
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 311

An Implementation of User-level Restartable Atomic Sequences on the
NetBSD Operating System

Gregory McGarry
g.mcgarry@ieee.org

Abstract

This paper outlines an implementation of restartable
atomic sequences on the NetBSD operating system
as a mechanism for implementing atomic operations
in a mutual-exclusion facility on uniprocessor sys-
tems. Kernel-level and user-level interfaces are dis-
cussed along with implementation details. Issues as-
sociated with protecting restartable atomic sequences
from violation are considered. The performance of
restartable atomic sequences is demonstrated to out-
perform syscall-based and emulation-based atomic op-
erations. Performance comparisons with memory-
interlocked instructions demonstrate that restartable
atomic sequences continue to provide performance ad-
vantages on modern hardware. Restartable atomic se-
quences are now the preferred mechanism for atomic
operations in the NetBSD threads library on all unipro-
cessor systems.

1 Introduction
The NetBSD Project is currently adopting a new threads
system based on scheduler activations[6]. Part of this
project is the implementation of a POSIX-compliant
threads library that utilises the scheduler activations in-
terface. The motivation for the threads project is to
support the multi-threaded programming model which
is becoming increasingly popular for application de-
velopment. Multi-threaded applications use multiple
threads to aid portability to multiprocessor systems, and
as a way to manage server concurrency even when no
true system parallelism is available. To support multi-
threaded applications, the POSIX standard specifies a
mutual-exclusion facility to serialise access and guar-
antee consistency of shared data. Even on uniproces-
sor systems, mutual-exclusion facilities are necessary to
protect shared data against an interleaved thread sched-
ule. Interleaving can occur when a thread blocks on a
resource or when a thread is preempted, causing another
thread to assume control of the processor.

The scheduler activations threading model also places
additional demand on the mutual exclusion facility. The
primary advantage of scheduler activations is that it
combines the simplicity of a kernel-based threading
system and the performance of a user-level threading

system[1]. While the kernel component of the model
controls the switching of execution contexts, the user-
level component is responsible for scheduling threads
onto the available execution contexts. The user-level
component contains a complete scheduler implementa-
tion with shared scheduling data which must be pro-
tected by the mutual-exclusion facility. Consequently,
the mutual-exclusion facility is a critical component of
the scheduler activations threading model.

The basic building block for any mutual-exclusion fa-
cility, whether it be a blocking or busy-wait construct, is
the fetch-modify-write operation[5]. The fetch-modify-
write operation reads a boolean flag that indicates own-
ership of shared data. The operation modifies the flag
from false to true, thereby acquiring ownership. The
fetch-modify-write operation must execute atomically
(without interruption) to ensure the flag state is main-
tained consistent across all contending threads.

Modern systems generally provide sophisticated pro-
cessor primitives within the hardware in the form of
memory-interlocked instructions and bus support to en-
sure that a given memory location can be read, modi-
fied and written atomically. The specific primitive varies
between processors, however common instructions in-
clude test-and-set, fetch-and-store (swap), fetch-and-
add, load-locked/store-conditional and compare-and-
swap[5, 2]. Unfortunately, there are two problems asso-
ciated with the use of memory-interlocked instructions
within a user-level threads library:

• Memory-interlocked instructions incur overhead
since the cycle time for an interlocked memory ac-
cess is several times greater than that for a non-
interlocked access. The overhead associated with
memory-interlocked instructions is due to memory
and interconnection contention.

• Not all processors support memory-interlocked in-
structions and therefore cannot provide atomic op-
erations for a mutual-exclusion facility. Example
processors include the MIPS R3000, VR4100 and
ARM2 processors. Interestingly, processor manu-
facturers are choosing to introduce new processors
without memory-interlocked instructions. These
processors generally provide a subset of the com-
plete processor specification and primarily target



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association312

embedded or low-power applications.

Both of these problems are important to the NetBSD
Project due to the large number of hardware systems that
are supported.

On multiprocessor systems, the hardware is expected
to provide the necessary atomic operations. Multi-
processor atomic operations for synchronisation have
been extensively investigated by Mellor-Crummey and
Scott[5]. However, the majority of systems supported
by the NetBSD operating system are uniprocessor sys-
tems. Therefore, it is desirable to find an alternate mech-
anism for atomic operations which works efficiently on
all uniprocessor systems.

The simplest mechanism for implementing an atomic
operation is to request the kernel to perform the opera-
tion of behalf of the user-level thread. A call to a spe-
cific system call can be used to enter the kernel. While
inside the kernel, the scheduler can be paused so that
the thread is guaranteed not to be preempted while a
non-atomic fetch-modify-write operation is performed.
Alternatively, an invalid instruction can be executed by
the thread to cause an exception which can be inter-
cepted by the kernel to emulate an atomic fetch-modify-
write operation. An advantage of instruction emulation
is that the invalid instruction can be forward compati-
ble with newer versions of the processor which do sup-
port explicit atomic operations. However, both syscall-
based and emulation-based solutions incur significant
overhead by entering the kernel.

