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Abstract

Role classification involves grouping hosts into re-
lated roles. It exposes the logical structure of a net-
work, simplifies network management tasks such as pol-
icy checking and network segmentation, and can be used
to improve the accuracy of network monitoring and anal-
ysis algorithms such as intrusion detection.

This paper defines the role classification problem
and introduces two practical algorithms that group hosts
based on observed connection patterns while dealing
with changes in these patterns over time. The algorithms
have been implemented in a commercial network moni-
toring and analysis product for enterprise networks. Re-
sults from grouping two enterprise networks show that
the number of groups identified by our algorithms can
be two orders of magnitude smaller than the number of
hosts and that the way our algorithms group hosts highly
reflect the logical structure of the networks.

1 Introduction

Today, many enterprises have internal networks (in-
tranets) that are as or more complicated than the entire
Internet of a few years ago. Managing these networks
is increasingly costly, and the business cost of network
problems increasingly high.

Managing an enterprise network involves a number
of inter-related activities, including:

Establishing a topology. A network’s topology has a
significant impact on its cost, security, and perfor-
mance. An increasingly important aspect of topol-
ogy design is network segmentation. In an effort
to provide fault isolation and mitigate the spread
of worms like Nimda [3] and Code Red [2], enter-
prises segment their networks using firewalls [4],
routers, VLANs [7], and other technologies.

Establishing policies. Different users of a network
have different privileges. Some users may have

unlimited access to external networks while oth-
ers may have restricted access. Some users may be
limited in the amount of bandwidth they may con-
sume, and so on. The number of policies is open-
ended.

Monitoring network performance. Almost every
complex network suffers from various localized
performance problems. Network managers must
detect these problems and take action to correct
them.

Detecting and responding to security violations.
Increasingly, networks are coming under attack.
Sometimes the targets are chosen at random, as
in most virus-based attacks, and in other cases
they are picked intentionally, as with most denial-
of-service attacks. These attacks often involve
compromised computers within the enterprise
network. Early detection of attacks plays a critical
role in reducing the damage.

Conducting these activities on a host-by-host basis is
not feasible for large networks. Network managers need
to extract structure from their networks so that they can
think about them and make decisions at larger levels of
granularity. Today, this structuring is most often done
in an ad hoc manner that relies on administrators’ best
guesses about the computers, services, and users on the
network. Obviously, this method has scaling problems.

This paper presents two algorithms that, used to-
gether, partition the hosts on an enterprise network into
groups in a way that exposes the logical structure of a
network. The grouping algorithm classifies hosts into
groups, or “roles,” based on their connection habits. The
correlation algorithm correlates groups produced by dif-
ferent runs of the classification algorithm.

The two algorithms together provide the following
properties:

1. They guarantee that a host is only grouped with
other hosts that have the strongest degree of sim-
ilarity in connection habits.
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2. They provide a mechanism to merge groups, and
give network administrators fine-grained control
over the merging process, so that meaningful re-
sults can be achieved.

3. They deal with transient changes in connection pat-
terns by analyzing the profiled data over long peri-
ods.

4. They respond to non-transient changes in connec-
tion patterns by producing a new partitioning and
describing the differences between the new parti-
tioning and the previous partitioning.

5. Their run time grows quadratically with the number
of hosts in the enterprise network.

As we demonstrate in Section 6, the algorithms re-
duce the number of logical units that a network adminis-
trator must deal with by one or two orders of magnitude.
The algorithms are implemented as part of an enterprise
monitoring and analysis system that is in production use
at several large enterprises.

Section 2 outlines the system in which the algo-
rithms operate, and introduces an example scenario that
will be used throughout the paper. Section 3 describes
the models used to develop practical solutions. Sec-
tion 4 and Section 5 explain the two practical algorithms
for solving the role classification problem. Section 6
presents preliminary results, and Section 7 discusses re-
lated work. We conclude with discussions of our current
and future work in Section 8.

2 System Overview

The role classification algorithms are implemented as
part of a system designed to detect and respond to secu-
rity violations in large enterprise networks. Such net-
works commonly consist of tens of thousands of com-
puters, spread over different geographic locations. The
security system consists of probes and a central aggre-
gator. The probes analyze packets on the link or links
they are attached to, and send relevant information (in-
cluding IP address/port tuples) to the aggregator.

The aggregator is a scalable system that consists of
one or more CPUs. It periodically runs several analysis
algorithms on the data it has received from the probes. It
uses the role classification algorithms to refine its anal-
yses and to allow the administrators to describe group-
based policies.

Figure 1 presents a simple enterprise network and a
partitioning of computers into groups that the aggrega-
tor might produce based on the communication patterns
observed by the probes. The communication patterns

Sales-1

Sales-N

Eng-1

Eng-M

Mail

Web

Sales 
Database

Source 
Revision
Control 

Figure 1. Grouping of related hosts based on con-
nection patterns. Edge indicates that nodes com-
municate regularly. The dashed circle represents
the group boundary.

might indicate that hosts Sales-1 to Sales-N communi-
cate with three servers: Mail server, Web server, and
SalesDatabase server. Similarly, the patterns might in-
dicate that hosts Eng-1 to Eng-M communicate mostly
with Mail server, Web server, and SourceRevisionCon-
trol server.

Based on this information the grouping algorithm can
logically divide all machines into five groups: (i) the
sales group consisting of hosts Sales-1 to Sales-N, (ii)
the engineering group consisting of hosts Eng-1 to Eng-
M, (iii) the common server group consisting of Mail
and Web, (iv) the sales server group consisting of Sales-
Database and (v) the engineering server group consist-
ing of SourceRevisionControl.

The results of the grouping algorithm are currently
being used in two major ways:

1. The Mazu network monitoring and detection sys-
tem decides whether a host’s behavior matches the
expected policy setting, partly based on the history
of the host’s group membership. For example, if a
host in the engineering group were to suddenly start
opening connections to the SalesDatabase server, it
might be a cause for alarm.

2. The network administrators review the grouping re-
sults to better understand the structure of their net-
works and to get useful insights for conducting net-
work re-organization tasks such as consolidating
servers and network segmentation.

The system allows a network manager to label each
identified group with descriptive roles and set policies
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per group. The system continuously monitors the com-
munication patterns, adjusts groups as computers come
and go, flags policy violations, and raises alerts about
potential security violations. Because all this informa-
tion is presented on the level of groups (instead of indi-
vidual hosts), a network manager is able to understand
and process the changes and alerts more easily. The al-
gorithms also provide network administrators with flex-
ibility to control the grouping process to achieve results
that highly reflect their intuitive notion of the network
structure.

The algorithms presented in this paper are solely
based on the connection patterns of hosts such as the
set of neighboring hosts. However, the algorithms can
easily be extended to use other information such as pro-
tocols and port numbers used and bytes transferred to
achieve desired results. For instance, some network ad-
ministrators may desire that Mail and Web servers be put
in different groups. In this case, the protocol informa-
tion can be used to keep the role classification algorithm
from grouping together hosts that use different sets of
protocols. We are currently exploring ways to expand
the capability of the grouping and correlation algorithms
by providing network administrators with more flexibil-
ity to achieve desired results.

