a single address space.

To provide a more realistic performance goal than
the N-copy server, we compared thelibasync-smpserver
with two commonly used HTTP servers. Figure 8 shows
the performance of Apache 2.0.36 (in both multithreaded
and multiprocess mode) and Flash v0.1990914 on dif-
ferent numbers of processors. Apache in multiprocess
mode was configured to run with 32 servers. Apache-MT
is a multithreaded version of the Apache server. It cre-
ates a single heavyweight process and 32 kernel threads
within that process by callingclone. The number of
processes and threads used by the Apache servers were
chosen to maximize throughput for the benchmarks pre-
sented here. Flash is an event-driven server; when run on
multiprocessors it forks to create N independent copies,
where N is the number of available CPUs

The performance of thelibasync-smpHTTP server
is comparable to the performance of these servers: the
libasync-smpserver shows better absolute performance
than both versions of the Apache server and slightly
lower performance than N-copies of the Flash server.
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Figure 9: The performance of the web server on a cached
workload as the number of concurrent clients is varied.

These servers show better speedup than thelibasync-
smpserver: Flash achieves 1.68 speedup on four CPUs
while thelibasync-smpserver is 1.5 times faster on four
CPUs. Because Flash runs four heavyweight processes, it
is able to take advantage of many of the benefits of the N-
copy approach: as a result its speedup and absolute per-
formance are greater than that of thelibasync-smpserver.
Although this approach is workable for a web server, in
applications that must coordinate shared state such repli-
cation would be impossible.

Like the libasync-smpserver, Flash and multiprocess
Apache do not show the same performance achieved by
the N-copy server. Although these servers fully paral-
lelize access to their caches and do not perform lock-
ing internally, they do exhibit some shared state. For
instance, the servers must serialize access to theac-
cept() system call since all requests arrive on a single
TCP port.

The main reason to parallelize a web server is to in-
crease its performance under heavy load. A key part
of the ability to handle heavy load is stability: non-
decreasing performance as the load increases past the
server’s point of peak performance. To explore whether
servers based onlibasync-smpcan provide stable perfor-
mance, we measured the web server’s throughput with
varying numbers of simultaneous clients. Each client se-
lects a file according to the SPECweb99 distribution;
the files all fit in the server’s cache. The server uses all
four CPUs. Figure 9 shows the results. The event-driven
HTTP server offers consistent performance over a wide
variety of loads.

5.2 SFS server

To evaluate the performance oflibasync-smpon ex-
isting libasync programs, we modified the SFS file
server [17] to take advantage of a multiprocessor system.

The SFS server is a single user-level process. Clients
communicate with it over persistent TCP connections.
All communication is encrypted using a symmetric
stream cipher, and authenticated with a keyed crypto-
graphic hash. Clients send requests using an NFS-like
protocol. The server process maintains significant muta-
ble per-file-system state, such as lease records for client
cache consistency. The server performs non-blocking
disk I/O by sending NFS requests to the local kernel
NFS server. Because of the encryption, the SFS server is
compute-bound under some heavy workloads and there-
fore we expect that by usinglibasync-smpwe can extract
significant multiprocessor speedup.

5.2.1 Parallelizing the SFS server

We used thepct[5] statistical profiler to locate perfor-
mance bottlenecks in the original SFS file server code.
Encryption appeared to be an obvious target, using 75%
of CPU time. We modified the server so that encryption
operations for different clients executed in parallel and
independently of the rest of the code. The resulting paral-
lel SFS server spent about 65% of its time in encryption.
The reduction from 75% is due to the time spent coor-
dinating access to shared mutable data structures inside
libasync-smp, as well as to additional memory-copy op-
erations that allow for parallel execution of encryption.

The modifications to the SFS server are concentrated
in the code that encrypts, decrypts, and authenticates data
sent to and received from the clients. We split the main
send callback-function into three smaller callbacks. The
first and last remain synchronized with the rest of the
server code (i.e. have the default color), and copy data
to be transmitted into and out of a per-client buffer. The
second callback encrypts the data in the client buffer, and
runs in parallel with other callbacks (i.e., has a different
color for each client). This involved modifying about 40
lines of code in a single callback, largely having to do
with variable name changes and data copying.

Parallelization of the SFS server’s receive code was
slightly more complex because more code interacts with
it. About 50 lines of code from four different callbacks
were modified, splitting each callback into two. The first
of these two callbacks received and decrypted data in
parallel with other callbacks (i.e., with a different color
for every client), and usedcpucb() to execute the sec-
ond callback. The second callback remained synchro-
nized with the rest of the server code (i.e., had the de-
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Figure 10: Performance of the SFS file server using dif-
ferent numbers of CPUs, relative to the performance on
one CPU. The light bars indicate the performance of the
server usinglibasync-smp; dark bars indicate the perfor-
mance ofn separate copies of the original server. Each
bar represents the average of three runs; the variation
from run to run was not significant.

fault color), and performed the actual processing of the
decrypted data.

