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Abstract

We explore the requirements, design, and implemen-
tation of the TrustedBSD MAC Framework. The
TrustedBSD MAC Framework, integrated into FreeBSD
5.0, provides a flexible framework for kernel access con-
trol extension, permitting extensions to be introduced
more easily, and avoiding the need for direct modifica-
tion of distributed kernel sources. We also consider the
performance impact of the Framework on the FreeBSD
5.0 kernel in several test environments.

1 Introduction

Access control extensions have proved a fertile field for
operating system security research over the past twenty
years: a variety of methods have been employed to ex-
tend the system access control policy at great cost to the
developers, maintainers, and users of the extended sys-
tems. Most of approaches to security extension fall short
two vital areas: lack of support by the operating system
vendor for various providers of security extensions on
the system, and the highly redundant implementation of
support infrastructure for security extension providers.

The TrustedBSD MAC Framework included in
FreeBSD 5.0 provides a general facility for extending
the kernel access control policy [8][17]. By providing
common security infrastructure services, such as kernel
object labeling, and the ability to instrument kernel ac-
cess control decisions, the Framework is capable of sup-
porting a variety of policies implemented by different
vendors. This paper explores the design, implementa-
tion and performance of the MAC Framework, as well
as its impact on policy design and the FreeBSD kernel
architecture.

2 The Desire For Access Control Exten-
sions

FreeBSD serves two primary markets: it is both a con-
sumer operating system and a technology source for
third party operating systems or high-end embedded
products. FreeBSD is directly employed as a produc-
tion server and workstation operating system on main-
stream i386, Alpha, and SPARC64 hardware. In the
high-end embedded market, it is used as the basis for
network and storage appliance devices such as firewalls,
network-attached storage, and VPN devices; it is also
used as a technology source for third party operating
system, including Apple’s Mac OS X Darwin kernel, as
well as by other operating system vendors.

In these three roles, FreeBSD is deployed in a wide
variety of environments, ranging from electronic cheque
processing and point of sale devices to web cluster de-
ployment, firewall, and routing appliances. Each of
these environments has different security requirements,
often requiring flexibility beyond that provided for by
the traditional UNIX security protections. Especially in
embedded network environments, the requirements can
range from simple operating system hardening to the in-
troduction of mandatory and fine-grained security poli-
cies.

3 Access Control Extension Mechanisms
Security research and development literature is rife with
approaches to achieving operating system access control
extension with (and without) the help of the operating
system vendor. Traditional trusted variants of commer-
cial UNIX operating systems have been written by the
vendor in response to the needs of specific consumers
(such as US DoD) [12][5][9][10]. Typical practice has
been to maintain a distinction between the base OS prod-
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uct and the trusted variant in terms of maintenance, prod-
uct identification, and price. In addition, there are third
party vendors who develop and market trusted operating
system extensions, often in close coordination with the
OS vendor[2]. Finally, there is a broad range of access
control research across many operating systems and per-
formed in many forms [7] [13] [15]—most frequently,
this work is performed on open source operating systems
due to ready access to operating system source code.

In order to successfully maintain a security extension
product for an operating system, access to the operating
system code is typically required, be it an open source
system, or licensed from the closed source vendor. Prod-
uct maintenance raises a number of challenges, not least
the challenge of tracking the operating system vendor’s
primary product life cycle, which is frequently incom-
patible with the development cycle required for high
assurance products. Many practical impediments also
present themselves: security extensions have their fin-
gers deep in the heart of the operating system, touch-
ing almost all elements of the kernel source code. Lo-
cal security extensions invariably conflict with vendor-
provided security patches, as well as vendor-provided
feature improvements over the OS development cycle.
In addition, security extensions frequently conflict with
one another if deployed in parallel, leading not only to
potentially inconsistent policy behavior, but also possi-
ble bypass of protections provided by one of the policies.
Direct source code modification of the vendor operating
system presents many challenges to security extension
authors.