The algorithms assume that the connection patterns
of hosts highly reflect the logical roles that they play.
For some networks where this is not true, the algorithms
will not do a good job. However, we believe that hosts in
a typical enterprise network that share the same logical
role will demonstrate similar connection patterns.

3 Model

In this section, we develop a model for thinking about
the grouping problem. We define the problem in the
abstract, providing a model with several functions and
parameters that can be adjusted to meet various goals.
Later in the paper, we present and evaluate instantiations
of these parameters.

� Let
�

be the set of hosts in an enterprise network.
We will use � � � to denote the number of hosts in

�
.

� Let similarity be a commutative function from pairs
of hosts in

�
to an integer greater than or equal to�

. Roughly speaking, if similarity � � � 	 � � � is high,
then we would like our grouping algorithm to place
the hosts � � and � � in the same group. Defining
similarity so that it is both efficient to compute and
yields a good grouping is at the heart of the problem
addressed in this paper.

� A partitioning � of
�
respects similarity if for all

distinct groups � � 	 � � � � , � � 	 � � � � � , and

� � � � � ,

– similarity � � � 	 � � � � similarity � � � 	 � � �
– similarity � � � 	 � � � � similarity � � � 	 � � �

We extend this definition of similarity to define the
average similarity between a host � � and a group � � ,
avg similarity � � � 	 � � � , as the ratio of the sum of the
similarity between � � and each � � � � � to the num-
ber of hosts in � � :

avg similarity � � � 	 � � � !
# $ & ' ) &

similarity � � � 	 � � �
� � � �

A partitioning � of
�
respects avg similarity if for

all � � � � � and � � � � , avg similarity � � � 	 � � � �
avg similarity � � � 	 � � � .

Respecting similarity or avg similarity is not suffi-
cient to generate a useful partitioning of

�
. After all,

a partitioning that puts all the nodes in one group or
one that puts each node in a separate group respects
similarity. We therefore provide a parameter that can
be used by network administrators to control how ag-
gressive the algorithm is in partitioning

�
into groups.

� Let / 0 2 3 , the similarity threshold, be an integer
greater

�
. A partitioning respects similarity and

/ 0 2 3 if it respects similarity and if, for � � and � �
in � , similarity � � � 	 � � � � / 0 2 3 .

� A partitioning � of
�

is said to be maximal with re-
spect to similarity and / 0 2 3 if it respects similarity
and / 0 2 3 and there does not exist another parti-
tioning of

�
that respects similarity and / 0 2 3 and

has fewer groups. By adjusting / 0 2 3 , one gets a
maximal grouping with fewer groups in which the
members of each group are more similar to each
other.

3.1 Defining Similarity

We use connection behavior as a basis for host group-
ing, because that information is easily available by just
monitoring the network. To group hosts, we need to de-
fine similarity in a way that captures the extent to which
pairs of hosts establish connections to the same set of
other hosts. We start by defining similarity between
hosts as a function of the number of common hosts with
which they communicate. Intuitively, hosts that share
the same logical role communicate with similar sets of
hosts.

A connection is a pair consisting of a source host ad-
dress and a destination host address. The connection set
of a host, 9 � � � , is the set, ; < � < � �

and there is a
connection between � and < > . If � � � 9 � � � � , then
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� � � 9 � � � � . We define the relation neighbor � � � 	 � � �
to be true if and only if � � ! � � or � � � 9 � � � � . For
later use, we extend the definition of neighbor to groups
by defining neighbor � � � 	 � � � to be true if and only if
there exists a host � � � � � that is a neighbor of another
host � � � � � .

We can use the notion of a connection set to provide
a simple definition of similarity:

similarity � � � 	 � � � ! � 9 � � � � � 9 � � � � � (1)

That is to say that similarity � � � 	 � � � is equal to the num-
ber of neighbors that � � and � � have in common.

We are now in a position to specify the requirements
of a grouping algorithm. Given a set of hosts,

�
and a

similarity threshold, / 0 2 3 , it must find a partitioning,
� , of

�
that is maximal with respect to avg similarity

and / 0 2 3 , i.e.,

1. � respects avg similarity. This constraint guaran-
tees that each host is within the group with which it
has the strongest average similarity.

2. For all � � � and � � � , avg similarity � � 	 � � �
/ 0 2 3 . This requirement guarantees that each host
in a group is sufficiently closely related to every
other host in the group, thus ensuring that groups
are not too large.

3. There is no other partitioning � of
�

that meets
the first two requirements and has a larger average
group size. This guarantees that groups are not too
small.

This specification is independent of the definition
of avg similarity. For some networks, such as the
one represented in Figure 1, the above definition of
avg similarity yields excellent results. However, for oth-
ers a slightly more complex definition works better. We
present such a definition in Section 4.2.

4 Role Classification

The role classification problem is not difficult to solve
in ideal situations, such as the network shown in Fig-
ure 1, in which two nodes that share the same logical
role communicate with the identical set of machines.
Clearly, such a situation does not reflect the connec-
tion patterns in typical enterprise networks. Three major
challenges of the role classification problem are:

1. Two hosts that share the same logical role may
communicate with drastically different sets of ma-
chines.

2. A host may potentially be classified into more than
one role.

3. The grouping results that network administrators
desire may vary from network to network and
therefore the role classification algorithm must pro-
vide flexibility for them to control its mechanics so
that meaningful grouping results can be achieved.

In a typical network setting for a technology company,
each lab or test machine may be dedicated to a single en-
gineer. Thus, each of these lab machines, despite sharing
the same role, can have a connection pattern that is very
different from the rest of the lab machines. To be able
to correctly group such machines together, the group-
ing algorithm must take into account the potential roles
of neighboring hosts rather than comparing the neighbor
sets.

Furthermore, some hosts may potentially be classi-
fied into more than one role. For instance, there could
exist a machine in the network in Figure 1 that com-
municates with both sets of machines with which many
engineering machines and sales machines communicate
respectively. In such cases, the connection patterns of
hosts must be evaluated carefully to ensure that each
host is grouped with other hosts with which it has the
strongest similarity in connection habits.

The role classification problem is not trivial for the
aforementioned reasons. Not only does the computation
of the similarity measure matter, but the process of how
nodes are grouped based on the similarity values among
node pairs is also important.

The grouping algorithm consists of two phases: i) the
group formation phase and ii) the group merging phase.
The group formation phase identifies each group of hosts
that have similar sets of neighbors using a simple sim-
ilarity measure such as the one described in Section 3.
The purpose of the group formation phase is two-fold:
i) to efficiently identify various groups of hosts, each of
which has drastically different overall connection pat-
terns, and ii) to prepare for the second phase of the al-
gorithm. The formation phase of the algorithm can effi-
ciently find the desired partitioning for the example net-
work in Figure 1 but may fail for many networks since
it does not take into account the potential roles of neigh-
boring hosts as explained earlier. In general, the group
formation phase may generate a partitioning that con-
tains more groups than desired.

