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Abstract
We present the design and implementation of PLACE, a
gray-box library for controlling file layout on top of FFS-
like file systems. PLACE exploits its knowledge of FFS
layout policies to let users place files and directories into
specific and localized portions of disk. Applications can
use PLACE to collocate files that exhibit temporal locality
of access, thus improving performance. Through a series
of microbenchmarks, we analyze the overheads of control-
ling file layout on top of the file system, showing that the
overheads are not prohibitive, and also discuss the limita-
tions of our approach. Finally, we demonstrate the utility
of PLACE through two case studies: we demonstrate the
potential of file layout rearrangement in a web-server en-
vironment, and we build a benchmarking tool that exploits
control over file placement to quickly extract low-level de-
tails from the disk system. In the traditional gray-box
manner, the PLACE library achieves these ends entirely
at user level, without changing a single line of operating
system source code.

1 Introduction
Creators of high-performance I/O-intensive applications,

including database management systems and web servers,

have long yearned for control over the placement of their

data on disk [26]. Proper data allocation can exploit local-

ity of access within a particular workload, increasing disk

efficiency and thereby improving overall performance.

However, many file systems do not provide the explicit

controls that are needed by applications to affect their de-

sired file layouts. For example, UNIX file systems based

on the Berkeley Fast File System (FFS) [13] group files

by a set of heuristics, specifically trying to group inodes

and data blocks of files that reside in the same directory.

Applications that wish to have full control over layout tra-

ditionally have avoided using file systems altogether, thus

relinquishing convenience for control.

Gray-box techniques [1, 4] are a promising approach

that can be used to gather information about and exert

control over systems that do not export the necessary in-

terfaces to do so. By treating a system as a gray box, one

assumes some general knowledge of how the system be-

haves or is implemented; such knowledge, combined with

run-time observations of the system, enables the construc-

tion of more powerful services than those exported by the

base system.

In this paper, we explore the application of gray-box

techniques to the file placement problem. Specifically,

to retain the convenience of the file system while regain-

ing control over placement, we introduce PLACE (Posi-

tional LAyout ControllEr), a system that exploits gray-box

techniques to give applications improved control over file

placement. The system is depicted in Figure 1.

The most important component of PLACE is the

PLACE Information and Control Layer (ICL). The

PLACE ICL allows applications to group files or direc-

tories into localized portions of the disk, specifically into

a particular group. Proper placement of data can improve

both read and write performance; by collocating files that

are likely to be accessed at nearly the same time, applica-

tions can improve their performance by “short-stroking”

the disk, i.e., reducing the cost of seeks by limiting arm

movement to a certain portion of the disk. Applications

that do not use the PLACE library operate as expected.

The key to the PLACE implementation is the shadow
directory tree (SDT). The SDT is a hidden control struc-

ture that the PLACE ICL uses to control where files are

placed on disk. By carefully creating this structure and ex-

ploiting our gray-box knowledge of file system behavior,

the SDT enables the PLACE ICL to place files according

to user preferences in a correct and efficient manner. Cre-

ating and maintaining this structure is one of the central

challenges in implementing PLACE.

We first evaluate the PLACE ICL with a set of mi-

crobenchmarks to understand the basic costs and poten-

tial benefits of using PLACE. We find that the costs of

using PLACE are reasonable, although a controlled file or

directory creation is more costly than standard versions
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Figure 1: The PLACE System. The PLACE system consists of
three components, highlighted in gray in the figure. The most im-
portant component is the PLACE Information and Control Layer
(ICL), which uses gray-box techniques to discover information
about the file system, and then exploits that knowledge to enable
applications that link with it to control file and directory lay-
out. The two other components of PLACE are the tool pmkfs,
which is used to initialize the PLACE on-disk structures, and a
set of PLACE command-line tools. PLACE currently works on
top of “FFS-like” file systems by learning of their internal group
structure and exposing this structure through the PLACE ICL.

of either operation in our prototype implementation. We

also find that the potential benefits are substantial; random

I/O performance improves dramatically when related data

items are grouped into a small portion of the disk, and

large files can be placed onto the outer tracks of a disk to

improve throughput due to zoning effects [15].

We then demonstrate the utility of PLACE with two

separate application studies. In the first, we show how a

web server can use PLACE to group files that exhibit tem-

poral access locality. Even when utilizing simple place-

ment heuristics, collocation with PLACE improves web

server throughput noticeably. In the second, we show how

a high-speed user-level benchmarking tool called FAST

can use PLACE to rapidly construct its testing infrastruc-

ture. Through controlled placement of files, FAST can ex-

tract important disk characteristics such as seek time and

bandwidth in seconds.

The rest of this paper is organized as follows. In Sec-

tion 2, we describe the design and implementation of

PLACE, and in Section 3, we measure its costs and show

its benefits. In Section 4, we present two case studies of

PLACE usage. We describe related work in Section 5,

future directions in Section 6, and conclude in Section 7.

2 PLACE: Design and
Implementation

In this section, we describe the PLACE system for con-

trolling file layout. We first provide background, describe

our goals in implementing PLACE, and then describe the

API as exposed through the PLACE ICL. After presenting

the programming interface, we discuss the PLACE imple-

mentation, including system initialization and the shadow

structures it uses to control file placement. We also dis-

cuss general operation, issues of concurrency, and some

limitations of the current implementation.

2.1 Background

Many modern UNIX file systems are based on the Berke-

ley Fast File System[13], including direct descendants

found in the BSD and Solaris families, and intellectual

descendants such as Linux ext2 [29]. One of the main in-

novations of FFS is the emphasis placed upon locality – by

placing related data objects near one another on disk, FFS

provided a quantum leap in performance over file systems

that scattered data across the disk in an oblivious manner.

