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Abstract

Most previous work on buffer cache management
uses an access-based placement policy that places
a data block into a buffer cache at the block’s access
time. This paper presents an eviction-based place-
ment policy for a storage cache that usually sits in
the lower level of a multi-level buffer cache hierar-
chy and thereby has different access patterns from
upper levels. The main idea of the eviction-based
placement policy is to delay a block’s placement in
the cache until it is evicted from the upper level.
This paper also presents a method of using a client
content tracking table to obtain eviction information
from client buffer caches, which can avoid modifying
client application source code.

We have evaluated the performance of this
eviction-based placement by using both simulations
with real-world workloads, and implementations on
a storage system connected to a Microsoft SQL
server database. Our simulation results show that
the eviction-based cache placement has an up to
500% improvement on cache hit ratios over the com-
monly used access-based placement policy. Our eval-
uation results using OLTP workloads have demon-
strated that the eviction-based cache placement has
a speedup of 1.2 on OLTP transaction rates.

1 Introduction

With the ever-widening speed gap between proces-
sors and disks, and decreasing memory price, mod-
ern high-end storage systems typically have several
or even tens of gigabytes of cache RAM [28]. The
clients of a storage system, e.g. filers or database
servers, also have large amount of devoted main
memory for caching [30]. These buffer caches form

a multi-level buffer cache hierarchy (See Figure 1).
Though the aggregate size of this hierarchy is in-
creasingly larger, the system might not deliver the
expected performance commensurate to the aggre-
gate cache size if these caches could not work to-
gether effectively. In this paper, we investigate a
method to manage the multi-level buffer cache hi-
erarchy effectively. Specifically, we focus on how to
make better use of a storage server cache that coex-
ists with large buffer caches of storage clients.

Previous studies [19, 31, 28] have shown that stor-
age caches have different access patterns and thereby
should be managed differently from caches at up-
per level. Accesses to storage caches usually exhibit
weak temporal locality because accesses to storage
caches are actually misses from upper level buffer
caches. In other words, accesses made by applica-
tions are first filtered by upper level buffer caches
before they reach storage caches. As a result, widely
used locality-based cache replacement algorithms,
such as Least Recently Used (LRU), do not perform
well for storage caches. This has been observed by
Muntz and Honeyman’s as well as our previous study
on file and storage server cache, respectively [19, 31].

Most previous work on file or storage buffer caches
focused on cache replacement policies. Buffer cache
management mainly consists of two components: re-
placement policy and placement (admission) policy.
A replacement policy decides which block should be
replaced to make space for a new block when the
cache is full, while a placement policy decides when
a block should be brought into a cache. The access-
based placement policy has been widely used in most
previous studies. This policy places a block into a
cache at the time this block is accessed. The main
motivation for such a placement is to maintain the
inclusion property (any block that resides in an up-
per level buffer cache is also contained in a lower
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different cache placement policies. In this section,
we describe idle distance and then use it to measure
the access-based and eviction-based placement poli-
cies with three large real-world storage cache access
traces.

2.1 Idle distance

To evaluate the effectiveness of different cache place-
ment policies, we need a metric to measure the cost
of keeping a block in a cache to generate a cache
hit. The idle distance can well serve this purpose.
For a reference to a block, its idle distance is de-
fined as the period of time this block resides in the
cache but is not being accessed. More specifically,
for a reference string (a numbered sequence of tem-
porally ordered accesses to a cache), we use sequence
numbers to denote “time”, and the time of the pre-
vious and current access to a block b as prev(b) and
current(b), respectively. We then use place(b) to
denote the time b is put into the cache. The idle
distance for the current reference to b is defined as
current(b) max(prev(b), place(b)), i.e., the time in-
terval from the maximum of b’s placement time and
b’s previous access time to the current access. Dur-
ing this time interval, b occupies a memory block
but is not accessed.

A good cache placement policy should try to re-
duce idle distance to improve the efficiency of a
buffer cache. An ideal policy would put a block into
a cache right before it is accessed. But this is im-
possible unless the system has zero cost to load a
missed block.