The group merging phase decides whether groups,
produced by the formation phase, can further be merged
using a much more sophisticated similarity measure.
This phase provides network administrators with fine-
grained control over the merging process so that the
grouping results reflect their intuition of the network
structure.
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4.1 Forming Groups

Group formation can be thought of as a graph the-
ory problem. From the connection sets of

�
, one can

generate a neighborhood graph, nbh-graph, where each
node represents a host and each edge with weight � rep-
resents that there are � common neighbors between the
hosts. Thus, a neighborhood graph captures the extent
to which pairs of hosts communicate with the same set
of other hosts. We use an undirected graph since almost
all communication between hosts in the intranets is bi-
directional. However, in certain situations, directional-
ity may be used to improve the quality of the grouping
results and we continue to investigate this issue.

One approach to the grouping problem is to treat it as
a k-clique problem where nbh-graph is partitioned into
cliques of size

�
in which each edge in the clique has a

weight greater than or equal to some constant � . Once
a

�
-clique is identified, one assigns all the nodes in the�

-clique to one group, since they all share at least � com-
mon neighbors. This approach is problematic, because
(i) the

�
-clique problem is NP-complete [25], and (ii)

requiring that each host pair in a group has exactly
�

common neighbors is too strong a requirement.
Another approach is to treat grouping as related to

the problem of identifying bi-connected components
(BCCs). A BCC is a connected component in which
any two edges lie in a simple cycle. Thus, there exist
at least two disjoint paths between any two nodes in a
BCC. Unlike the

�
-clique problem, BCC can be solved

in � � � � � � , where � and � are the number of nodes
and edges in the graph respectively [9, 27]. Moreover,
all nodes in the BCC need not be connected to each other
directly. This approach is the one we use.

The group formation phase operates as follows:

1. Generate the connectivity graph, conn-graph,
based on the observed connection patterns.

2. For
� ! � 0 
 � down to 1, where

� 0 
 � is the max-
imum number of hosts with which a single host
communicates:

Repeat until no new groups can be assigned:

(a) From conn-graph, build the k-neighborhood
graph k-nbh-graph.

(b) Remove group nodes (see 2d) from k-nbh-
graph.

(c) Generate all BCCs in k-nbh-graph.

(d) For each BCC � , replace in conn-graph the
nodes in � by a new group node � rep-
resenting those nodes. Label � by a pair

� � � ) 	 �
) � , where

� � )
is a unique identifier

and �
)

is
�

. ( �
)

will be used later to com-
pute the degree of similarity between groups.)

(e) For each ungrouped host � , where
� � � �

� 9 � � � � and
� � � � �

, create a new group �
containing only � as described in 2d.

The algorithm runs iteratively over conn-graph un-
til no ungrouped node remains or

� ! �
. At each step

multiple BCCs may be identified simultaneously and a
single node could be a part of several BCCs indicating
that it may share multiple roles. In this case, the node
becomes a part of a BCC with the largest size. If more
than one such BCC exists, we choose one randomly. By
iterating over

�
from high to low, the algorithm asso-

ciates each host � with other hosts with the strongest
similarity.

In the grouping algorithm, the minimum number of
nodes required to form a BCC is two. Technically, the
minimum number of nodes to form a BCC is � , since we
do not allow duplicate edges between any two nodes.
Nevertheless, we allow two isolated nodes connected by
an edge to form a group.

Since a BCC is not a clique, some node pairs in the
BCC may not have edges between them allowing node
pairs that do not share at least

�
common neighbors to be

in the same group. However, any two nodes in a BCC
have at least two disjoint paths along which two suc-
cessive nodes share at least

�
common neighbors. In

other words, any two nodes in a group demonstrate in at
least two different ways that they have strong similarity
in connection habits, significantly reducing the possibil-
ity that they may serve different roles. This observation
is a major reason why we believe BCCs are suitable for
forming groups.

When a set of hosts is placed into a group, the nodes
representing those hosts are removed from conn-graph
and replaced by one node (called the group node) rep-
resenting the entire group. There are edges connecting
that group node to each node to which one of the hosts
in the group was connected.

In some cases where a node may have connection pat-
terns so different from any other nodes, the node should
form a group by itself. Step 2e forms a new group with
only � in it if there exist no nodes that have the number
of common neighbors greater than or equal to

� � 9 � � � .
We set

� ! � �  
and find that it works well with various

networks.
Figure 2 illustrates the evolution of the grouping al-

gorithm, in terms of k-nbh-graph, for the network de-
picted in Figure 1. The first group is formed when� ! ! � � , where ! is the number of hosts used
by sales personnels and � is the number of hosts used
by engineers. For specificity, let us assume that ! !

� ! � . As shown in the picture, the 6-nbh-graph con-
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Figure 2. Evolution of the grouping algorithm at var-
ious

�
values.

tains two hosts, Mail and Web, and the algorithm puts
them in one group. When

� ! � , the algorithm iden-
tifies two additional BCCs, one containing all the sales
machines and the other, all the engineering machines.
Finally, because of the bootstrap condition (see Step 2e),
the algorithm creates two groups, one containing Sales-
Database and the other, SourceRevisionControl, when� ! � � � �  � ! .

4.2 Merging Groups

The aforementioned group formation algorithm that
uses a simple definition of similarity tends to produce
too many groups in many situations. Consider, for ex-
ample, the network in Figure 1 modified so that Sales-1
communicates with the Mail and SalesDatabase servers
but not the Web server. The grouping algorithm in Sec-
tion 4 will create two groups for the sales hosts, one that
only contains Sales-1 and one that contains the rest of
the sales hosts. This might be appropriate, but it is prob-
ably not what a network administrator would want.

The group merging phase builds on the results gen-
erated by the group formation phase. It merges groups
that are similar in connection habits in a way that allows
users to control the process so that more meaningful re-
sults can be achieved.

During the grouping phase, we merge two groups if
they meet the following two requirements:

Similarity requirement. The similarity measure be-
tween the two groups exceeds a user-specified
threshold.

Connection requirement. The average number of con-
nections of each group is comparable.

PROCEDURE MEETCONNECTIONREQ(
� � � � �

) 	
a1 
 � 
 � � � �

� � � � �
� � � �

a2 
 � 

&

� �
& � � � � �

� � & �
return (a1 is within � percent of a2)�

PROCEDURE MEETSIMILARITYREQ(
� �

,
� �

) 	
kmax 
  " $ & ( � �

� ( � & *
, 
 SIMILARITY(

� �
,

� �
)

if (kmax - ( � /
and , - 1 � /2 )

return true;
else

return (kmax 3 ( � /
and , - 1 4 52 )�

PROCEDURE SIMILARITY(
� �

,
� �

) 	6 7 
 � 
 � 8 9 � � ;
� < � � ? � �

�
� � � �

6 A 
 � 
 � 8 9 �
&

;
� < � � ? � & �

� � & �
For each common neighbor group

� B
of

� �
and

� �
, 
 , C  E F & � < � � I ? � �

�� � � � �
� � � � < � � I ? � & �� � � � & � � *

, 
 �� K & MN � C MN � *
return , K 7 O O�

Figure 3. Pseudo-code for determining the similar-
ity and connection requirements.