In the past, research has been performed on how
to most easily extend operating system security poli-
cies, including into system-call interposition technolo-
gies such as LOMAC [6], Generic Software Wrap-
pers [7], and systrace [?], extensible security mecha-
nisms such as the General Framework for Access Con-
trol [1] and FLASK [15]. Many of these extension tech-
nologies, especially these using system call wrapping
techniques, fall down in the face of modern UNIX op-
erating system kernels which support true kernel and
user process parallelism in SMP environments, and fine-
grained threading of user processes. Preventing races in-
herent to system call wrapping is difficult, and most sys-
tem call wrapper security technologies are susceptible
to at least one of a class of related vulnerabilities. Any
successful extension technology for contemporary oper-
ating systems must be designed with the notion that SMP
and threading are realities, and must be well-integrated
into the kernel locking mechanisms.

4 Motivations for MAC
Mandatory Access Control (MAC) describes a broad
class of access control policies; in this context “manda-

tory” refers to the mandatory imposition of the policy
on non-administrative users. Popular mandatory poli-
cies including Multi-Level Security (MLS), which en-
forces mandatory protections based on administrator-
defined confidentiality labels, Biba integrity, which en-
forces system and user data integrity properties, and
Type Enforcement, which permits the administrator to
define subject domains, object types, and use a policy
language to control accesses to objects and other system
properties.

Trusted operating systems typically provide two or
more mandatory system policies: almost all provide
MLS for user data protection, but many also make use
of the Biba policy to protect the integrity of the Trusted
Code Base (TCB). The TrustedBSD Project, in seeking
to provide access to trusted operating system features,
provides several MAC policies for use with FreeBSD;
the challenges associated with this work include intro-
ducing the services securely, and without substantially
impacting the performance and reliability of FreeBSD
installations not taking advantage of these new features.

5 Framework Design and Implementation
The TrustedBSD MAC Framework permits access con-
trol policy modules to be loaded into the FreeBSD ker-
nel, providing a tightly integrated security extension ve-
hicle. In order to address the problems identified in Sec-
tion 3 there are several high-level goals for the design:

� Permit dynamic extension of the kernel access con-
trol policy.

� Isolate the logic of access control policies from the
implementation of kernel services, permitting the
implementations of services to be more mobile in
the face of extensions, and reducing OS life cycle
issues for policy developers.

� Permit multiple policies to be loaded simultane-
ously with some useful notion of composition.

� Reduce the redundant infrastructure implementa-
tion efforts of policy writers by providing support
for common policy infrastructure requirements.

� Integrate tightly with the kernel locking and thread-
ing mechanisms to provide correctness and high
performance in modern kernel designs.

5.1 High Level Design
The MAC Framework is made up of a number of ker-
nel and user-space elements. In the kernel, existing ker-
nel services are modified to add data structure exten-
sions and entry points to the MAC Framework, central-
ized management of label storage, registration and man-
agement of security modules, a series of system calls
and sysctls to permit applications to interact with la-
bels and manage the framework, and a series of access
policy modules that may be compiled into the kernel or
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loaded via loadable kernel modules. In user-space, sev-
eral new C library interfaces provide access to central-
ized label configuration via mac.conf, and changes to
the libutil user class and security context manage-
ment code. Command line tools permit user manipula-
tion of file and process labels, and modifications to stan-
dard administrative tools manage system labels.

Figure 1: High Level Kernel Design

The MAC Framework addresses a number of needs in
access control and extension implementation:

� Policies are encapsulated in kernel modules, which
may be linked into the kernel, loaded as part of the
boot process, or loaded at run-time in response to
environmental requirements.

� Policies are permitted to augment kernel access
control decision; sufficient locks to access impor-
tant elements of check arguments, such as object
references, are guaranteed to be held.

� The MAC Framework provides a policy-agnostic
labeling service permitting policies to maintain ad-
ditional meta-data on a variety of system objects.
Well-defined locking semantics are provided for
object labels, and existing locks on kernel objects
typically also protect any labels in the object, per-
mitting atomic checks of both labels and existing
object properties without additional locking over-
head.

� Policies may back labels into persistent extended
attributes provided by UFS and UFS2, permitting
labels on file system objects to be maintained while
they are not in the in-memory working set.