The primary construct used in FFS to manage disk lo-

cality is the cylinder group (or block group in ext2, terms

that we will use interchangeably for simplicity). A cylin-

der group divides the disk into a number of contiguous

regions, each of which consists of inodes, data blocks,

bitmaps for tracking inode and block usage, and a small

number of blocks that store implementation-specific in-

formation. By placing related data objects into a cylinder

group, and conversely spreading unrelated objects across

different groups, locality of access can be achieved.

The difficulty, of course, is deciding exactly which ob-

jects are “related” and which are not. Typically, simple

heuristics based on the file system namespace are used.

Specifically, to group related objects, most implementa-

tions place the inodes and data blocks of files within the

same directory into the same group, assuming locality of

access among those files. Conversely, new directories are

placed in different groups, so as to spread presumably un-

related files across the disk (thus leaving some “room to

grow” in each group). The original FFS implementation

(and some descendants) spread large files across groups,

so as to avoid filling one group with a single large file.

In designing the PLACE ICL, we seek to exploit our

gray-box knowledge of how FFS-like systems perform

file layout in order to allow users to better control where

their files are placed on disk. We also wish to understand

the limits of such gray-box control, including the types of

functionality that cannot be realized on top of modern file

systems.
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2.2 Design Goals

In designing PLACE, we have the following goals:

• Simple and intuitive control over layout: Appli-

cations should be given a straightforward representa-

tion of disk locality, which they can then exploit with

their own application-specific knowledge to improve

I/O performance.

• Easy to use: PLACE should be as easy to use as

possible – no substantial code modifications should

be required. Both programming APIs and command-

line tools should be provided.

• Compatible with non-PLACE applications: Ap-

plications that do not use PLACE on top of a given

file system should operate as before, i.e., basic file

system structure and usage for unmodified applica-

tions should not change.

• Unaffected file system namespace: Applications

(and users) should be able to name files according

to whatever conventions they desire – layout should

not be dependent upon specialized naming schemes.

As we will see below, these goals impact both the de-

sign and the implementation of PLACE.

2.3 Abstractions and API

As its basic abstraction, PLACE exposes the underlying

groups of FFS-like file systems to applications that link

with the PLACE library. Applications can then use knowl-

edge of their own access patterns to place related files and

directories into a specific group, thus exploiting spatial lo-

cality for improved performance.

The number of each group also provides applications

with two other pieces of information. First, applications

can safely assume that files in proximate groups are rea-

sonably “close” to one another, e.g., an object in group 1

is close to an object in group 2, but not likely to be very

close to an object in group 55. Second, lower group num-

bers are located near the outer tracks of the disk, whereas

higher group numbers are located near the inner tracks.

Applications may wish to utilize zone-sensitive placement

for large files and thus improve throughput.

Note that more abstract “virtual” groupings and even

group hierarchies could be layered on top of the physical

group interface if desired. However, for simplicity, we

focus solely on this lowest level of abstraction in the rest

of this paper.

To allow applications to place files and directories into

specific groups, PLACE provides two basic functions to

applications:

• Place CreateFile(char *pathname,
mode t mode, int group); Creates a file

specified by pathname and with mode set to mode
in group number group. The first two arguments

are identical to the creat() system call.

• Place CreateDir(char *pathname,
mode t mode, int group); Creates a direc-

tory specified by pathname with mode set to mode
in group number group. The first two arguments

are identical to the mkdir() system call.

The Place CreateFile call allows the fine-grained

placement of files into particular groups, whereas the

Place CreateDir function allows applications to cre-

ate a directory in a controlled manner. Subsequent file

allocations in that directory (through PLACE or not) are

then likely to be collocated, due to standard FFS policy.

Of course, PLACE may not be able to allocate the file

or directory into a particular group, due to insufficient re-

sources (i.e., there are no free data blocks or inodes left in

the group). In such a case, the standard behavior is for the

routine to return an error indicating why and the object is

not created. An alternative interface can be used in which

the routines can instead search for a “nearby” group upon

failure, and place the file or directory therein.

Several other utility and convenience functions are also

provided. For example, applications can discover the

number of groups in a given file system, the current uti-

lization level of each group, and the number of the group

that is currently the least utilized.

When a user does not wish to or cannot re-write an ap-

plication to use the PLACE API, a set of command-line

tools can be utilized instead. These tools allow users to

move directories and files to specific groups, or to create

them in specific groups; subsequent data access by un-

modified applications will thus enjoy the benefits of the

rearrangement.

2.4 Basic Operation
PLACE exploits the FFS tendency to use the file name-

space as a hint for placement to gain control over file lay-

out. To do so, PLACE must first create a structure in

which new files and directories can be created in a con-

trolled fashion; once created therein, the PLACE library

then renames the files, moving them back into their proper

location within the file system namespace. This file sys-

tem structure, known as the shadow directory tree (SDT),

is central to the PLACE implementation.

At initialization (a process that is performed once per

new file system), PLACE produces an SDT structure that

appears in the file system namespace as shown in Figure 2.