2.2 Access-based Placement

In the commonly-used access-based placement pol-
icy, the idle distance for a reference is equal to its
reuse distance, which is the distance between the
previous access and the current access to this block,
i.e., current(b) prev(b). Since the access-based
placement policy puts a missed block b into a cache
right at its access time, prev(b) equals place(b).
Therefore, the reuse distance for this reference is the
same as its idle distance. Reuse distances have been
used by many studies [18, 21, 1, 15] including our
previous study [31] to examine the temporal locality
in an access sequence.

Our previous study [31] has shown that accesses to
storage caches have long reuse distances because ac-
cesses from applications have already been filtered
through one or more levels of buffer caches before
they arrive at storage caches. If a client cache of size
k uses a locality based replacement policy like LRU,

after a reference to a block, it takes at least k dis-
tinct references to evict this block from the client’s
buffer cache. Therefore, the next access to block b in
the storage cache is separated by at least k distinct
references in the reference sequence at the storage
cache. This long reuse distance significantly limits
the efficiency of commonly-used access-based place-
ment at storage caches and other lower level buffer
caches.

2.3 Eviction-based Placement

In the eviction-based placement policy, the idle dis-
tance for a reference is equal to its eviction dis-
tance. At a lower level cache like a storage cache,
the eviction distance for a reference is defined as
the distance between the current access and the
last time it is evicted from a client buffer cache.
In other words, if we use evict(b) to denote the
“time” when b was most recently evicted from a
client buffer cache, the eviction distance for the cur-
rent access to b is current(b) evict(b). Since the
eviction-based placement policy fetches the block
when it is evicted from a client, place(b) equals
evict(b). Because an eviction from a client al-
ways happens after the previous access to the same
block, prev(b) is smaller than evict(b), which im-
plies max(prev(b), place(b)) = evict(b). Therefore,
the idle distance for a reference equals the eviction
distance of this reference.

We use idle distance distributions to compare
the two placement policies. An idle distance his-
togram shows the number of references for various
distance values. Figure 2 compares idle distance
distributions for both access-based placement policy
(AC) and eviction-based placement policy (EV) us-
ing three real-world storage access traces including:

• Auspex I/O Trace is a disk I/O trace col-
lected by filtering the Auspex file Server access
trace [6] through an 8 MB NFS file server cache
simulator.

• MS-SQL-Large is collected from a storage
system connecting to a Microsoft SQL database
server running the standard TPC-C bench-
mark [25, 16] for two hours. The TPC-C
database contains 256 warehouses and occu-
pies around 100 GBytes of storage excluding
log disks. The trace captures all I/O accesses
from the Microsoft SQL server to the storage
system. The trace ignores accesses to log disks.
The Microsoft SQL server cache size is set to be
the machine memory limit, 1 Gigabytes.
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Figure 2: Idle distance distributions for both access-based placement policy (AC) and eviction-based place-
ment policy (EV) with three storage access traces (Note: all figures are in logarithmic scales).

• MS-SQL-Small is collected with the same
setup as the previous trace except the database
buffer cache size is set to be 64 MBytes. We
collected this trace in order to predict results
with much larger databases.

As shown on Figure 2, all histogram curves are
hill-shaped. Peak distance values, while different,
are all relatively large and occur at distances greater
than their client cache sizes. This indicates that
most of accesses are far apart from previous accesses
to the same blocks or previous evictions from clients,
showing weaker temporal locality at storage caches.

Comparing the two curves, one can find out that
eviction distances are shorter than reuse distances.
Figure 2 shows there are fewer occurrences of EV at
large distance values(or more occurrences at small
distance values) than AC. For example, In the MS-
SQL-Large trace, 3.0 million references in AC have
idle distances greater than 262144, whereas only 2.3
million references in EV have idle distances greater
than 262144. The main reason for this difference
is very intuitive. Since a block b first needs to be
fetched from a storage cache into a client buffer cache
before being evicted from the client cache, evict(b)
is usually greater than prev(b). As a result, the evic-
tion distance (current(b) evict(b)) is smaller than
the reuse distance (current(b) prev(b)). This im-
plies that the eviction-based placement policy can
utilize a storage cache more efficiently than the com-
monly used access-based placement policy.

3 Benefits of Eviction-based
Placement

The eviction-based placement puts a block into a
cache when this block is evicted from an upper level
cache. This placement policy was first proposed
in the victim cache design for hardware processor
caches [14]. A victim cache, a small fully-associative
cache between a processor cache and its refill path,
is used to keep cache blocks that are recently evicted
from the processor cache. It has been shown that a
victim cache can significantly improve the processor
cache performance.