� When multiple policies are loaded, their access
control decisions are usefully composed, where
the definition of “useful” is that results are well-
defined, may be reasoned about, and are desirable
in the context of a number of relevant policies.

� Policies may make use of a policy-agnostic label
management API to export access to label data to
user processes, as well as permit the management
of those labels.

5.2 Kernel Services and Objects
The MAC Framework enforces policy over a variety of
kernel subsystems and objects, including system config-
uration interfaces, processes, the file system, IPC prim-
itives, and the network stack. In general, two classes
of modifications were made to existing kernel service
providers. First, services are modified to invoke MAC
Framework entry points during object management, over
the course of object life cycles, and when important ac-
cess control events occur. Second, a number of ker-
nel data structures representing security-relevant objects
were modified to include a label structure intended to
hold extensible security information.

Figure 2: MAC Framework: Integration into Kernel
Components

5.3 Entry Points
MAC Framework entry point invocations are condition-
ally compiled into kernel subsystems based on the con-
figuration parameter options MAC. Several classes
of entry points exist, including label management,
event notification, decision functions, and access con-
trol checks. All entry points accept contextual informa-
tion; typically this includes a subject process credential
and a series of as objects, object label pointers, and call-
specific arguments such as signal numbers or blocking
disposition.

Some entry points, such as access control checks, re-
turn error values; other notification entry points are as-
sumed always to succeed. Frequently, a set of related
entry point invocations will be made around complex
operations: for example, access control checks are re-
quired to create a new object in the file system names-
pace. Likewise, when label modifications occur, a two-
phase commit is performed by the Framework to confirm
that all policies will permit the relabel, and then to notify
all policies to perform the actual operation.

Entry points are currently found in the cross-file sys-
tem VFS code, device file system, mount/umount code,
protocol-independent socket calls, pipe IPC code, BPF
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packet sniffing code, IP fragment reassembly, IP socket
send and receive code, network interface transmission
and delivery, credential and process management code
(including debugging, scheduling, signaling, and mon-
itoring interfaces), kernel environmental variable man-
agement, kernel module management, per-architecture
system calls, swap space management, and a variety of
administrative interfaces such as time management, NFS
service, sysctl(), and system accounting. These en-
try points permit policies to augment security decisions
in a variety of forms.

5.4 Labels
While some system hardening models employ existing
subject and object information (UNIX credential data,
file permissions, ...) a number of important mandatory
policies require additional subject and object labeling.
For example, the MLS confidentiality policy makes de-
cisions based on subject and object sensitivity labels:
subjects are assigned clearances, and objects are as-
signed classifications. When policies require additional
labels, the MAC Framework supports them through a
policy-agnostic labeling primitive, which permits poli-
cies to tag kernel objects with information required for
policy decision-making.

Figure 3: MAC Framework: Policy-Agnostic Label
Storage

The label structure stored in kernel data structures is
maintained by the MAC Framework: based on the life
cycle of the data structure, the Framework provides per-
object entry points for memory initialization, object al-
location, and object destruction. The label structure con-
sists an array of slots, each providing a union of a void
* pointer and a long; slots are allocated to policies re-

quiring label storage for use in a policy-specific manner.
Policy writers might choose to store an integer value,
allocate per-label memory, or make use of referenced
structures relying on the initialization and destruction
calls to maintain reference counts. Initialization calls
will often be used for memory allocation, and in some
cases a blocking disposition will be passed as an argu-
ment to the call indicating whether blocking allocation
is permitted; in these cases the initialization call is per-
mitted to return a memory allocation failure, which will
abort the allocation of the object.

Label storage is currently provided in the following
kernel objects: BPF descriptors, process credentials, de-
vfs directory entries, network interfaces, IP fragment re-
assembly queues (IPQ), sockets, pipes, mbufs, file sys-
tem mount points, processes, and vnodes. A blocking
disposition is provided for mbuf, socket, and IPQ ini-
tialization; if a failure occurs during label allocation, the
mbuf and socket allocator code will return a memory ex-
haustion failure to the consumer. Unlike most other ker-
nel objects, memory to hold the mbuf label is not stored
within the mbuf structure itself: instead, it is stored in
an m tag hung off the mbuf header m tag chain. Tags
to hold MAC data will be allocated only when policies
requiring MAC labels on mbufs are present in the sys-
tem. This permits improved network performance of the
MAC Framework in scenarios where flexible access con-
trol is required, but where mbuf labeling is not.