There are three important entities found within the

SDT. First, the .superblock file contains persistent in-
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/.hidden/.superblock
/.hidden/.concurrency
/.hidden/D1/
/.hidden/D2/
...
/.hidden/Dn/

Figure 2: The Shadow Directory Tree. The hidden shadow di-
rectory tree structure is presented. The .superblock file con-
tains persistent information needed by PLACE, and the .con-
currency file is used to manage multi-user access. Finally, the
directories D1 through Dn are used to control file placement.

formation about PLACE. Second, the .concurrency
file is used to manage concurrent access to files through

the PLACE API. Both of these files are discussed in more

detail below. Third, and most interesting, is the set of di-

rectories named D1 through Dn, where n is the number of

cylinder groups in the file system. The initialization pro-

cedure (also described in more detail below) ensures that

directory Dk is placed into cylinder group k. Note that all

of these structures are placed in a “hidden” directory so

that most applications will not see them when traversing

the directory tree.

2.4.1 Controlling File Creation

With the SDT in place, creating a file in a partic-

ular group is straightforward. An application calls

Place CreateFile, passing in the pathname of the

file to be created, the mode bits, and the desired group k
within which to place the file. Internally, the PLACE ICL

creates a file in the Dk shadow directory, and then simply

calls rename() to put the file in the proper location in

the namespace.

PLACE also checks to make sure that the file is allo-

cated to the group the user requested, by looking up the

i-number of the newly allocated file. During initialization

(described below), PLACE learns of and records the i-

number to group mapping, and uses that information here

to determine if the allocation was successful.

2.4.2 Controlling Directory Creation

Placing a directory into the proper group with

Place CreateDir is more challenging; creating

a directory in the proper Dk shadow directory does not

suffice, as FFS-like file systems will place the child

directory in a different cylinder group than its parent.

Thus, a different approach is required, as shown in

Algorithm 1.

The algorithm works by creating a temporary directory,

checking if it is in the desired group (via its i-number), and

repeat
tmp = PickNewName();

mkdir(tmp);

if (InDesiredGroup(tmp)) then
break;

end
FillOtherGroups() ;

until forever;

rename(tmp, dirname);

Algorithm 1: Directory Creation Algorithm. The basic algo-
rithm used to create a directory in a specific group on disk is
presented.

.

repeating this process until the temporary directory is cre-

ated in the correct group. When that directory is created,

it is renamed to the proper location in the namespace.

One complication arises due to the particular directory

allocation policies of some FFS-like file systems. For ex-

ample, the Linux ext2 policy searches for a group with

an above-average number of free inodes and the fewest

allocated data blocks, whereas NetBSD FFS picks the

group with an above-average number of free inodes and

the fewest allocated directories. Thus, the algorithm must

be willing to create temporary files as well as directories

to coerce the file system into creating a directory in the

desired group. This process, referred to in Algorithm 1 as

FillOtherGroups(), creates some number of files in each

of the non-target groups. To ensure that the files are not

spread across different groups in an uncontrolled manner,

PLACE creates “small” files (i.e., files that do not utilize

any indirect pointers).

Unfortunately, this basic algorithm can be quite slow, as

we will demonstrate in Section 3. To speed up the process

in the common case, we build a shadow cache of direc-

tories with known group numbers within the SDT. Before

attempting to create a new directory within a particular

group, the directory creation algorithm first consults the

shadow cache to see if a directory within that group al-

ready exists; if so, PLACE simply renames that directory

and is finished, thus avoiding the expensive directory cre-

ation algorithm.

If PLACE does not find the appropriate directory in the

cache, it performs the full-fledged algorithm as described

above. In this case, the directories that are created during

the algorithm can be added to the cache, thus repopulating

the shadow cache periodically.

2.5 SDT Initialization

We now discuss the initialization process required by

PLACE, as encapsulated within a tool we call pmkfs (for

“PLACE mkfs”). There are two steps to pmkfs. First,
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pmkfs discovers various system parameters which are

used in the algorithms described above. Second, pmkfs
creates the SDT on-disk data structures and populates the

shadow cache.

2.5.1 Parameter Discovery

PLACE requires several pieces of information to create

the on-disk structures to support controlled allocation.

These are the number of groups in the file system (Ngrp),

and the number of blocks (Bgrp) and inodes (Igrp) per

group. The total number of blocks and inodes in the sys-

tem are readily available via the statfs() system call.

Finding the number of groups is slightly more challeng-

ing. Our current algorithm calculates this number by allo-

cating directories and recording the difference in the inode

numbers of subsequently allocated directories. Since each

directory is likely to be in a new group, the most common

difference is the number of inodes per group. PLACE

detects when allocation has “wrapped around” by the

fact that a new directory will have an i-number that is

quite close to a previously allocated directory (usually,

one more). Once one knows Igrp, one can calculate the

group number (Gnum) of an object from its inode number

(Inum) by computing: Gnum = (Inum 1)/Igrp.

The system also calculates the number of direct point-

ers used in an inode (i.e., the size of a “small” file), which

is required for the directory creation algorithm to work

across multiple FFS platforms. This value is discovered

by synchronously writing blocks into a file, and moni-

toring the number of free blocks in the file system via

statfs. The “small” file size is discovered at the point

where a single allocating block write decreases the free

block count by two blocks, indicating that an indirect

block has been allocated.

In the current implementation, PLACE requires exclu-

sive access to an empty file system during initialization.

The only reason for this restriction is that the value of

Igrp is not exported by the file system and the procedure

described previously must be used to determine it. If this

number were made available from an outside source (e.g.,
the system administrator), then PLACE could be initial-

ized on top of a system already in use.

2.5.2 SDT Creation

In the second step, pmkfs stores the necessary informa-

tion into the .superblock file, and then creates the di-

rectory tree containing directories D1 through Dn, assum-

ing n groups. The process of creating these directories is

identical to the directory creation algorithm found in Al-

gorithm 1. As in the typical directory creation procedure,

excess directories that are created are added to the shadow

cache. In general, PLACE tries to maintain a minimal

threshold of shadow directories per group, so as to avoid

the costly directory creation algorithm.