5.2.2 Performance improvements

We measured the total throughput of the file server to all
clients, in bits per second, when multiple clients read a
200 MByte file whose contents remained in the server’s
disk buffer cache. We repeated this experiment for dif-
ferent numbers of processors. This test reflects how SFS
is used in practice: an SFS client machine sends all of its
requests over a single TCP connection to the server.

The bars labeled “libasync-smp” in Figure 10 show
the performance of the parallelized SFS server on the
throughput test. On a single CPU, the parallelized server
achieves 96 percent of the throughput of the original
uniprocessor server. The parallelized server is 1.66, 2.20,
and 2.5 times as fast as the original uniprocessor server
on two, three and four CPUs, respectively.

Because only 65% of the cycles (just encryption) have
been parallelized, the remaining 35% creates a bottle-
neck. In particular, when the remaining 35% of the code
runs continuously on one processor, we can achieve a
maximum utilization of 1

0.35 = 2.85 processors. This
number is close to the maximum speedup (2.5) of the par-
allelized server. Further parallelization of the SFS server
code would allow it to incrementally take advantage of
more processors.

To explore the performance limits imposed by the

hardware and operating system, we also measured the
total performance of multiple independent copies of the
original libasyncSFS server code, as many separate pro-
cesses as CPUs. In practice, such a configuration would
not work unless each server were serving a distinct
file system. An SFS server maintains mutable per-file-
system state, such as attribute leases, that would require
shared memory and synchronization among the server
processes. This test thus gives an upper bound on the per-
formance that SFS withlibasync-smpcould achieve.

The results of this test are labeled “N-copy” in Fig-
ure 10. The SFS server withlibasync-smproughly fol-
lows the aggregate performance of multiple independent
server copies. The performance difference between the
libasync-smp-based SFS server and the N-copy server is
due to the penalty incurred due to shared state maintained
by the server, such as file lease data and user ID mapping
tables.

Despite comparatively modest changes to the SFS
server to expose parallelism, the server’s parallel per-
formance was close to the maximum speedup offered
by the underlying operating system (as measured by the
speedup obtained by multiple copies of the server).

5.3 Library Optimizations

Table 2 shows how much the use of per-thread work
queues improves performance. The numbers in the ta-
ble indicate how fast a synthetic benchmark executes
tasks. The benchmark program creates 16 callbacks with
unique colors. Each callback performs a small amount of
computation, and then registers a child callback of the
same color. The benchmark intentionally assigns colors
so that all but one of the task queues are populated, in
order to explore the effects of work stealing. The bench-
mark was run with four CPUs.

The first line shows the task rate with a single task
queue shared among all the worker threads. The entry
shows the task completion rate when using per-thread
task queues. The increase in task completion rate is dra-
matically higher due to better cache locality, and because
there is no contention for the task-queue locks. The third
line shows the task completion rate when per-thread task
free-lists are used in addition to per-thread queues. The
fourth configuration adds work stealing between worker
threads. Without work stealing, tasks were never run on
one of the four CPUs. Work stealing allows the worker
thread on that CPU to find work, at the expense of in-
creased contention for the other threads’ task queues.
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Library Configuration Tasks/sec
Base 61420
+ Per-thread Queues 240618
+ Per-thread Task Object Freelists 293997
+ Work Stealing 384765

Table 2: A synthetic benchmark shows improved task
processing rates as thread affinity optimizations are
added.

6 Related Work

There is a large body of work exploring the relative
merits of thread-based I/O concurrency and the event-
driven architecture [18, 11, 12, 15, 1]. This paper does
not attempt to argue that either is superior. Instead, we
present a technique which improves the performance of
the event-driven model on multiprocessors. The work
described below also considers performance of event-
driven software.

Pai et al. characterized approaches to achieving
concurrency in network servers in [19]. They eval-
uate a number of architectures: multi-process, multi-
threaded, single-process event-driven, and asymmetric
multi-process event-driven (AMPED). In this taxonomy,
libasync-smpcould be characterized as symmetric multi-
threaded event-driven; its main difference from AMPED
is that its goal is to increase CPU concurrency rather than
I/O concurrency.

Like libasync-smp, the AMPED architecture intro-
duces limited concurrency into an event driven sys-
tem. Under the AMPED architecture, a small number
of helper processes are used to handle file I/O to over-
come the lack of non-blocking support for file I/O in
most operating systems. In contrast,libasync-smpuses
additional execution contexts to execute callbacks in par-
allel. libasync-smpachieves greater CPU concurrency on
multiprocessors when compared to the AMPED archi-
tecture but places greater demands on the programmer
to control concurrency. Like the AMPED-based Flash
web server,libasync-smpmust also cope with the is-
sue of non-blocking file I/O:libasync-smpuses an NFS-
loopback server to access files asynchronously. This al-
lows libasync-smpto use non-blocking local RPC re-
quests rather than blocking system calls.