The algorithm repeatedly merges two groups that meet
the two requirements and have the highest similarity
measure until no groups can be merged. The � value
of a newly merged group is set to the minimum number
of connections a host in the group has.

Figure 3 depicts the pseudo-code for determining the
average connection requirement and the similarity re-
quirement. The procedure MEETCONNECTIONREQ de-
cides whether the two groups, � � and � � , meet the con-
nection requirement. This requirement keeps a group
with a large number of connections from merging with
another group with a much smaller number of connec-
tions.

The procedure MEETSIMILARITYREQ determines
whether the two groups meet the similarity require-
ment. /

$ 2 and / Q S , /
$ 2 U / Q S , are similarity thresh-

olds that can be set by the user to control the merging
process. Which threshold is used depends upon whether
max � �

)
� 	 �

) & � � �
$ 2 , where �

$ 2 is a constant in-
tended to define whether a �

)
value is “high.” The sim-

ilarity threshold for merging groups is higher for groups
with a high �

)
value, those groups whose member hosts

share a high number of common neighbors. This is be-
cause merging two groups can change the relationships
between other groups in a way that induces additional
undesirable merges.

Again, consider the groups in the example network
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illustrated in Figure 1. Notice that if � is large, the simi-
larity measure between the SalesDatabase group and the
Mail and Web group will be large. Similarly, for large

! , the SourceRevisionControl group will be highly sim-
ilar to the Mail and Web group. If all three groups were
to merge, it would effectively cause the sales group and
the engineering group to merge, resulting in a partition-
ing with two groups: one containing all the servers, and
one containing all other hosts. In most situations, this
grouping would be undesirable since the network ad-
ministrators lose the important separation between the
Sales machines and the Eng machines. For these rea-
sons, groups with high �

)
values are required to have

a higher similarity measure to merge. We discuss how
best to choose the constants in Section 6.

SIMILARITY computes the similarity � (between
�

and
� � �

) of connection patterns between two groups.
9 � � � � 	 � � � returns the total number of connections be-
tween � � and � � , where � 2 could either be a host or a
group. Two groups are considered similar if they have
many common neighboring groups and similar average
numbers of connections. For example, if the set of
neighbors of � � is a subset of the set of neighbors of � � ,
it increases the desirability of merging these two groups.
However, if the average numbers of connections of � �
and � � are quite different, the desirability of merging
them is lessened.

5 Role Correlation

Over time, connection habits may evolve as new
servers and employees are added while some existing
ones leave. Sometimes hosts may behave erratically as
a result of being victims or villains of denial of service
(DOS) attacks. Due to any of these behaviors, the group-
ing algorithm may produce a different set of groups than
the one produced by the algorithm a few days ago. As
explained in Section 4, the grouping algorithm assigns
an integer ID to each group of hosts that it identifies.
There is no guarantee that the sets of IDs produced by
two runs of the grouping algorithm will have any cor-
relation between them. This situation is clearly unde-
sirable to the users who may want to associate logical
names and policy settings to the group IDs and preserve
these group specific data throughout the executions of
the grouping algorithm at various times.

In this section, we describe in detail the group cor-
relation algorithm that takes the two sets of results pro-
duced by the grouping algorithm and correlates the IDs
of one set with that of the other so that the two groups,
one in each set of resulting groups, will have the same
ID if and only if the machines in both groups are highly
likely to share the same logical role.

5.1 Challenges

For the rest of this section, we assume that there ex-
ists a unique host identifier that never changes. We note
that the IP address may not be a good use when Dynamic
Host Control Protocol (DHCP) is used since a host’s IP
address may change over time. For smaller networks,
a simple solution such as using DNS names as unique
identifiers and dynamically updating the changes of IP
addresses may be sufficient [26]. This problem of as-
signing a unique identifier to each host within enterprise
networks is beyond the scope of this paper.

The connection habits of a host may change as a re-
sult of the following events: i) new host arrivals, ii) ex-
isting host removals, and iii) role changes by existing
hosts. Due to a combination of these events, some exist-
ing hosts may communicate with different sets of hosts
and thus the results of the grouping algorithm before and
after these events may be different as: i) new groups are
formed, ii) existing groups are deleted, iii) the member
compositions of some groups change, and iv) the con-
nection sets of some groups change. The changes affect
not only the hosts directly involved in the aforemen-
tioned events but also to other hosts whose connection
habits have not changed in a logical sense.

Hypothetically, if we know the exact sequence of ev-
ery single change event that happened between two ex-
ecutions of the role classification algorithm, the results
of the first execution could be incrementally updated to
achieve the new results. Having such a change log, al-
though not impossible, can complicate the network data
gathering process. More importantly, a detailed change
log cannot always lead to correct ID correlations.

Consider the example network in Figure 1. As-
sume that Sales-1 and Eng-1 switch roles as a result
of personnels switching jobs or changing machines.
Sales-1 now communicates with SourceRevisionCon-
trol whereas Eng-1 communicates with SalesDatabase.
From the change log, it would seem that the con-
nection sets of both SourceRevisionControl and Sales-
Database change whereas in reality, their logical roles
never changed. The difficulty here is in distinguishing
which changes in connection patterns are the primary
causes that result in differences in group formations be-
tween two executions of the grouping algorithm. Fur-
thermore, there may also be natural changes in connec-
tion patterns of many nodes. For instance, an existing
server machine may be replaced by two new machines
that do load sharing among client machines. The log-
ical roles of the client machines have not changed but
their observed connection patterns have. The rest of this
section describes the role correlation algorithm that does
not rely on the change log but rather uses the same set of
information (i.e. only connection sets) made available to
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the grouping algorithm.

5.2 The Role Correlation Algorithm

The correlation algorithm operates by comparing the
results of two executions of the grouping algorithms.
Let � � � � and � � be the group sets generated by the
grouping algorithm at time

� � �
and

�
respectively. The

correlation algorithm updates the ID set of � � , so that� � )
� ! � � )

� 	
�

, where � � � � � and � � � � � � � � � ,
if and only if � � and � � � � considered to represent the
same logical role. More specifically, the connection pat-
terns of the members of � � and those of � � � � are very
similar. The groups correlation algorithm correlates the� � )

� and
� � )

� 	
�

in a meaningful manner and thus al-
low applications to preserve data specific to a particular
group.

The role correlation algorithm:

� Isolates the primary events, such as node arrivals
and removals, that directly affects the connection
habits of groups,

� Identifies nodes that have not changed their neigh-
bors,

� Heuristically computes the time-varying similar-
ity between the connection habits of two groups
formed at times

�
and

� � �
, and assigns

� � )
� !� � )

� 	
�

if and only if the role of hosts (in terms on
their connection patterns) in � � � � can be consid-
ered identical to the role of hosts in � � .

First, the correlation algorithm eliminates the differ-
ences between the two host sets,

� � and
� � � � , so that it

can compare the connection patterns meaningfully. The
algorithm computes the set of nodes that existed at time� � �

but have been removed in time
�

(
� � � � 
 � � ), and

the set of nodes that only appear at time
�

(
� � 
 � � � � ).