Eviction-based placement is independent from
cache replacement policies. Therefore, it can be
combined with most replacement algorithms includ-
ing LRU, Frequency Based Replacement (FBR) [22],
2Q [13], and Multi-Queue (MQ) [31].

To find out the effects of eviction-based place-
ment on cache hit ratios of various replacement poli-
cies, we have built four trace-driven cache simulators
that respectively use LRU, FBR, 2Q and MQ as the
replacement policy. All cache simulators can run
with two options: the original (access-based) place-
ment policy and the eviction-based placement policy.
Since our first goal is to find out the upper-bound
of EV’s improvement on hit ratios, we did not sim-
ulate disk accesses and network accesses. The extra
overheads introduced by EV are discussed in detail
in Section 5. These overheads are also reflected in
our implementation results on a real system.

Figure 3 compares the hit ratios between the
access-based and eviction-based placement policies
for four different cache replacements with the MS-
SQL-Large trace. LRU + EV means that the cache
is managed using LRU as the replacement policy and
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Figure 3: Benefits of eviction-based placement with MS-SQL-Large with different replacement algorithms.

EV as the placement policy, and other abbreviations
are similar.

As shown on Figure 3, the eviction-based place-
ment always performs better than the access-based
placement. In many cases the gap between these two
is quite substantial. For example, when the LRU re-
placement policy is used, the eviction-based place-
ment has 10% to 5 times higher hit ratios than the
access-based placement. The improvements for FBR
and 2Q are also significant, up to a factor of 2.

The effects of the eviction-based placement are
different for various replacement algorithms. For
example, in a 512 MBytes storage cache, the
eviction-based placement outperforms the access-
based placement by a factor of 2 for LRU, 49%
for FBR, 59% for 2Q and only 15% for MQ. The
eviction-based placement has the largest improve-
ment on LRU than on the other three replacement
algorithms because LRU replaces the block with the
longest idle distance from the current time. The
idle distance in the eviction-based placement equals
the eviction distance, which is always smaller than

the idle distance (reuse distance) in the access-based
placement. As a result, some blocks that are evicted
by LRU in the access-based placement can stay in
the EV-based cache for a longer time to be hit again
at next references.

The eviction-based placement has the least im-
pact on MQ among all four replacement algorithms.
Since MQ was designed based on the long idle dis-
tance access patterns at storage caches, it can se-
lectively keep some frequently accessed blocks in a
cache for a longer time. Because of this reason, de-
laying a block’s placement time does not offer large
benefit. Therefore, for MQ, EV only has 11-80%
improvement over the access-based placement.

The gap between the eviction-based placement
and the access-based placement is more pronounced
for smaller cache sizes. For example, in the MS-
SQL-Large trace with a 128 MBytes storage cache
using the 2Q replacement policy, the eviction-based
placement has a hit ratio of 9.8% whereas the access-
based placement achieves a hit ratio of 5.9%. The
gap is even larger for extremely smaller cache size
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Figure 4: Cache hit ratios for all three traces.

(4MBytes), although the hit ratios are so small that
two curves in Figure 3 is indistinguishable. But with
a 2 GBytes of storage cache, both placement policies
have similar cache hit ratios. This can be explained
using idle distances. Suppose a storage cache has k
blocks. Accesses with idle distances smaller than k
can usually hit in the cache, but most of the other
accesses would generate cache misses. When k is
smaller than the peak idle distance (the distance
with most number of references) shown on an idle
distance distribution histogram (Figure 2), more
accesses have idle distances smaller than k in the
eviction-based placement than in the access-based
placement. As a result, the eviction-based place-
ment performs better than the access-based place-
ment. But this advantage of eviction-based place-
ment decreases when k increases. As a result, the
performance gap between these two also decreases.

Figure 4 shows the hit ratios for all three traces.
The overall results for the other two traces are simi-
lar to those for MS-SQL-Large. For MQ-SQL-Small,
the gap between the two placement policies disap-

pears when the storage cache size is greater than
16 MBytes (2048 8 Kbytes-blocks). This is because
the difference in the idle distance distribution be-
tween these two policies becomes invisible when the
idle distance is greater than 2048 references(see Fig-
ure 2).