To obtain a better understanding of what this thresh-

old should be, we examined file system traces from HP

Labs [17]. During a typical busy day, we found that a few

thousand long-lived directories were created, giving us a

rough upper bound on the number of shadow directories

PLACE would need to maintain to absorb a day’s worth

of controlled directory creation in that environment.

2.6 Other Issues: Crash Recovery
and Concurrency

During both file and directory creation, PLACE may cre-

ate files and directories in the SDT, and thus there is the

potential that data will accrue there over time; this will

occur, for example, when a file is created in the SDT but

the system crashes before the rename has taken place,

or worse, if a job is killed in the midst of a PLACE li-

brary call. PLACE must thus include a basic crash recov-

ery mechanism in order to periodically remove these files.

We refer to this process as SDT cleaning.

Our current implementation of the SDT cleaner scans

the SDT directory structures and removes any data ob-

jects that are “old” and thus left over from system crashes.

As for how often to run the cleaner, many alternatives are

possible. Our current implementation invokes the cleaner

once every c invocations of PLACE (currently, c is set to

1000, which is probably too conservative), and whenever

the longer directory-allocation process is run. Other alter-

natives include running the cleaner once per time interval

(e.g., once every day), or in a background process.

New issues also arise when considering PLACE us-

age under multiple processes or users. Concurrent use of

PLACE by different processes is only a problem in the

current implementation when using the basic algorithm

to allocate a directory. In that situation, competing con-

trolled directory creations in different groups could lead

to significant difficulty in creating a directory in the de-

sired location(s). To avoid this problem, PLACE acquires

an advisory lock on the .concurrency file during this

mode. This lock is only used to signify usage of the ba-

sic algorithm. In practice the usage of the basic algorithm

repopulates the shadow cache, reducing the need for this

mode of operation. A more cooperative approach is pos-

sible, where processes share the work of gaining control,

but this would introduce significant complexity.

Multiple users also introduce a new issue, particularly

as to whether the SDT should be shared or private per

user. Sharing requires some level of trust among applica-

tions, as the SDT must be in a writable location. Thus, a

shared SDT is vulnerable to many types of attacks (e.g.,
changing the structures of PLACE to lead to poor alloca-

tions, or filling the SDT and causing a denial of service).
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In many environments, this is not a problem, as a single

user or application may have sole access to the file sys-

tem. However, in less trustworthy settings, the SDT could

be replicated on a per-user basis; although this increases

space utilization and duplicates effort, it circumvents the

security issues that arise due to sharing.

2.7 Limitations

The primary limitation of PLACE is that it is currently

implemented only for FFS-like file systems. However,

most modern UNIX file systems are FFS-like, and recent

features, including journaling [29] within ext3 or the Soft

Updates found within the BSD family of FFS implemen-

tations [23], do not affect our ability to control file place-

ment with the techniques described above.

Another limitation arises due to the internal implemen-

tation of some FFS implementations, which spread larger

files across different cylinder groups in order to avoid fill-

ing a single group too quickly [13]. This FFS behavior

prevents PLACE from controlling where large files are

laid out on disk, and thus we provide an interface to query

PLACE as to the largest file size whose allocation can be

“guaranteed” to be controllable. One notable exception to

this standard FFS implementation strategy occurs within

ext2, which does not spread larger files across different

groups; this implementation strategy hints at what gray-

box implementors would like to find inside of the systems

they build on top of – behavior that is simple to understand

and thus relatively easy to control.

PLACE also does not directly allow for fine-grained

placement of files within a particular group. However, ap-

plications can modify the order of file creation to pack

files into a group in a controlled fashion [1].

One alternative that we had initially explored over-

comes these limitations but does not mesh well with ap-

plications that do not use PLACE. In this alternative ap-

proach, PLACE initially fills the target file system with

a set of dummy files; by discovering the exact locations

of each file, PLACE can then free up space whenever ap-

plications request new space, and thus all data allocations

can be controlled. However, we deemed this approach

unacceptable, as unmodified applications would not work

correctly – to those applications, the file system appears

as if it is full.

3 Analysis
In this section, we analyze the behavior of PLACE,

demonstrating its functionality and its basic overheads.

We first discuss the experimental environment, and then

proceed through a series of microbenchmarks, demon-

strating the effectiveness of layout control, and revealing
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Figure 3: Controlled Allocation. The graph depicts four dif-
ferent experiments, each of which creates 250 200-KB files. In
the first three, the standard file system interfaces are used, but
the number of directories under which the files are created is
varied, from 1 to 10 to 100; these three experiments are labeled
S(1), S(10), and S(100), respectively. In the fourth experiment,
the PLACE API is used to create those files under 100 direc-
tories, but to place them in a single group in the middle of the
disk (labeled P(100) in the graph). The group number is var-
ied along the x-axis, and the shaded bar indicates some data
has been placed in a particular group, with darker bars indicat-
ing more data. The debugfs command is used to gather the
needed information.

the costs of system creation and usage. We then show

how much improvement can be expected when reorga-

nizing data and controlling layout to account for zoned-

bit recording. Finally, we discuss our experience upon a

broader range of OS platforms.

3.1 Experimental Environment
We present results with PLACE on top of the Linux 2.2

ext2 file system. All experiments on this platform are

performed on a 550 MHz Pentium-III processor, 1 GB of

main memory, and a 9 GB IBM 9LZX disk. The default

ext2 file system built over this disk consists of 68 block

groups. We also report on our experience with other file

systems at the end of the section.