Additional support for persistent label storage is pro-
vided by any file system supporting extended attributes,
including UFS1 and UFS2; while policies can deter-
mine whether and how the attributes are bound to policy-
specific labels, the Framework constructs transactions to
read, write, and cache vnode labels on supporting file
systems.

This flexibility supports a wide variety of behaviors
required for many interesting and useful access control
policies.

5.5 Composition
Hardened or trusted systems are frequently shipped with
a number of active (and hence composed) security poli-
cies. For example, many traditional “trusted” UNIX sys-
tems include the standard UNIX access control model,
local discretionary extensions to that model (such as
ACLs), the Multi-Level Security (MLS) confidential-
ity model protecting user data, and the Biba integrity
model protecting the integrity of the Trusted Code Base
(TCB) [3] [4]. Likewise, locally maintained security
extensions are frequently deployed in combination with
existing system security policies, forming cohesive (and
ideally stronger) protection. As the MAC Framework is
intended to assist vendors in combining security compo-
nents to be deployed in a variety of environments, the
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MAC Framework supports the simultaneous loading of
several modules. While it may not be possible to coher-
ently (or even safely) compose all access control poli-
cies, the MAC Framework provides a simple composi-
tion model that has proven useful in existing shipped
systems: rights intersection. This composition largely
maintains and assumes independence between the active
policies, composing their behaviors only for two classes
of operations:

� Access control checks. A precedence operator com-
poses the results of an access control decision; the
practical impact of this approach is that if any pol-
icy denies access to an object or operation, then the
MAC Framework will return an access denial to the
kernel service. However, the precedence operator
also has the effect of sorting “Object not found” er-
rors before “Access denied” errors, providing some
useful precedence behavior when information flow
policies are present.

� User label requests. Policies are permitted to deny
access to relabel objects even if the label change
request pertains only to label elements maintained
by other policies. This has utility in a number of
situations, including in the following example: the
Biba integrity policy may forbid the changing of an
MLS sensitivity label on a high integrity object by
a low integrity subject, since the changing of a la-
bel might constitute an information flow operation
from the perspective of the Biba policy.

The same composition model is employed to com-
bine results from the native UNIX access control model
and any models added using the MAC Framework. Cur-
rently, the task of determining whether two policies may
be safely composed is left to the system designer or ad-
ministrator, a reasonable requirement for many of the
deployed environments of interest.

5.6 Policy Modules

Policies are typically encapsulated in a kernel module,
although they may also be directly linked to the kernel.
Policy modules consist of several elements (some op-
tional):

� Configuration. Optional configuration parameters
for the policy.

� Policy logic. Optional abstracted and centralized
implementation of the policy’s access control logic.

� Labeling. Optional support for initializing, main-
taining, and destroying labels on selected objects.

� Label APIs. Optional support for user process in-
spection and modification of labels on selected ob-
jects.

� Access control. Implementation of selected access
control events that are of interest to the policy.

� Policy events. Optional implementation of policy
initialization and destruction events.

� Declaration. Declaration of policy module identity,
policy module properties, and registration of rele-
vant policy operations.

5.7 Application Interfaces
The MAC Framework provides support for a number of
classes of security-aware applications, including policy-
agnostic or policy-aware labeling tools, and the lo-
gin/user context management context routines. This is
possible due to the policy-agnostic label management
library and system calls, which allow applications to
deal with MAC labels and elements in an abstract man-
ner. The following functions are available to applica-
tions linked against the C library:

Retrieve the label of current or arbitrary process;
set the current process label. mac get pid(),
mac get proc(), mac set proc().

Get and set file or pipe label by file descriptor.
mac get fd(), mac set fd().

Get and set file label by path; optionally follow sym-
bolic links. mac get file(), mac set file(),
mac get link(), mac set link().