All new nodes are removed from
� � and deleted nodes

are removed from
� � � � . Thus, the changes in connec-

tion set of each host is only as a direct result of changing
connection patterns between the host and its neighbors
(which existed at time

�
).

Second, the algorithm heuristically identifies the set,�
same, of nodes that are very like to play the same log-

ical roles from
� � �

to
�
. We say that the two nodes � �

and � � � � are highly likely to be the same machine (i.e.
it hasn’t changed its logical role) if they have the identi-
cal connection sets. Specifically,

�
same ! ; � � � � � � � � �� � � � 	 9 � � � � ! 9 � � � � � � > . We will explain shortly how

we use the fact that a host � � �
same to our advantage in

computing the time varying similarity measure.
The role correlation algorithm will determine

whether the two groups � � and � � � � are the same group

by heuristically computing the time-varying similarity
measure and comparing against the pre-defined thresh-
old. The group correlation algorithm operates as fol-
lows:

1. For each group � � , identify � � and � � � � as the
same group if i) � � � � has the strongest time-
varying similarity with � � , among all the groups
in � � � � and ii) the average number of connections
is at least within �

$ 2 percent of the average number
of connections of � � � � .

2. For each group pair � � � 	 � � � � � that remain uncor-
related, decide whether � � and � � � � represent
the same logical group based on how similar the
connection patterns between � � and its neighbor
groups are to those between � � � � and its neighbor
groups.

Step 1 decides whether the two groups � � and � � � �
are identical based on the time varying similarity mea-
sure. As in Section 4.2, we compute the similarity mea-
sure based on the average number of connections be-
tween the groups and their common neighbors. How-
ever, finding the common neighbor set between � � and

� � � � is not trivial. This is because we cannot simply
assume that a neighbor � � � 9 � � � � and a neighbor

� � � � � 9 � � � � � � are the same host even if they have the
same host identifier. We use the following techniques to
identify the common neighbor set:

� If a neighbor � � of � � shares the same host identi-
fier with the neighbor � � � � of � � � � and both have
been considered highly likely to be the same host
(i.e. � � 	 � � � � � � �


 0 � ), we assume � � is the
neighbor to � � in the same way as � � � � is to � � � � .

� For each neighbor pairs � � � 	 � � � � � that are not con-
sidered as highly likely to be the same host, we as-
sume � � is the neighbor to � � in the same way as

� � � � is to � � � � if and only if the following con-
dition is true. The connection set size of � � � � is
within �

$ 2 percent of that of � � and no other neigh-
bor of � � � � has the connection set size closer to
that of � � .

The algorithm then computes the time-varying similarity
measure between each neighbor pair � � � 	 � � � � � , which
meets the aforementioned requirements, as the mini-
mum of the average number of connections between � �
and � � and between � � � � and � � � � . If the sum of
the similarity measures for all common neighbor pairs
within the bounds of the specified thresholds , the algo-
rithm declares that groups � � and � � � � mean the same
group.
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6 Results

In this section, we evaluate the performance of the
algorithms using traces gathered over a day at two cor-
porate networks. We show that the algorithms operate
well for both networks and examine the effects of user-
defined thresholds on the results of the role classification
algorithm.

We call the two test networks Mazu and BigCom-
pany. Mazu is part of the corporate network at Mazu
Networks, Inc., in Cambridge, MA. It consists of
110 hosts, including engineering workstations, several
servers, and laptops. Mazu develops various software
products in the area of network security and monitoring.
The BigCompany network consists of 3638 hosts, in-
cluding workstations, servers, and many IP phones. For
privacy reasons, BigCompany must remain anonymous.

6.1 Effectiveness of the Grouping Algorithm

We evaluate the effectiveness of the role classifica-
tion algorithm by comparing the groups formed by the
algorithm against the logical roles that hosts play as de-
termined by knowledgeable network administrators. For
all the experiments, unless otherwise noted, we set user-
defined thresholds, /

$
2 ! � � 	 / Q S ! � � 	 and �

$
2 ! � .

We examine how these thresholds affect the results in
later sections.

Figure 4 shows some of the groups formed by the
role classification algorithm running on the Mazu data
and configured with the default parameters. Each cir-
cle in the figure represents a group and lists its members
and its connections with other groups. Where possible,
we have indicated the logical role of each host, which
we obtained by asking the Mazu network administrator.
(Of course, this logical information was not used in con-
structing the grouping.)

Observe that the role classification algorithm placed
almost all engineering (eng) machines in a single group,

� � . Also note that the number of connections of an en-
gineering host varies from 4 to 9. Similarly, most ma-
chines used by sales, management (admin) and opera-
tions (ops) were placed in a single group, � � . The largest
group, � �

, contains new machines and test machines in
the lab.

However, four hosts that are identified as engineering
machines are placed in group � � rather than group � � .
The reason is that these machines do not communicate
with a set of hosts that engineering machines in group� �

communicate with. As shown in Figure 4, each engi-
neering machine in group

� �
has, on average, one con-

nection with group
� �

, which consists of a Unix mail
server, and one connection with group

 
, which con-

sists of a source revision control server (not shown in

the figure). On the other hand, almost every sales host
in group � � communicates with both the Microsoft Ex-
change server and the NT sever from group � �

, but not
with the Unix mail server nor the source revision control
server. In fact, there are just two connections between
group � � and each of groups

 
and

� �
. The four engi-

neering hosts in � � had connection patterns very sim-
ilar to those of sales hosts, so they were grouped ac-
cordingly. Most probably, these machines are used by
engineering managers who do not perform engineering-
related tasks such as coding, and use the Exchange mail
server instead of the Unix mail server.

If we have the perfect knowledge of the logical struc-
ture of the network, we can use that knowledge to quan-
tify the resulting quality of the groups produced by
grouping algorithms. One simple yet effective metric
used in the cluster validation literature [16, 12] is Rand
Statistic, which is based on testing whether a pair of ob-
jects belongs to the same group as decided by the group-
ing algorithm and according to our knowledge. Let

� and � 
 be the partitionings of hosts produced by a
grouping algorithm and based on our knowledge respec-
tively. Let / / , / �

,
� / and

� �
be the numbers of host

pairs that belong to the same group in both � 
 and � ,
to the same group in � 
 and to different groups in � , to
different groups in � 
 and to the same group in � , and
to different groups in both � 
 and � respectively. / �

and
� / are indicative of how different � is from � 
 .

Rand Statistic � ! � � � � �� � � � � � � � � � � is between
�

and�
. The higher the value, the more similar � and � 
 are.

For the Mazu network, we were able to ascertain the
logical roles of all except 8 hosts. We worked closely
with the Mazu network administrator to obtain � 
 , the
ideal partitioning of hosts. We find that the partition-
ing produced by the grouping algorithm (with default
parameters) achieves / / ! � � � 	 / � ! � � � 	 � / !� � � 	 � � ! � � �  

and � ! � � � �  � . This shows that
the results of the grouping algorithm reflect to a high
degree our intuitive notion of the underlying structure of
the network. We note that the reason for having a rela-
tively high / �

is because the algorithm identifies sub-
sets of hosts within large groups as separate groups. For
instance, the grouping algorithm produces a few differ-
ent groups, each containing a single eng machine instead
of putting them in group � �

(not shown in the figure).
This is because those eng machines have the total num-
ber of connections far greater than the average number
of connections that a host in group � �

does. Such dis-
tinction may prove useful in certain situations.