3.2 Layout Control
We begin with a simple experiment to demonstrate that

PLACE can effectively collocate files into a specific group

on the disk. Specifically, we compare four different meth-

ods of creating a 50 MB directory tree, allocated across

250 uniformly-sized files. In the first three, we use the

standard file system interfaces, and alter the number of

directories under which to place the files, from 1 to 10 to

100. In the fourth, we use the PLACE ICL to create the

files underneath of 100 directories, but direct the system
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Figure 4: System Initialization. System initialization time is
plotted. Along the x-axis, we vary the number of shadow direc-
tories created per group, and the y-axis plots the total time for
the initialization to complete.

to place the files and directories into a single group in the

middle of the disk. Figure 3 shows the group utilization

of each approach for directory trees of 50 MB of data.

As we can see from the figure, with more directories

and the standard layout algorithms, the data from the files

is scattered across the disk. In contrast, with PLACE, all

of the data is located in the middle group of the file sys-

tem, exactly as desired.

3.3 System Creation
Now that we have demonstrated basic control over layout,

we seek to understand the costs of using the system. The

first cost that we present is that of system initialization, as

performed by the pmkfs tool. Figure 4 presents system

initialization time.

The dominant cost of system initialization is in the

number of shadow directories that are created within the

shadow cache. Therefore, we present the sensitivity of ini-

tialization time to the number of shadow directories cre-

ated per group. As one can see from the figure, this cost

does not scale well with an increasing number of direc-

tories in the Linux ext2 system, as an increasing amount

of data needs to be created in order to allocate directories

across all of the groups successfully.

3.4 API Overheads

We next present the overheads of controlled file and direc-

tory creation via PLACE. Our goal here is to understand

the costs of gray-box control over data placement. Ta-

ble 1 breaks down the cost of creating different-sized files

through the Place CreateFile interface.

The costs presented in the table are broken down into

Time (ms and Percentage)
0 B 8 KB 64 KB 1 MB

Base 0.12 7.7% 0.20 12.0% 0.79 34.5% 9.80 85.6%
State 1.19 75.5% 1.20 70.8% 1.20 52.3% 1.23 10.7%
Alloc 0.14 9.2% 0.15 8.7% 0.15 6.4% 0.15 1.3%
Ren 0.04 2.6% 0.04 2.5% 0.04 1.9% 0.08 0.7%
Misc 0.08 5.0% 0.11 6.4% 0.11 4.9% 0.20 1.7%
Total 1.57 ms 1.69 ms 2.29 ms 11.45 ms

Table 1: File Allocation Overheads. Each result shows the
average of 100 controlled file creations using the PLACE ICL.
There was little variance (less than 0.04 ms) across the runs.

Time (ms and Percentage)
Shadow Without
Cache Shadow Cache

Min Median Max
Base 0.08 4.4% 0.10 3.0% 0.10 0.4% 0.00* 0.0%
State 1.17 63.4% 1.47 46.4% 1.19 4.8% 0.00* 0.0%
Alloc 0.24 12.7% 0.99 31.4% 5.46 22.1% 3.29 69.9%
Ren 0.04 2.0% 0.03 1.0% 0.03 0.1% 0.00* 0.0%
Clean N/A 0.22 7.2% 17.5 70.7% 1.41 30.0%
Misc 0.32 17.5% 0.35 11.0% 0.47 1.9% 0.01 0.1%
Total 1.85 ms 3.16 ms 24.7 ms 4.71 s

Table 2: Directory Allocation Overheads. Each result shows
the average of 100 controlled directory creations using the
PLACE ICL. Note that while most times are in milliseconds, the
rightmost column (Max) shows time in seconds. The ’*’ indi-
cates that the time shown is not actually zero, but appears as
such due to rounding.

five different categories, across four different file creation

tests. The five categories are as follows: Base, the time

to create the file itself through standard interfaces; State,

the time to read the .superblock file to access system

statistics and configuration information; Alloc, the time

to control allocation (in this case, a stat system call to

check the inode number); Ren, the time to rename the file

into the correct namespace; and Misc, additional software

processing overhead.

As we can see from the table, the PLACE API for file

creation adds roughly a 1 ms overhead to file creation.

This cost is mostly due to PLACE initialization, which

would be amortized over multiple calls to the PLACE li-

brary. However, there is still significant overhead in the al-

location, rename, and other software overheads. Finally,

as file size increases, the overheads are also (unsurpris-

ingly) amortized.

We next explore the overheads of directory creation via

the Place CreateDir API. Table 2 presents the cost

breakdown of a controlled directory allocation, both with

and without the shadow cache. Note that a new category

is also included, labeled Cleanup, which includes time

spent cleaning up the SDT after the directory-allocation

process has run. Also note that Alloc in this case refers to
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Figure 5: Create Performance. The cost of moving a directory
tree into a specific group is presented, varying the number of
sub-directories in the structure along the x-axis, given a fixed
amount of data (50 MB, spread evenly across 250 files). Four
different approaches to creating the structure are compared, as
described in the text. The y-axis presents the total time for the
bulk collocation, on a log scale.

the costs of creating any necessary files or directories as

required by the directory-allocation algorithm.

From the table, we can make a number of observations.