Execute a command and atomically modify the pro-
cess label. mac execve().

Policy-specific system call multiplexor
mac syscall().

Test for the presence of the MAC Framework or a spe-
cific policy mac is present().

Convert labels to and from human-readable text
mac from text(), mac to text().

Allocate storage for a label appropriate to hold
the specified label elements, or for a specific
object based on system default label elements
mac prepare(), mac prepare file label(),
mac prepare ifnet label(),
mac prepare process label().

Release storage associated with a label
mac free().

To support atomic change of label with execution
events, mac execve() provides an extension to the
existing execve() system call accepting a requested
target label. This is required to support the ex-
ecve secure() functionality used by the SEBSD
port of FLASK/TE to FreeBSD from SELinux [11].

In addition, a general security policy entry point,
mac security() is provided so that policies may ex-
tend the set of system services without allocating new
system call numbers.

6 Login Context Management
Many labeled access control policies assign user pro-
cess labels on the basis of the identity of the user and
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properties of the user account. Frequently this is per-
formed in a role-based manner, where a set of available
roles is assigned to a user, and then the user may select
their active role from among the available roles. This
assumes the ability to assign an initial label during the
login process or when acting on behalf of the user, and
then the ability to support constrained modification of
the label based on the initial login configuration. The
MAC Framework user process labeling APIs are suffi-
ciently flexible to support this behavior.

For an initial pass at supporting automatic labeling
at login, we extended the existing BSD login class
database. The master.passwd(5) assigns one class
to each user; a class may be shared by many users, and
includes information such as the resource restrictions for
the user, login and accounting properties, etc. We intro-
duced two new fields:

Identifier Description

label The text form of the
label to be assigned to
user processes as part
of the context management
process.

ttylabel The label to assign to
the user’s tty

The existing setusercontext(3) interface is ex-
tended to support a new flag LOGIN SETMAC, indicat-
ing that the MAC label should be set as part of the
login process. This flag is also implied by the LO-
GIN SETALL flag used widely across programs setting
user contexts. Process labeling tools, described in the
next section, may then be used to update the process
label subject to policy constraints. By instrumenting
this one function and its relevant consumers, we were
able to easily modify most key system daemons and ap-
plications to recognize the new process properties, in-
cluding sendmail(8), cron(8), login(1), su(8), ftpd(8), in-
etd(8) and others, making the changes relatively low im-
pact. In the future, we may divorce the label selection
database from the class database for the purpose of im-
proved management, but this would not require changes
to the user context API.

7 Application Integration
As most of the extensions policies of interest are manda-
tory policies, many applications that have specific adap-
tation to the system discretionary policy do not require
changes for MAC. This occurs because objects created
by processes will have labels automatically determined
based on the process label or other process proper-
ties, rather than as application-provided arguments. The
TrustedBSD MAC implementation ships with several
tools to permit users to inspect and maintain labels on

objects, including:

Program Description

getpmac Inspect process MAC labels
setpmac Set process MAC labels
getfmac Inspect file MAC labels
setfmac Set file MAC labels
setfsmac Set file MAC labels based

on a specification file

In addition, the following utilities were also modified
to inspect and set MAC labels:

Program Description

ifconfig Inspect and set interface
labels

ps Inspect process labels
ls Inspect file labels

Further extensions could easily be made to applica-
tions such as the KDE file system browser, Konqueror,
to display and manage labels on file system objects.

8 Sample Policies

FreeBSD 5.0 ships with a number of sample policies—
many appropriate for deployment in production systems.
These demonstrate some of the scope of the capabili-
ties of the MAC Framework, ranging from very simple
un-labeled inter-process visibility protections to fully la-
beled policy environments such as Type Enforcement.

� mac biba. Fixed-label hierarchal Biba integrity
policy with compartments: assigns integrity labels
to all system subjects and objects, then enforces
an information flow policy based on limiting read-
down and write-up operations.

� mac bsdextended. File system firewall, main-
tains an access control rule list expressed in terms
of UNIX credentials, file owners, and operation
masks.