4 Obtaining Upper Level Evic-
tion Information

Although the eviction-based placement has shown
significant benefits over the access-based placement
for storage caches, two challenging issues need to
be addressed for the eviction-based placement to be
used in real systems. The first is to obtain eviction
information from client buffer caches. In the hard-
ware victim cache example, when a processor cache
evicts a block, it passes the block to the victim cache.
However, in most software-managed buffer caches,
the eviction information is usually not passed from
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Figure 5: Client Content Tracking Table.

a client to a server. For example, a database buffer
cache always silently evicts a clean page and only
writes out dirty pages to its back-end storage sys-
tems.

Wong and Wilkes [28] have proposed an operation
called DEMOTE for transferring data ejected from
a client buffer cache to a disk array cache. Their
approach is similar to the one used in victim caches.
Since the current I/O interface between a client and
a storage system does not include such an opera-
tion, this approach requires modification to client
application such as a database server’s source code.
Therefore, this method is not applicable when the
client application source code is not available.

In our study, we use a method that can success-
fully obtain the client eviction information without
any modification to client source code. The main
idea is to make use of the buffer address parameter
in the I/O read/write interface and build a table to
keep track of the contents of the client buffer cache.
For example, in a standard I/O interface, a stor-
age I/O read/write call passes at least the following
input arguments: disk ID, disk offset, length and
buffer address. The buffer address parameter indi-
cates the virtual memory address to store/load the
data.

Each entry in the client content tracking
(CCT) table records the current disk block
(diskID, blockNo) that resides in each memory lo-
cation of the client buffer cache. The size of the con-
tent table is extensible, i.e., it can grow or shrink dy-
namically based on the buffer addresses it has seen.
Since only 16 bytes are needed for each cache block
(of size 8 KBytes in our experiments), the content
table does not require too much memory space. For
example, if a client uses a 4 GBytes buffer cache,
the total memory space needed for a CCT is only 8
MBytes, thereby imposing memory overhead of only
0.2%.

Figure 5 shows a CCT table and how it changes
after a read request from a client application. At ev-
ery read/write operation, CCT is consulted to find
out which disk block was previously put in the given
client memory address. If the old disk block is differ-

ent from the currently accessed disk block, the old
disk block must have been evicted from the client to
make space for the new block. Then this eviction
information is passed to the storage system. The
corresponding CCT entry is modified to point to the
currently accessed disk block.

There are two possible places in an I/O subsystem
to implement the CCT table: the client side and the
storage server side. In our study, we decided to im-
plement it on the client side because it is easier to
support clients that use multiple independent stor-
age systems. More specifically, we implement the
CCT table in a filter device driver. Since every I/O
operation needs to pass through this filter driver,
the CCT table can accurately keep track of client
buffer cache content. The filter driver can pass evic-
tion information (block numbers) to a corresponding
storage node via piggy-backing on read/write mes-
sages to that node. Since the driver controls every
read/write messages to the storage nodes, it can al-
ways find a message to the corresponding node in
the send queue to bundle with the eviction informa-
tion. In this way, no additional message is needed.
Because the eviction information is just a few bytes,
the additional delay is negligible.

5 Reducing Reload Overhead

The second challenge with the eviction-based place-
ment is to reduce the reload overhead. Since a
block’s placement into a storage cache is postponed
from its access time to the time when it is evicted
from the client, the block needs to be reloaded from
either clients or disks. As a result, it can increase
the network or disk traffic, which can significantly
offset the benefits of improved cache hit ratios of
the eviction-based placement policy.

The DEMOTE mechanism proposed in [28] relies
on clients to send an evicted block back to storage
systems, even if the block is not dirty. Besides the
burden on developers to modify the client software,
this method also introduces three performance over-
heads, which may cancel out the benefits of exclusive
caching for some workloads.