Table 1 lists the five largest groups produced by run-
ning the grouping algorithm on the BigCompany net-
work. Again, we relied on information generated by the
network administrator to help us understand whether the
groupings generated by the algorithm matched the log-



2003 USENIX Annual Technical Conference USENIX Association24

Group 10(9) 
10.0.0.16 (unix_mail): 16

----comm with----
Group 8: 1
Group 9: 1

Group 17: 1
Group 71: 2

Group 85: 10
Group 87: 1

Group 71(25) 
10.0.0.18 (mazu_nt): 48

10.0.0.26 (ms_exchange): 25

----comm with----
Group 6: 0.5
Group 8: 1
Group 9: 1
Group 10: 1

Group 17: 0.5
Group 21: 0.5
Group 22: 1

Group 28: 0.5
Group 69: 0.5
Group 71: 0.5
Group 76: 0.5
Group 80: 0.5
Group 84: 4

Group 85: 7.5
Group 87: 16.5

Group 80(1) 
10.7.1.54 (new_machine): 2
10.7.1.12 (new_machine): 3
10.7.1.14 (new_machine): 2
10.7.1.51 (new_machine): 2
10.7.1.53 (new_machine): 2
10.7.1.11 (new_machine): 2
10.7.1.13 (new_machine): 2

10.0.0.19 (lab): 1
10.2.0.18 (lab): 1
10.0.0.52 (lab): 1
10.2.0.20 (lab): 1
10.1.0.69 (lab): 1
10.1.0.23 (lab): 1
10.2.0.42 (lab): 1
10.2.0.17 (lab): 1
10.2.0.19 (lab): 1
10.1.0.70 (lab): 1

10.7.100.39 (new_machine): 1
10.1.0.14 (lab): 1

10.7.7.250 (new_machine): 2
10.0.0.21 (build): 4
10.1.0.71 (lab): 3
10.1.2.18 (lab): 3
10.2.0.24 (lab): 2
10.0.0.29 (lab): 3
10.2.0.23 (lab): 2
10.1.0.12 (lab): 2

----comm with----
Group 4: 1

Group 6: 0.296296
Group 8: 0.037037
Group 9: 0.259259
Group 71: 0.037037
Group 85: 0.148148

Group 85(4) 
10.0.0.94 (eng): 8
10.0.0.102 (eng): 4
10.0.0.91 (eng): 10
10.0.0.124 (ops): 11
10.0.0.118 (eng): 4
10.0.0.114 (eng): 9
10.0.0.92 (eng): 7
10.0.0.93 (eng): 4
10.0.0.103 (eng): 5
10.0.0.109 (eng): 5
10.0.0.123 (eng): 4

----comm with----
Group 4: 0.909091
Group 6: 0.909091
Group 8: 0.0909091
Group 10: 0.909091
Group 21: 0.272727
Group 27: 0.181818
Group 67: 0.181818
Group 71: 1.36364
Group 76: 0.363636
Group 80: 0.363636
Group 84: 0.636364
Group 86: 0.272727

Group 87(2) 
10.0.0.81 (?): 3

10.0.0.70 (sales): 3
10.0.0.72 (?): 2

10.0.0.110 (admin): 5
10.0.0.157 (sales): 5
10.0.0.132 (eng): 6

10.0.0.115 (admin): 5
10.0.0.162 (sales): 5
10.0.0.122 (eng): 4

10.0.0.140 (admin): 4
10.8.0.11 (test_bed): 3

10.0.0.120 (ops): 6
10.0.0.116 (admin): 4

10.0.0.101 (ops): 6
10.0.0.143 (eng): 5

10.0.0.134 (admin): 3
10.0.0.146 (eng): 3

----comm with----
Group 4: 0.823529
Group 6: 0.0588235
Group 10: 0.0588235
Group 22: 0.117647
Group 28: 0.0588235
Group 30: 0.0588235
Group 54: 0.0588235
Group 64: 0.0588235
Group 71: 1.94118
Group 76: 0.764706
Group 84: 0.117647
Group 87: 0.0588235

Figure 4. Grouping results based on data gathered over one day at Mazu. The number in parentheses next to
the group ID is the group’s �

)
. The number next to each host is a count of the host’s connections. Each line

after “comm with” denotes a neighbor group and the average number of connections between the group and that
neighbor.

ical structure of the network. Group
� � � �

consists of
desktops whose IP addresses are managed by the DHCP
server. Almost every machine in group

� � � �
communi-

cates with approximately 85 � of the machines in group� � � � , and vice-versa. This pattern suggests that it was
appropriate for the grouping algorithm to combine the
machines in group

� � � � , which use static IPs, into a
group. Most machines in both groups run Microsoft
Windows. The high number of connections between
the groups is due to Windows file sharing, which uses
the NetBIOS network protocol. File sharing creates a
large number of connections between the hosts in the
two groups, even though in both groups there is little
intra-group communication. We continue to investigate
this interesting relationship between the two groups. It
is striking, and further proof of the need for better analy-
sis tools, that the network administrators we have talked
to themselves don’t know why the groups are partitioned
in this way.

The grouping algorithm also correctly classifies all
IP phones into one group,

� � � � . Group
� � � � consists

of web servers and other servers that desktops in group� � � �
regularly communicate with. Group

� � � � is the
largest group, with 1519 members. Most machines in
this group have a single connection (hence the role name

idle), and that is to a host that opens connections to about
1,600 machines. With our help, BigCompany is cur-
rently investigating why this host scans about 45% of all
the machines on the network. This example is another
good use of how the role classification algorithm can
be applied to understand networks and detect anomalous
behavior.

Table 2 summarizes the grouping results of the two
networks. Observe that the number of groups in the
BigCompany network is 26 times smaller than the num-
ber of hosts. Unfortunately, we cannot use Rand Statis-
tic to quantify the quality of the groups produced by
the grouping algorithm since we don’t have the perfect
knowledge of the logical roles of each machine in the
BigCompany network. Nevertheless, the network ad-
ministrators at BigCompany report that they find them
both useful and consistent with their intuitions about
their networks. We are also in the process of analyzing
a larger network owned by HugeCompany that consists
of 49,041 hosts.