� mac ifoff. Interface silencing policy, prohibit-
ing unauthorized output on network interfaces—
appropriate for use in environments where silent
monitoring is required.

� mac lomac. Floating label hierarchal Biba in-
tegrity policy based on the “Low watermark”
scheme [7]: assigns integrity labels to all system
subjects and objects, preventing write-up and forc-
ing a subject downgrade on read-down.

� mac mls. Fixed-label hierarchal Multi-Level Se-
curity confidentiality policy with compartments:
assigns sensitivity labels to all system subjects and
objects, then enforces an information flow policy
based on limiting write-down and read-up opera-
tions.
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� mac none. Stub policy providing prototypes for
all policy entry points—a starting point for new
policies. Also useful for raw performance measure-
ments without the cost of labeling and access con-
trol events.

� mac partition. Simple labeled system parti-
tioning policy, in which processes are assigned to
system partitions and visibility of processes is lim-
ited based on the label of a process.

� mac portacl. Add access control lists to control
explicit IPv4 and IPv6 socket binding by protocol,
port, and uid or gid.

� mac seeotheruids. Simple system partition-
ing policy, in which process visibility is limited
based on the UNIX credential of a process.

� mac test. Policy to exercise the MAC Frame-
work as well as test its invariants. Checks to make
sure the MAC Framework is correctly managing
the labels on objects, and instrumenting appropri-
ate access control checks.

� sebsd. Port of the SELinux FLASK and TE im-
plementations to FreeBSD, providing access to the
FLASK security abstractions, Type Enforcement
implementation, and adaptations of a mature sys-
tem policy.

A broad scope of policies may be implemented us-
ing the MAC Framework; the Framework is structured
so that policy authors may select what performance, se-
curity, and functionality trade-offs they wish to make
in policy design, augmenting the system policy in ways
that reflect local requirements. This flexibility makes the
MAC Framework a useful tool in a broad variety of envi-
ronments, reflecting the variety of deployment scenarios
in which FreeBSD is used.

9 Performance Results
Three important performance goals were kept in mind
during the design and implementation process for the
TrustedBSD MAC Framework:

� Minimize performance impact of the MAC Frame-
work on systems where it is disabled.

� Minimize the overhead of the MAC Framework on
systems where it is enabled and possibly in use.

� Permit policy authors to make perfor-
mance/security/complexity trade-offs local to
their policy based on the requirements for the
policy.

In this section, we explore some of the issues as-
sociated with performance measurement of the MAC
Framework. The Framework is currently integrated into
the FreeBSD 5.0-CURRENT development branch—as
a result, current performance measurements are used to
guide the development process and explore the even-

tual impact, rather than representing final performance
results. Substantial effort has not yet been invested in
fine-grained performance tuning, although initial mea-
surements suggest performance well within the bounds
of acceptability.

For each test, we consider several kernel configura-
tions:

� GENERIC: Base-line kernel without MAC support.
� MAC: Kernel compiled with MAC support, but no

active security policies.
� MAC NONE: One active “stub” policy, imple-

menting all entry points but without additional
locking or logic.

� MAC BSDEXTENDED: One active “file system
firewall” policy, implementing file system access
control entry points and making use of a locked pol-
icy.

� MAC BIBA: One active mandatory integrity pol-
icy, implementing comprehensive labeling and ac-
cess control entry points for all system objects.

The GENERIC kernel permits us to explore baseline
performance as a control for other configurations; MAC
tests the overhead to simply include extensible security
support in the system with no policies. The three sample
policies allow us to consider the overhead of entering a
policy module for each entry point (MAC NONE), the
cost of unlabeled file system protections using a locked
policy (MAC BSDEXTENDED), and the cost of a fully
labeled system integrity policy touching most aspects of
system operation (MAC BIBA).

These tests were run on a FreeBSD 5.0-CURRENT
system from the trustedbsd mac development
branch from late March, 2003; tests were run on a single-
processor 800MHz Intel PIII system with 128mb of
memory and ATA 7200rpm 20gb hard disk. For file sys-
tem related benchmarking, all writable file systems were
recreated using the same geometry between tests since
file system aging effects are not of interest for these tests;
reboots occur between each test to flush storage-related
caches and reset slab allocator and mbuf allocator state.
All file systems use UFS2 for high performance meta-
data storage.