• Increased network traffic. DEMOTE opera-
tions can significantly increase the network traf-
fic from clients to storage systems. As we
know, most of the client buffer caches (for ex-
ample database server buffers) usually try to
evict clean pages first before evicting any dirty
pages to avoid extra disk write-backs and con-
sistency operations (undo-log logging). In an
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OLTP workload, the read traffic is usually 2-
3 times larger than the write traffic. If every
read request to the storage cache incurs a DE-
MOTE operation, the resulting client-to-server
traffic is almost doubled. In a system where the
client-storage network is a bottleneck, the DE-
MOTE operations can significantly degrade the
system throughput. This has also been pointed
out as a limitation of the DEMOTE method by
the authors themselves [28]. Our implementa-
tion results on a storage system also validate
this limitation.

• Increased access time. When the buffer cache
misses on a client are too bursty to mask the
DEMOTE overheads, a currently missed block
in a client buffer cache may have to wait for a
DEMOTE operation to finish in order to get a
free buffer block before sending a read request
to the storage server. Consequently, the aver-
age access time will increase in such a case. For
example, suppose an application repeats read-
ing sequential blocks from 0 to n in a loop as
in a table join operation, where n is larger than
the number of blocks in a client buffer cache.
Every access would be delayed because it needs
to wait for a free block, which is only available
after an evicted clean block is sent back to the
storage cache.

• Limited flexibility for optimizations. Since a
client buffer cache evicts a clean block to make
space for a new block, the evicted block needs
to be sent to the storage cache before being re-
placed. Due to this constraint, the time win-
dow to demote a block to the storage cache is
very short, not enough to perform any effective
scheduling or batching optimizations.

In our study, we propose to reload (prefetch)
evicted blocks from disks to a storage cache. The
first motivation for taking this approach is that the
disk bandwidth is usually less utilized than storage
area network bandwidth because real-world configu-
rations typically put many disks (for example 60-100
SCSI disks) in a storage server[30]. With an aver-
age seek time of 5-6 ms, a modern SCSI hard drive
can provide over 1MBps bandwidth for a traffic of
random 8-KByte block accesses. Thus, without any
caching at the storage server, a medium disk array,
say 100 disks, can readily saturate a 1Gbps client-
storage interconnection. Moreover, a storage server
cache can also filter some of the data access traffic.
For instance, if a storage cache has a hit ratio of
50%, only half of the network traffic will go to disks.

In this case, using 50 disks per array can saturate a
1Gbps client-storage interconnection. On the other
hand, in some environment where the SAN band-
width is larger than the aggregate disk bandwidth,
DEMOTE can be a better alternative to relieve the
bottleneck of the disks. The second motivation is
to avoid delaying demand requests on clients. By
pushing reloads to storage systems, client demand
requests can proceed without interference by any
DEMOTE operations.

The third motivation is that one can easily reduce
reloading overheads using the following two meth-
ods:

(1) Eliminating unnecessary reloads. Many
reloads in the eviction-based placement are unneces-
sary. In most cache studies, the rule of thumb is that
a large percentage of accesses are made to a small
percentage of blocks. This means that most of the
blocks (cold blocks) are accessed only once or twice in
a long period of time. When these blocks are evicted
from a client buffer cache, it is unnecessary to reload
them from disks. Reloading these blocks can actu-
ally degrade the storage cache hit ratios because they
can pollute a storage cache. Unfortunately, infor-
mation on future accesses is usually not available in
real systems. In our implementations, we speculate
about cold blocks based on the number of previous
accesses. In other words, our storage cache does not
reload blocks that have been accessed fewer than the
reload threshold number of times. This is based on
the observation that frequently accessed blocks are
more likely to be accessed again in a near future.
Many other previous studies [20, 13, 15, 31] were
also based on this observation.

(2) Masking reload overheads through disk
scheduling. To avoid reloads delaying demand disk
requests, we give higher priority to demand accesses
and lower priority to reloads. We treat reloads in a
similar way to prefetching hints since it is perfectly
OK if a reload operation is not performed. Given
such flexibility, our storage system puts reload oper-
ations in a separate task queue and only issues them
when there is no ongoing demand request compet-
ing for the same disk. Many previous work such as
Freeblock scheduling [17] and other scheduling algo-
rithms [8, 23, 11, 29, 2] can easily apply here to mask
reload overheads. For example, the reload overheads
can be hidden using the Freeblock scheduling that
exploits the free bandwidth of disk rotational delay.
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6 Evaluation on Real Systems

We implement the eviction-based placement in a
storage system using a commercial database server
(Microsoft SQL server) as a storage client. The eval-
uation is conducted using real world OLTP work-
loads. The goal of our experiments is to answer the
following questions.