First, with the shadow cache, the time for a controlled di-

rectory creation is reasonable, at roughly 1.85 ms (how-

ever, this value is still substantially higher than the base

directory creation cost, which is approximately a factor of

20 faster). Second, without the shadow cache, times are

higher, with a median cost of around 25 ms. The column

that lists the maximum time without the shadow cache

indicates the potential cost of running the full directory-

creation process; in the worst case, it takes over 4.7

seconds to create a directory in the correct group. This

difficulty arises with a controlled creation within the last

(and hence smaller) group; because ext2 allocates directo-

ries based on free bytes remaining, it takes an excessively

long time to fill up the other groups and hence coerce a

directory allocation into this last group. The Base, Alloc,

and State times are essentially constant, and constitute a

negligible part of the total in the maximum case. Since

the shadow cache does not use the basic algorithm, it does

not need to Clean afterward.

3.5 Bulk Collocation Costs
A common usage of PLACE is to move an entire directory

tree into a specific group on the disk, which can be ac-

complished with one of the PLACE command-line tools.

Thus, we were interested in what strategy this tool should

take in moving a large amount of data from the source to

its final destination within one group (or a small number

of groups).
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Figure 6: Small-file Reads. The time to read 250 200-KB files
(50 MB) of data is shown, under four different settings, varying
the number of directories across which the data is placed. In two
settings, the standard file system APIs are used to create the files.
In the other two settings, PLACE is used to collocate all data
into a single group. Two orders are shown: ’random’, which
reads the files in random order, and ’optimal’, which reads them
in a single scan of the disk.

Figure 5 presents the time to perform this “bulk collo-

cation” of 50 MB of data, again spread evenly across 250

200-KB files, under a varying number of sub-directories.

Four schemes are compared. The first uses PLACE in a

naive fashion, by creating directories and files in the target

group recursively, and assuming that no shadow cache ex-

ists. This approach is dramatically slow, as the directory

creation algorithm finds it increasingly difficult to force

data into the target group. The second approach creates

directories first, and performance improves tremendously,

because the ext2 allocation policy uses the number of

bytes allocated in its group-selection policy. Thus, by not

creating files in the target group, it is much easier to co-

erce the system into choosing it. The third scheme shows

the time for the second approach assuming that directo-

ries can be allocated from the shadow cache, which also

improves the performance of the bulk collocation down

to just a few seconds. Finally, a traditional directory-tree

copy is shown as a comparison point; it is fast because

it does not have any overhead associated with it, even

though it is likely to spread data across the disk in a less

localized manner.

3.6 Benefits of Collocation
To quantify the potential read performance improvement

of PLACE, we perform a final set of microbenchmarks.

Figure 6 shows the performance of the first set of tests,

which present the time it takes to read a set of 250 200-

KB files that have been collocated on the disk.

From the figure, we can see that if an application reads a
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Figure 7: Large-file Reads. The performance of reading a 100-
MB file is shown on both ext2 and FFS, while varying the group
in which the file is created along the x-axis. The file cache is
flushed via a umount/mount cycle before the read to ensure that
the disk bandwidth is properly measured. Each point is the av-
erage of three trials; the variance across all trials was low.

set of files in random order, collocating them into a local-

ized portion of the disk improves performance by almost a

factor of two (the ’random’ lines in the graph). However,

if the files are read in the optimal order (essentially just

scanning across the disk in a single sweep), the benefits

of collocation are quite small; in this case, spreading data

across the disk results in only a few additional seeks, and

thus makes little overall difference in performance.

We also demonstrate how PLACE can be used to take

advantage of the zoned bandwidth characteristics of mod-

ern disks [15]. Figure 7 plots the performance of large se-

quential file scans, when the files are placed into specific

groups. The figure depicts the performance of PLACE

on two file systems: standard ext2, and a modified ext2

which acts like traditional BSD FFS.

As one can see from the figure, on the ext2 platform,

placing data in the lower-numbered groups corresponds

directly to placing data onto the outer zones of the disk,

thus improving performance. We also observe that when

the same experiment is run on top of an “FFS” file sys-

tem, the zoning nature of the disks are hidden; because

FFS spreads blocks of large files across the disk, PLACE

cannot control the placement of those blocks.

3.7 Experience with Other Systems

Our primary focus has been on the ext2 file system, as it

is a modern implementation of FFS concepts and a pop-

ular file system in the Linux community. However, we

designed many aspects of PLACE with more general FFS-

like systems in mind; therefore, we were interested in

studying the behavior of PLACE on other platforms.

Our first test of generality was to run PLACE on top

of an ext3 file system, the journaling version of ext2 [29].

Because ext3 goes to great lengths to preserve backwards-

compatibility with ext2, the same on-disk structures are

utilized. Thus, we were not surprised to find that PLACE

works without issue on top of ext3.

We also tested PLACE on top of an implementation of

the FFS [13] allocation algorithms in the Linux kernel.

PLACE worked without modification in this environment,

with the limitations discussed in Section 2.7 and shown

directly in Figure 7 relating to the placement of large files.

4 Case Studies
In this section, we describe two different example uses of

the PLACE library. In the first, we demonstrate how a

web server can reorganize files with PLACE so as to im-

prove server throughput and response time. In the second,

we describe how a high-speed file system benchmarking

infrastructure can use PLACE to quickly extract I/O char-

acteristics from the underlying system.

4.1 Improving Web Server Throughput

In our first example, we apply PLACE in order to under-

stand the potential performance improvement in a web

server environment. By reorganizing files such that the

most popularly accessed files are close to one another on

disk, seek costs can be reduced. Web service is a particu-

larly good target for PLACE, as the structure of a typical

web directory tree does not necessarily match the local-

ity assumptions encoded into most FFS-like file systems.

Further, there is no need to change the source code of the

web server; the reorganization can be performed off-line

via command-line tools.