9.1 Kernel Compile Throughput

In the buildkernel test, we perform a macro-benchmark
focused on system throughput relying on effective CPU
utilization, I/O performance, and file system meta-data
performance. In this test, a FreeBSD kernel source tree
is configured and built without modules (to reduce the
I/O throughput dependency); time is measured in wall
clock duration from start to finish. Lower execution
times are preferred, indicating higher system throughput
in completing the task.
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The results of this test demonstrate a small but mea-
surable performance change (0.1%) with MAC support.
A slight relative increase in cost for the BSD/extended
policy may be the result of acquiring a policy lock in or-
der to process an access control decision; however, there
is no statistically significant difference in performance
between the various MAC policies and the base cost of
the MAC Framework; UFS2 provides for high perfor-
mance label access for the Biba policy.

9.2 Network Performance
The MAC Framework introduces security label struc-
tures into a variety of system data structures; of
these, struct mbuf may be the most performance-
sensitive. The mbuf structure provides for optimized
network management, and has been the subject of sub-
stantial prior performance work, providing optimized
packet construction and parsing, copy-on-write seman-
tics, zero-copy semantics, and fragmentation manage-
ment. From the perspective of MAC policy modules,
only header mbufs are of interest, as they represent the
header for a network packet or datagram. In our first
pass implementation, we inserted a struct label
directly into the m pkthdr data structure; as the imple-
mentation evolved, the m tagmeta-data service became
available on FreeBSD; this service permits chaining of
arbitrary meta-data onto mbuf headers without modifi-
cation of the base structure.

In the m pkthdr approach, all kernels pay a memory
overhead for labeling support, although kernels without
options MAC do not pay the label life cycle costs.
With the m tag approach, only kernels with options
MAC pay the memory overhead, although we presup-
posed that there would be a higher cost for using tags
for label storage due to greater administrative overhead
in maintaining lists and allocating storage. To optimize
the m tag approach, we implemented lazy tag alloca-
tion: tags are only allocated to hold label data when a
policy expresses interest in labeling mbuf headers.

We consider two tests from the netperf suite:
UDP RR and UDP STREAM, which respectively test the
per-transaction cost of a Request/Receive RPC, and raw
network throughput. The request/response test measures
the throughput of the system relative to synchronous
one-byte packets between a client and a server, and is in-
tended to measure the performance impact of a change
in terms of number of packets transfered. The stream
test uses a larger packet size and does not synchronously
wait for a response before continuing, generally measur-
ing the performance impact of a change in terms of data
transferred.

In Figure 5, the performance cost per-packet is illus-
trated: the introduction of MAC support produces a mea-
surable change; depending on the strategy for labeling

mbufs, that change varies substantially. With inclusion
of the label directly in the mbuf header, an 11.5% perfor-
mance overhead is accepted for enabling MAC support.
Adding the stub policy increases that cost to 12.2%;
adding a complex labeled policy performing per-label
memory allocation, such as Biba, increases that drop to
14.9% of the GENERIC packet throughput.

With lazy m tag labeling, the performance trade-off is
changed: the cost of introducing MAC is 4.8% (substan-
tially less than using mbuf headers); with a stub policy
implementing mbuf label entry points but not allocating
labels, that cost increases to 8.5% (also less than mbuf
headers). However, performance with a Biba perfor-
mance is reduced by 17.1%, showing an increased cost
for heavily labeled policies such as Biba.

The second set of trade-offs best fits the needs of
the TrustedBSD Project: minimize overhead for MAC-
disabled systems, and permit a performance/complexity
cost decision by policy authors.

In Figure 6, a similar pattern emerges, where-in the
introduction of MAC support results in a 6.1% through-
put penalty. Use of a stub policy increases that cost to
7.7%; Biba labeling increases the cost to 10.3%. How-
ever, with lazy m tag labeling, the base cost of MAC
support is reduced to 3.7%; the stub policy increases this
cost to 4.4%, and with Biba to 9.7%. The proportionally
lower performance cost with this test derives from the
reduced relative overhead resulting from reduced packet
counts relative to data transfered.