6.2 Effectiveness of the Correlation Algorithm

This subsection shows that for a specific scenario, the
role correlation algorithm associates new groups with
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Group 10(10): old 10
10.0.0.26 (unix_mail): 17

----comm with----
Group 8: 1
Group 9: 1

Group 16: 1
Group 71: 2

Group 87: 11
Group 88: 1

Group 71(24): old 71
10.0.1.18 (new-mazu_nt): 48
10.0.0.16 (ms_exchange): 24

----comm with----
Group 6: 0.5
Group 8: 1
Group 9: 1

Group 10: 1
Group 16: 0.5
Group 21: 0.5
Group 22: 1

Group 29: 0.5
Group 69: 0.5
Group 71: 0.5
Group 80: 0.5
Group 82: 0.5
Group 86: 4
Group 87: 8

Group 88: 15.5

Group 82(1): old 80
10.7.1.54 (new_machine): 2
10.7.1.12 (new_machine): 3
10.7.1.14 (new_machine): 2
10.7.1.51 (new_machine): 2
10.7.1.53 (new_machine): 2
10.7.1.11 (new_machine): 2
10.7.1.13 (new_machine): 2

10.7.7.250 (new_machine): 2
10.2.0.18 (lab): 1
10.0.0.52 (lab): 1
10.2.0.20 (lab): 1
10.1.0.69 (lab): 1
10.1.0.23 (lab): 1
10.2.0.42 (lab): 1
10.2.0.17 (lab): 1
10.2.0.19 (lab): 1
10.1.0.70 (lab): 1

10.7.100.39 (new_machine): 1
10.1.0.14 (lab): 1
10.0.0.19 (lab): 2

10.0.0.21 (build): 4
10.1.0.71 (lab): 3
10.1.2.18 (lab): 3
10.2.0.24 (lab): 2
10.0.0.29 (lab): 3
10.2.0.23 (lab): 2
10.1.0.12 (lab): 2

----comm with----
Group 4: 1

Group 6: 0.296296
Group 8: 0.037037
Group 9: 0.259259

Group 71: 0.037037
Group 87: 0.185185

Group 87(4): old 85
10.0.0.94 (eng): 8

10.0.0.200 (new-eng): 4
10.0.0.102 (eng): 4
10.0.0.91 (eng): 10
10.0.0.124 (ops): 11
10.0.0.118 (eng): 4
10.0.0.114 (eng): 9
10.0.0.92 (eng): 7
10.0.0.93 (eng): 4

10.0.0.103 (eng): 5
10.0.0.109 (eng): 5
10.0.0.123 (eng): 4

----comm with----
Group 4: 0.833333
Group 6: 0.916667

Group 8: 0.0833333
Group 10: 0.916667

Group 21: 0.25
Group 28: 0.166667
Group 67: 0.166667
Group 71: 1.33333

Group 80: 0.333333
Group 82: 0.416667
Group 86: 0.583333

Group 89: 0.25

Group 88(2): old 87
10.0.0.81 (?): 3

10.0.0.70 (sales): 3
10.0.0.72 (?): 2

10.0.0.157 (sales): 5
10.0.0.132 (eng): 6

10.0.0.115 (admin): 5
10.0.0.162 (sales): 5
10.0.0.122 (eng): 4

10.0.0.140 (admin): 4
10.8.0.11 (test_bed): 3

10.0.0.120 (ops): 6
10.0.0.116 (admin): 4

10.0.0.101 (ops): 6
10.0.0.143 (eng): 5

10.0.0.134 (admin): 3
10.0.0.146 (eng): 3

----comm with----
Group 4: 0.8125
Group 6: 0.0625

Group 10: 0.0625
Group 22: 0.125

Group 29: 0.0625
Group 31: 0.0625
Group 55: 0.0625
Group 65: 0.0625
Group 71: 1.9375
Group 80: 0.6875
Group 86: 0.125

Group 88: 0.0625

Host Previous New

role role

10.0.0.16 unix mail ms exchange

10.0.0.26 ms exchange unix mail

10.0.0.18 mazu nt -
10.0.1.18 - mazu nt

10.0.0.200 - eng

10.0.0.110 admin -

Figure 5. The grouping results on the Mazu network with several changes (see table) to the connection patterns.
The number next to “old” represents the ID of the correlated group shown in Figure 4.

Group ID Members Logical Role

1043 1490 Idle
1020 158 DHCP-Desktops
1138 396 Servers
1092 167 IP-Phones
1075 156 StaticIP-Desktops

Table 1. The five largest groups classified in Big-
Company network that consists of �  � � hosts.
Logical role is identified by knowledgeable network
administrators at BigCompany.

existing ones in an appropriate way. Figure 5 lists
the scenario we investigate. In the Mazu network, we
swapped the roles of unix mail and ms exchange by
switching their IP addresses. We also replaced the old
NT server, called mazu nt (10.0.0.18), with a new server
(10.0.1.18). Finally, we removed an old admin ma-
chine (10.0.0.110) and brought in a new eng machine
(10.0.0.200). Although the specific scenario is just one
of many possible ones, it includes the types of changes
that could happen in a real network.

The modified connection patterns were used as in-
puts to the role classification algorithm. The role corre-
lation algorithm then correlated the new grouping results
with the original results. Every group in the new results
is correlated with an old group. Figure 5 depicts the
four groups that are affected by the changes. Observe

how the member compositions of these four groups
change from the ones in Figure 4. Both unix mail and
ms exchange are correctly identified in the same fashion
as in Figure 4 despite their role reversal. The new NT
server (new-nt server) appropriately takes the place of
the old one. Similarly, a new eng host is grouped with
other eng machines. Despite various changes to the con-
nection patterns, the role correlation algorithm was able
to correctly associate each new group with an existing
one. We continue to investigate the limits of the role
correlation algorithm under rigorous changes in connec-
tion patterns.

6.3 Configuration

The algorithms use two internal constants that we be-
lieve are not sensitive to particular network connection
patterns. The group formation phase of the role classi-
fication algorithm (see Section 4.1) requires a constant� � � � �

to keep a host � from forming groups with
other hosts that have less than a fraction

�
of the num-

ber of connections that � has. The group merging phase
keeps the two groups from merging if the average num-
ber of connections of a group is not within

� � � � �
of the other’s (see Figure 3).

We set
� ! � �  

and
� ! � �

� . Our experiments with
both Mazu and BigCompany networks indicate that the
default values work well on at least two rather differ-
ent networks. We believe that, in general, it will not be
necessary to adjust these constants. Nevertheless, we
plan to expose these parameters to network administra-
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tors so that they can adjust them along with the similarity
thresholds to achieve grouping results that most reflect
their intuition of the network structure.

6.4 Effects of Similarity Thresholds

In this subsection, we examine how the choice of the
user-defined thresholds, / Q S , /

$
2 , and �

$
2 , affect the

number of groups formed by the role classification algo-
rithm. Recall that the two groups are merged if and only
if their similarity measure is � / Q S . Furthermore, if the
maximum �

)
associated with the groups is � �

$
2 , they

are not merged unless their similarity measure is � /
$

2 .
We require that

� � / Q S

� /
$

2 � � � �
.

Figure 6 illustrates how / Q S affects the total number
of groups formed for both Mazu and BigCompany net-
works. The number of groups increases with / Q S . Again,
a large / Q S value keeps more groups from merging and
as a result, the total number of groups remains large.

The number of groups may not increase smoothly
with the increase in / Q S . For instance, there is steeper
incline (knee) in the number of groups of BigCompany
network when / Q S is increased from 70 to 90. The
reason is that the increase in / Q S causes some groups
with high numbers of connections to split, since they
no longer meet the stronger similarity requirement to
merge. This in turn causes several neighboring groups to

split. The extent to which such splits occur varies from
network to network. A knee in the curve indicates that
the algorithm can expose the logical structure of the net-
work in two significantly different manners. Consider
again the network in Figure 1. If / Q S is too low, Mail,
Web, SalesDatabase, and SourceRevisionControlwill all
be placed in one group, whereas all sales and engineer-
ing machines will be placed in another. In some cases,
such grouping might be more appropriate than the one
achieved in Figure 1. Network administrators should
compare the grouping results on both sides of the knee
and decide which one better suits their needs.