We study the potential benefits through a simplified

trace-based approach. We utilize a web trace from the

University of Wisconsin-Madison web server. The trace

is first preprocessed to remove requests that do not induce

file system activity, such as errors and redirects, and the

only requests that remain are ones that transfer data and

HTTP 304 replies (a reply to a cache coherence check).

The trace contains roughly 2.6 million requests, and ac-

cesses a total directory tree size of 720 MB.

To understand the potential gains of collocation, we run

the trace through a file system request generator. For each

trace entry, the request generator invokes the appropriate

file system call and records the response time. Specif-

ically, to model HTTP 304 requests, the generator per-

forms a stat system call on the file, and for requests that

transfer data, it maps the file into memory and touches

every page. Although this approach does not capture the

full complexity of a web environment, it should give us a
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Figure 8: Web Server Performance. The time to play back the
I/O component of a web trace is shown. The standard line plots
the performance with typical layout, and the PLACE approach
packs all data into a small portion of the disk. Each point rep-
resents the mean of three trials (the variance was low), and the
size of the directory tree being served is 720 MB.

baseline for the potential performance improvement from

file system reorganization.

We utilize the PLACE command-line tools to collo-

cate the directory tree into the outer-most tracks of the

disk, and compare this organization to a directory tree

spread across the drive as determined by typical file sys-

tem heuristics.

Figure 8 gives the time to replay the trace as a function

of the amount of memory. Across the range of memory

sizes, collocation with PLACE improves performance by

roughly 20%. These benefits result directly from a reduc-

tion in seek costs, as demonstrated by further instrumen-

tation of our testing apparatus. Specifically, by recording

the group number of each file access, we can compute the

average group distance traversed between requests. For

the standard layout, the average number of groups be-

tween requests was 6.02, while for PLACE it was 0.52.

However, overall performance gains were limited due

to the access patterns found in this particular web trace.

In the trace, 76% of the requests were for 122 files in a

single image directory. These files are thus collocated un-

der standard FFS policy, reducing the need for PLACE-

assisted file placement. However, even in such an environ-

ment, PLACE was able to improve performance in a sim-

ple and direct manner; a greater benefit can be expected

in environments where access patterns do not match di-

rectory structure so closely.

4.2 Rapid File System Microbenchmarking
In our second example, we examine the use of PLACE

in a different context, that of fast discovery of I/O perfor-

mance characteristics. Many tools have been developed

over time that extract performance characteristics from

the underlying system [5, 14, 20, 21, 28]. However, many

of these benchmarking tools need to be run as root, and all

run for an uncontrolled (and potentially lengthy) amount

of time. For example, Chen and Patterson’s self-scaling

benchmark runs for many hours (even days) before report-

ing results back to the user [5].

In some settings, it would be quite useful to have a sys-

tem benchmarking tool that ran quickly, perhaps trading

accuracy for a shorter run-time. For example, when run-

ning an application in a foreign computing environment

(e.g., Seti@Home [27], or in any wide-area shared com-

puting system such as Condor [12] or Globus [8]), a mo-

bile application needs to quickly extract the characteristics

of the underlying system so that it can parameterize itself

properly to the system. Further, the benchmark must be

run entirely at user-level, requiring no special privileges

to discover system parameters.

Thus, we develop the benchmarking tool FAST (Fast or

Accurate System exTraction), that allows a mobile appli-

cation to extract various performance characteristics from

the underlying system under a fixed time budget and en-

tirely at user level. Although FAST currently can extract

information about both the I/O system and the memory

system, only the I/O system component utilizes PLACE.

As an example of a mobile application, we exam-

ine the single processor version of NOW-Sort, a world-

record-breaking sorting application [2]. While tradi-

tionally thought of in database contexts [16], sorting is

also commonly found in many scientific computation

pipelines [10], and therefore it is a reasonable candi-

date for mobile execution in scientific peer-to-peer shared

computing systems [8].

NOW-Sort requires three parameters to tune itself to the

host system. The first two are I/O parameters: the band-

width expected from the local disk, and the worst-case

seek time. With these two numbers, the sort can estimate

how large its buffers must be during the merge phase in

order to amortize seek costs. The third is the size of the

caches in the memory-hierarchy. By sorting data in cache-

sized chunks, sorting proceeds at a much faster rate [16].

The most difficult of these parameters to generally

extract is the maximum seek cost. However, with the

PLACE API, the FAST tool can create two files that are far

apart on the disk, issue a synchronous update to the first,

start a timer, issue a synchronous update to the second,

and record the elapsed time of the second write, giving a

coarse estimate of a full-stroke seek. Further refinements

can be made over time, in order to remove rotational costs

if so desired.

Table 3 presents the costs of running FAST on our test

system. In this mode of operation, FAST runs as quickly

as possible, garnering coarse estimates of the required

system parameters. From the table, we observe that the
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Time (s)
Cache 0.73

Bandwidth 2.46

Max Seek 0.52

pmkfs 4.51

Total 8.22

Table 3: FAST Performance. The table presents the time FAST
takes to discover system parameters. In this mode, FAST is con-
figured to run as quickly as possible, extracting coarse estimates
but consuming less overall time.

total time to extract the needed information for sorting is

roughly 8 seconds. For sorts of massive data sets, spend-

ing the extra few seconds to configure the application is

well worth the time. Finally, note that pmkfs is special-

ized to the task at hand; by giving it command-line options

so as to prevent the creation of any shadow directories,

initialization time is reduced to a small, fixed overhead.