Again, lazy m tag allocation better meets our require-
ments by permitting better non-MAC performance with
a more clear performance trade-off for complexity. Un-
like the packet count testing, performance for the Biba
policy actually increases with lazy m tags relative to
mbuf headers, a result that we attribute to differences
in the caching and allocation policies for the UMA Slab
Allocator versus the mbuf allocator in handling memory
clearing for new allocations.
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10 Related Work
Substantial prior and current work exists relating to ker-
nel access kernel and extensibility research.

In the area of prior deployed systems, “Trusted” vari-
ants of most commercial UNIX platforms exist, includ-
ing Trusted Solaris, and Trusted IRIX [14]. In addition,
there are a number of third party security extension prod-
ucts that exist for these systems, including Argus’s Pit-
Bull product, which provides a product alternative with
many of the same features [2]. These products largely
rely on Multi-Level Security (MLS) [3] and Biba in-
tegrity [4] to provide mandatory data confidentiality and
TCB integrity; earlier TrustedBSD work has focused
on implementing support in FreeBSD for these mod-
els using similar integration approaches [17][18][19].
TrustedBSD MAC policy modules exist expressing both
MLS and Biba in functionally similar forms.

In the area of access control extensibility, early work
included the Generalized Framework for Access Control
(GFAC), which proposes a separation of policy and en-
forcement [1]; this model is implemented in Linux in
RSBAC [13].

The FLASK framework provides for similar types
of separation of policy and enforcement, although with
higher level labeling abstraction in the form of a secu-
rity ID (SID) and a focus on Linux Security Modules
(LSM) provides a set of kernel extension hooks to fa-
cilitate integration of systems such as SELinux with-
out committing the Linux operating system to a partic-
ular model [16]. LSM provides a void pointer for label
storage in each supported kernel object, and has access
control notions similar to the TrustedBSD MAC Frame-
work. However, the semantics of the hooks are weaker,
and the LSM framework does not provide for policy
composition and persistent labeling, relying on policy
modules to implement these services. Type Enforcement
for policy representation [15][11]. A prototype port of
the SELinux FLASK and TE implementations has been
made to layer on top of the TrustedBSD MAC Frame-
work via the SEBSD policy module.

11 Future Work
Future work on the MAC Framework will likely fall into
a number of areas:

� Improve the completeness and expressiveness of
the MAC Framework; increase the number of ker-
nel objects and methods that are protected by the
Framework to permit broader protections.

� Mature the experimental policy modules.
� Continue to adapt and merge the SEBSD policy

module to run properly with FreeBSD: in partic-
ular, determine how best to satisfy the differing re-
quirements of SEBSD and most other policies re-

garding process label transitions.
� Continue porting the MAC Framework and its poli-

cies to Darwin and Mac OS X.

12 Conclusion
The TrustedBSD MAC Framework provides a general-
ized mechanism by which the FreeBSD kernel security
model can be augmented at run-time. Along with the
framework, we have also implemented a number of se-
curity extension modules that rely solely on the frame-
work to interface with existing kernel abstractions. This
separation of security extensions from the actual ker-
nel implementation of services improves the capacity for
third party providers to develop and ship system security
extensions by lowering the cost to develop and maintain
the extensions. Through a simple composition model, it
is possible to perform a limited set of “useful” compo-
sitions of security extensions. Preliminary performance
measurement illustrates a measurable but small perfor-
mance cost for the framework and many policy mod-
ules. the Framework permits policy authors to select
complexity and performance trade-offs based on local
requirements, supporting both simple hardening policies
and complex information flow policies.
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14 Availability
The TrustedBSD MAC Framework is available under a
two-clause BSD license, making it appropriate for open
and closed-source, research, educational or commercial
use without restriction. It is included in FreeBSD 5.0,
as an experimental feature, and will mature over the
FreeBSD 5.x life time. More information may be found
at:
http://www.FreeBSD.org/
http://www.TrustedBSD.org/
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