Our experiments show that as long as /
$

2 � �
�
,

changes to /
$

2 hardly affect the grouping results. There-
fore, we suggest that /

$
2 be fixed.

On the other hand, the choice of �
$

2 has a significant
impact and should probably vary from network to net-
work. If �

$
2 is set to the maximum number of connec-

tions that any host has, the similarity measure between
hosts is only compared against / Q S . If �

$
2 ! �

, the sim-
ilarity measure is only compared against /

$
2 . Ideally,

�
$

2 should be set at a value that partitions the hosts in
the network into two groups, one containing all server-
like machines, and one containing all others.

Figure 7 shows how �
$

2 affects the number of
groups formed. For any two data points with the same
number of groups, the grouping results are identical.
Clearly, the grouping results do not change for the Mazu
network when �

$
2 � � . Similarly, the grouping re-

sults hardly change for the BigCompany network when
�

$
2 � � . This implies that it is not too difficult to find

an appropriate �
$

2 for a particular network. By default,
we set �

$
2 ! � and believe that this value will be suit-

able for most networks. Nevertheless, we are currently
working on automatically setting �

$
2 .

6.5 Run Time

Table 2 shows the time taken to run the role classi-
fication algorithm on the Mazu and BigCompany net-
works. We performed our experiments on a Linux ma-
chine equipped with a 2GHz Intel Xeon processor and
4GB of memory. The run time achieved by the algo-
rithms grows quadratically with the number of nodes
and is acceptable for use in commercial enterprise net-
work monitoring and analysis tools. We continue to fur-
ther improve the performance of the algorithms.

7 Related Work

The work described in this paper was implemented
in part using Click [21], a modular router system that
makes it easy to build efficient packet processing de-
vices on commodity PC hardware. The grouping al-
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Network Hosts Groups Run time(s)

Mazu 110 25 0.069
BigCompany 3638 137 63

HugeCompany 49041 1374 2101

Table 2. The summarized grouping results for Mazu
and BigCompany networks.

gorithm only requires information about connections
among hosts, so it can obtain data from a variety of
sources, from summary formats like RMON [28] and
Netflow [6] to packet-level sniffers like tcpdump [18].

Part of the role classification algorithm can be viewed
as a data clustering algorithm. Data clustering has been
an active area of research for a few decades [14, 19] and
is known to be a difficult problem combinatorially. The
techniques used to cluster data vary widely according
to the assumptions, and contexts specific to application
domains and many existing techniques are specifically
developed for pattern recognition and image analysis.
In general, a data clustering algorithm attempts to clus-
ter data points or patterns, each of which is represented
by a vector of real numbers. Patterns that are similar
to each other are clustered together. The most popular
metric for similarity measure is the Euclidean distance.
One well-known clustering technique is the hierarchi-
cal agglomerative clustering technique. The idea is to
merge clusters based on the pair-wise similarity measure
of patterns. The merging process is stopped according to
some predefined similarity thresholds. In this aspect, the
group merging phase of the role classification algorithm
can be classified as a hierarchical agglomerative cluster-
ing technique.

The main reason why traditional data clustering al-
gorithms cannot be easily extended for our application
domain is because it is difficult to represent the con-
nection pattern of each host with a vector of numbers
in such a way that the widely used Euclidean distance
to measure the similarity between two connection pat-
terns makes sense. Furthermore, we can leverage the
communication patterns found in typical enterprise net-
works, such as client-server communications, to achieve
more meaningful grouping results. We also note that
traditional data clustering techniques do not deal with
temporal correlation of clusters as the role correlation
algorithm does.

The role classification algorithm is applicable to net-
work intrusion detection. For example, grouping infor-
mation provides context that can be used by intrusion
detection systems [10, 22] (IDS) to help determine how
unusual (and hence potentially suspicious) a certain net-
work behavior is (see Section 2).

As explained in Section 2, role grouping is well-
suited to improving network monitoring and policy man-
agement. An entire industry [8, 15, 17] caters to en-
terprises’ network management needs, and much liter-
ature is devoted to network monitoring, traffic report-
ing, and performance measurement [13, 20, 23, 24]. All
this work differs significantly from ours. The commer-
cial network management systems are primarily inte-
gration and alerting tools, intended to provide operators
with a unified view of disparate devices on the network.
They serve as conduits for the raw data, but do not ex-
tract higher-level semantics such as role relationships.
Academic work has focused on network monitoring and
techniques for performance measurement, but again, the
interpretation of data is generally left to humans.

Another tool that can help operators understand their
networks is network visualization [1, 5, 11]. Visual-
ization focuses on graphic design and automated lay-
out algorithms to help users digest the vast amount of
data generated by network monitoring tools. Unlike the
grouping algorithm, these techniques have no notion of
the logical structure of the network. However, they can
complement grouping, exposing grouping information
to the user and using grouping information to make bet-
ter decisions about visual layout.

8 Summary

This paper has presented two practical algorithms
(grouping and correlation) that group hosts on an enter-
prise network into roles according to their observed con-
nection patterns. The first algorithm partitions hosts on
the network into groups based on connection data. The
second algorithm meaningfully correlates the results ob-
tained by running the first algorithm at different times,
taking into account the evolution of connection patterns
over time.

To our knowledge, the problem of automatically
grouping and classifying hosts based on their behavior
on the network has not been addressed before. This
paper formulates the problem by presenting an abstract
model in addition to the concrete algorithm specifica-
tions. The general framework we have developed ac-
commodates other classification algorithms in addition
to the ones we have described.

Grouping hosts according to their connection habits
exposes the logical structure of the network, and can
serve to improve understanding of the network and to
simplify a variety of network management tasks. It can
also improve the accuracy of automated tools, such as
systems for network monitoring and intrusion detection.

Experience with the algorithms on two corporate net-
works, one with about 100 hosts and one with over 3600
hosts, indicates that they work well. They are easy to
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tune, and produce results that are meaningful and con-
sistent with the intuition of experienced network admin-
istrators. Importantly, our experience on the corporate
networks has shown that automated classification algo-
rithms such as these can play an important role in as-
sisting network administrators. The algorithms are also
fairly efficient, and their performance remains practical
even for networks with several thousand hosts.

Much work remains to be done. We plan to continue
improving the performance of the algorithm. The ideal
solution should be better than quadratic time complex-
ity, since that could eventually be the limiting factor on
very large networks. We will also explore other defini-
tions of host similarity for grouping. For instance, one
could consider incorporating services (such as TCP or
UDP port information) or protocols into the definition of
a connection, so that a web server would not be grouped
with a mail server. In addition, we have yet to ex-
plore many of the applications of automatically-derived
grouping information, which include network manage-
ment, provisioning, security, and perhaps others.
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