The Apache web server serves concurrent requests
with a pool of independent processes, one per active re-
quest [3]. This approach provides both I/O and CPU con-
currency. Apache processes cannot easily share mutable
state such as a page cache.

The staged, event-driven architecture (SEDA) is a
structuring technique for high-performance servers [24].

It divides request processing into a series of well-defined
stages, connected by queues of requests. Within each
stage, one or more threads dequeue requests from input
queue(s), perform that stage’s processing, and enqueue
the requests for subsequent stages. A thread can block (to
wait for disk I/O, for example), so a stage often contains
multiple threads in order to achieve I/O concurrency.

SEDA can take advantage of multiprocessors, since
a SEDA server may contain many concurrent threads.
One of SEDA’s primary goals is to dynamically manage
the number of threads in each stage in order to achieve
good I/O and CPU concurrency but avoid unstable be-
havior under overload. Bothlibasync-smpand SEDA
use a mixture of events and concurrent threads; from a
programmer’s perspective, SEDA exposes more thread-
based concurrency which the programmer may need to
synchronize, whilelibasync-smptries to preserve the se-
rial callback execution model.

Cohort scheduling organizes threaded computation
into stages in order to increase performance by increas-
ing cache locality, reducing TLB pressure, and reducing
branch mispredicts [14]. The staged computation model
used by cohort scheduling is more general than the col-
ored callback model presented here. However, the parti-
tioned stage scheduling policy is somewhat analagous to
coloring callbacks for parallel execution (the key corre-
sponds to a callback color). Like SEDA, cohort schedul-
ing exposes more thread-based concurrency to the pro-
grammer. Cohort scheduling can also take advantage of
multiprocessor hardware.

7 Conclusion

This paper describes a library that allows event-driven
programs to take advantage of multiprocessors with a
minimum of programming effort. When high loads make
multiple events available for processing, the library can
execute event handler callbacks on multiple CPUs. To
control the concurrency between events, the program-
mer can specify acolor for each event: events with the
same color (the default case) are handled serially; events
with different colors can be handled in parallel. The pro-
grammer can incrementally expose parallelism in exist-
ing event-driven applications by assigning different col-
ors to computationally-intensive events that don’t share
mutable state.

Experience withlibasync-smpdemonstrates that ap-
plications can achieve multi-processor speedup with lit-
tle programming effort. Parallelizing the cryptography in
the SFS file server required about 90 lines of changed
code in two modules, out of a total of about 12,000 lines.
Multiple clients were able to read large cached files from
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the libasync-smpSFS server running on a 4-CPU ma-
chine 2.5 times as fast as from an unmodified uniproces-
sor SFS server on one CPU. Applications without com-
putationally intensive tasks also benefit: an event-driven
Web server achieves 1.5 speedup on four CPUs with mul-
tiple clients reading small cached files relative to its per-
formance on one CPU.
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[17] MAZI ÈRES, D., KAMINSKY, M., KAASHOEK, M. F.,
AND WITCHEL, E. Separating key management from
file system security. InProc. ACM Symposium on Oper-
ating Systems Principles (SOSP)(Kiawah Island, South
Carolina, Dec. 1999).

[18] OUSTERHOUT, J. Why threads are a bad idea (for most
purposes). Invited talk at the 1996 USENIX technical
conference, 1996.

[19] PAI , V., DRUSCHEL, P.,AND ZWAENEPOEL, W. Flash:
An efficient and portable web server. InProc. Usenix
Technical Conference(June 1999).

[20] SPECweb99 design white paper.
http://www.specbench.org/osg/web99/docs/whitepaper.html,
2002.

[21] STEELE, G., AND SUSSMAN, G. Lambda: The ultimate
imperative. Tech. Rep. AI Lab Memo AIM-353, MIT AI
Lab, Mar. 1976.

[22] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK,
M. F., AND BALAKRISHNAN , H. Chord: A scalable
peer-to-peer lookup service for Internet applications. In
Proceedings of the ACM SIGCOMM ’01 Conference(San
Diego, Aug. 2001).

[23] THOMPSON, S. Haskell, The Craft of Functional Pro-
gramming. Addison Wesley, 1996.



2003 USENIX Annual Technical Conference USENIX Association252

[24] WELSH, M., CULLER, D., AND BREWER, E. SEDA: An
architecture for well-conditioned, scalable Internet ser-
vices. InProc. ACM Symposium on Operating Systems
Principles (SOSP)(Oct. 2001), pp. 230–243.