5 Related Work
The work most directly related to PLACE is the gray-box

File Layout Detector and Controller (FLDC) described in

the original gray-box paper [1]. The FLDC has two com-

ponents: the first can be used to decide in which order to

access a set of files, and the second to re-write file within a

particular directory so as to likely improve later accesses.

Both components could be useful here; however, PLACE

goes well beyond FLDC, exposing fine-grained control

over file and directory layout to applications.

Applications have long sought better control over un-

derlying operating system policies and mechanisms [26].

In response to this demand, previous research has devel-

oped new operating systems, including Spin [3], Exoker-

nel [7], and VINO [22], that allow much-improved control

over operating system behavior. The gray-box approach

provides a different route to improved control over the

underlying OS; by exploiting knowledge of OS behavior,

PLACE demonstrates that file and directory layout can be

realized at user-level.

The PLACE method of exposing group numbers is con-

ceptually similar to the Exokernel philosophy of exposing

physical names. PLACE treats the file system as the un-

derlying entity and exposes its internal structure (e.g., ext2

block groups), while Exokernel exposes the details of the

hardware (e.g., physical sector numbers).

Moving data blocks into a better spatial arrangement,

as we do in the web server case study, has been ex-

plored in many other contexts. For example, in their

work on disk shuffling, Ruemmler and Wilkes track fre-

quency of block accesses, and reorder disk blocks to re-

duce seek times [19]. At a higher level, Staelin and

Garcia-Molina rearrange where files are placed within the

file system [25]. The major difference between these ap-

proaches and PLACE is that they are performed trans-

parently to users and applications; no control is exposed.

However, both are more sophisticated in tracking which

blocks or files are accessed in temporal succession; we

hope to develop an access-tracking tool in the future.

Our work on improving web server performance is sim-

ilar to other work on improving web proxy performance.

For example, Hummingbird is library-based file system

designed for web proxies [24]. PLACE provides some of

the same features of Hummingbird in that it allows the

users to collocate files and does not tie locality to naming.

In contrast, PLACE is implemented on top of an FFS-like

file system, whereas Hummingbird performs its functions

in a library that runs on a raw disk. Further, Humming-

bird is specialized for a web-proxy environment, whereas

PLACE is a general-purpose tool.

Finally, the FAST tool bears some similarity to recent

work in database management systems. For example, in

online aggregation [9], the DBMS returns an approximate

result of a selection query to the user immediately, and

includes a statistical estimate of the accuracy of the result.

If the user allows the query to keep running, the system

refines the result over time, and as more data is sampled,

the answer becomes more precise. The FAST tool applies

this same philosophy to a benchmarking system.

6 Future Work

A number of avenues exist for future research. First, we

plan to explore the breadth of applicability of PLACE on

top of other file systems. One platform we are interested

in is the BSD family; we believe there are some new chal-

lenges in this domain, as more recent BSD implementa-

tions of FFS utilize the DirPrefs algorithm for directory

group selection [6]. This algorithm places directories near

their parents, in an attempt to increase the performance

of certain common operations (e.g., the unpacking of a

large directory tree). Building a gray-box controller such

as PLACE on top of DirPrefs would thus require that extra

care be taken to spread directories across groups.

Building PLACE on top of a log-structured file system

(LFS) [18] would also be interesting. For example, group-

ing of particular related files would generally be straight-

forward; if a user wishes to group two files, those files can

be written out at the same time. However, other aspects

make LFS more challenging, including grouping of files

that span multiple segments and controlling the off-line

behavior of the cleaner. More generally, we are interested

in developing techniques that can be used to control allo-
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cation across a broader range of file systems.

We would also like to investigate the utility of these

methods on a range of different storage devices. Specif-

ically, we would like to determine how useful such con-

trolled file placement is on top of modern disk arrays.

Finally, a tool such as PLACE is a low-level mechanism

for placing files in a controlled manner on disk; exactly

which files should be placed together is a higher-level pol-

icy decision that requires detailed knowledge of how files

are accessed over time. Thus, similar to previous work

in data rearrangement [19], we plan to develop a tool to

track how files and blocks are accessed and thus generate

the necessary inputs for better file placement.

7 Conclusions

In the classic paper Hints for Computer System De-
sign [11], Lampson tells us: “Don’t hide power.” Higher-

level abstractions should be used to hide the undesirable
properties; useful functionality, in contrast, should be ex-

posed to the client. Many UNIX file systems do not expose

explicit controls for laying out files according to user de-

mands. Given standard layout heuristics, workloads that

do not conform to the locality assumptions set in stone

nearly 20 years ago perform poorly.

In this paper, we present the design, implementation,

and evaluation of PLACE, a gray-box Information and

Control Layer that exposes file and directory information

to applications. By exploiting knowledge of internal algo-

rithms that are common to FFS-like file systems, PLACE

can control file and directory allocations.

Through microbenchmarks, we have shown that the

costs of gray-box control are not overly burdensome, and

that the potential benefits of controlled allocation are sub-

stantial. Through two case studies, we have demonstrated

that the PLACE system can be used in realistic and di-

verse application settings. We have also discussed the

limitations of PLACE as well as the gray-box approach

to controlled allocation, highlighting the features of file

system allocation policies that make it simple or difficult

to build control on top of them.

The gray-box approach provides an alternative path for

innovation. Instead of requiring changes to the underly-

ing operating system, which may be difficult to imple-

ment, maintain, and distribute, a gray-box ICL embeds

some knowledge of the underlying system, and exploits

that knowledge to implement new functionality, often in a

portable manner. One important question remains: what

is the full range of functionality that can be implemented

in the gray-box manner, and what are the ultimate limita-

tions? With each ICL, we take another small step toward

the final answer.
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