• How much can the eviction-based placement im-
prove cache hit ratios in real systems?

• What is the overall impact of eviction-based
placement on the application performance?

• What are the effects of optimizations for reduc-
ing reload overheads?

• What are the tradeoffs between our method and
the DEMOTE approach [28]?

In this section, we first briefly describe our experi-
mental platform. We then present the performance
results, discuss the effects of optimizations and com-
pare our method with the DEMOTE method.

6.1 Experimental Platform

We conduct our experiments in a configuration sim-
ilar to our previous experiments [30]. It consists of
three PCs, each of which has dual 933MHz Pen-
tium III Coppermine processors with 256 KBytes
L2 cache and 1 GBytes main memory. One PC runs
the storage server software, one runs Microsoft SQL
server 2000 Enterprise edition, and the last one runs
a TPC-C benchmark engine [16] that sends trans-
action requests to the Microsoft SQL server. The
TPC-C benchmark is provided by Microsoft. All
PCs use Windows 2000 Advanced Server as operat-
ing systems. The TPC-C benchmark requires restor-
ing the database to its initial state before each run to
avoid performance discrepancy caused by enlarged
database sizes from previous runs. To shorten our
experiment execution time, we shrink the number of
TPC-C warehouses to 10. The Microsoft SQL server
cache size is configured to be 256 MBytes. We run
the TPC-C benchmark for 30 minutes in each exper-
iment.

The storage server connects to the database server
via a Virtual Interface (VI) network [26] provided by
Emulex cLAN network cards. The peak VI band-
width is about 113 MBps and the one-way latency
for a short message is 5.5 µs. The storage server ma-
chine has five Ultra66 IDE disks. The total storage
capacity is 200 GBytes. The storage buffer cache
size is configured to be 256 Mbytes. The storage

system employs a write-through cache policy. We
have implemented both MQ and LRU as the stor-
age cache replacement algorithms. The parameters
of the MQ algorithm are set according to our pre-
vious study [31]. Our previous study [30] also gives
detailed description of the architecture.

6.2 Results Overview

Cache Hit Ratios
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Figure 6: Storage cache hit ratios and normalized trans-
action rates. All transaction rates are normalized to the
ones achieved using the access-based placement and LRU
replacement for the storage cache.

Figure 6 compares the storage cache hit ratios and
normalized transaction rates for the access-based
and the eviction-based placements. We present the
results for both LRU and MQ replacements. In these
two figures, the base means the access-based place-
ment; RAW-EV means the eviction-based place-
ment without any optimizations; OPT-EV means
the eviction-based placement with optimizations to
reduce reload overhead.

The raw eviction-based placement has the highest
storage cache hit ratios. EV can improve LRU’s hit
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tracking table to obtain eviction information from
client buffer caches without modifying client applica-
tions. To reduce the reloading overheads introduced
by the eviction-based placement, we have discussed
two techniques, eliminating unnecessary reloads and
masking reloads using priority-based disk schedul-
ing.

Our simulation results of real-world workloads
show that the eviction-based cache placement has
10% to 500% higher cache hit ratios than the access-
based placement policy for four different cache re-
placement algorithms. Our implementation results
on a storage system connected to Microsoft SQL
server with OLTP workloads have demonstrated
that the eviction-based cache placement can improve
the application transaction rate by 20%. We also
compare our method with DEMOTE in a storage
system. Our implementation results show that our
method has a 20% higher transaction rate than the
DEMOTE method when the client-storage network
has limited bandwidth.

This paper has several limitations. First, we have
only used some simple techniques to reduce reload-
ing overheads. We are currently implementing the
Freeblock scheduling [17] to mask reloading over-
heads. Second, we have not done theoretical anal-
ysis on the eviction-based placement policy. Some
theoretical analysis would be useful to better under-
stand the characteristics of different cache placement
policies. Third, we have studied only two types of
storage workloads: one is a database OLTP work-
load and the other is a file system workload. It is
interesting to see how well the eviction-based place-
ment would work for other workloads. Even though
this paper focuses on storage cache management, the
techniques presented in this paper can easily apply
to other lower level buffer cache management.
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