Atomic operations can also be implemented using
a software reservation mechanism. With the software
reservation mechanism, a thread must register its intent
to perform an atomic operation and then wait until no
other thread has registered a similar intent before pro-
ceeding. The most widely recognised algorithm based
on software reservation is Lamport’s mutual-exclusion
algorithm[3].

In Lamport’s algorithm, the atomic operation is pro-
tected by two variables; one to indicate ownership of the
atomic operation and another to place reservations. Each
thread registers in a global array its intent to perform an
atomic operation. The thread then places a reservation
into the reservation variable before testing the ownership
variable. If a thread determines that ownership is held by
another thread, there is contention, and the thread must
wait until ownership is relinquished. When the thread
determines that ownership has been relinquished, it as-
signs its ownership to the atomic operation then checks
that it still holds the reservation. If another thread holds
the reservation then a collision has occurred. The thread
then waits for all contending threads to acquire owner-
ship and remove their intent from the global array. The
thread then restarts the procedure from the beginning.

The software reservation mechanism works equally

well on both uniprocessor and multiprocessor systems.
However, even for the case when no contention and
no collisions occur, reservation-based algorithms require
several memory accesses per atomic operation. Addi-
tionally, these algorithms have storage requirements that
increase linearly with the number of potential contend-
ing threads. For a user-level threads library, it is not al-
ways possible to know the maximum number of threads
likely to be used in an application. For these reasons,
the software reservation mechanism was not considered
further.

The mechanism of restartable atomic sequences has
been proposed to address the problems outlined above
for implementing atomic operations on uniprocessor
systems[2]. The basic concept of restartable atomic se-
quences is that a user-level thread which is preempted
within a restartable atomic sequence is resumed by the
kernel at the beginning of the atomic sequence rather
than at the point of preemption. This guarantees that
the thread eventually executes the instruction sequence
atomically.

This paper outlines the implementation of restartable
atomic sequences to provide the atomic operations re-
quired by the POSIX-compliant threads library on the
NetBSD operating system. Section 2 discusses the con-
cept of restartable atomic sequences. Section 3 presents
details of the implementation on the NetBSD operat-
ing system. Section 4 compares the performance of
restartable atomic sequences with other mechanisms
for implementing atomic operations including memory-
interlocked instructions, instruction emulation and a
syscall-based mechanism. Section 4 also examines the
cost associated with restartable atomic sequences. Sec-
tion 5 discusses the application of restartable atomic
sequences in the POSIX-compliant threads library and
presents some benchmarks of the mutual-exclusion fa-
cility in the threads library. Finally, Section 6 presents
conclusions.

2 Restartable Atomic Sequences
Restartable atomic sequences is a mechanism to imple-
ment atomic operations on uniprocessor systems. Re-
sponsibility for executing the instruction sequence atom-
ically is shared between the user-level thread and the
kernel. When a thread is preempted within a restartable
atomic sequence, it is resumed by the kernel at the be-
ginning of the atomic sequence rather than at the point
of preemption.

Most mechanisms used to implement atomic opera-
tions on uniprocessor systems can be called pessimistic.
Their design assumes that atomicity may be violated
at any moment and guards against this potential viola-
tion for every atomic operation. Restartable atomic se-
quences use an optimistic mechanism that assumes that



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 313

atomic sequences are rarely preempted and are inexpen-
sive for this common case. Only when an atomic se-
quence is not executed atomically is it necessary to per-
form a recovery action to ensure atomicity.

Restartable atomic sequences require kernel support
to ensure that a preempted thread is resumed at the be-
ginning of the sequence. An application registers the ad-
dress range of the atomic sequence with the kernel. If a
user-level thread is preempted within a registered atomic
sequence, then its execution is rolled-back to the start of
the sequence by resetting the program counter saved in
its process control block.

Consider the test-and-set atomic operation in Figure 1
which reads the memory address, writes to the memory
address and returns the read value. The memory address
could be a flag in a mutual-exclusion operation. If the
test-and-set operation executes atomically, two condi-
tions can occur. If *addr is unset, then it is set and
the function returns the unset value. If *addr is set,
then it remains unchanged and the function returns the
set value.

Now consider what will happen if the test-and-set
operation is preempted between the memory read and
write operations and a collision occurs when accessing
*addr. Again, two conditions occur. If *addr is un-
set, old is unset. The thread is then preempted. At this
point the new thread will read *addr as unset, and set
*addr. When the original thread resumes, its recorded
value of old no longer reflects the true value of *addr
and will also set *addr. Both threads will have the test-
and-set operation return success to setting the memory
address. If this condition occurred while the test-and-set
operation was being used in a mutual-exclusion oper-
ation, then both threads would assume ownership of a
shared resource.

The other collision condition occurs if *addr is read
as set before the thread is preempted. The new thread
clears *addr. When the original thread resumes, its
recorded value of old no longer reflects the true value of
*addr, it will set *addr but return the unset value. In
this condition, the original thread believes that the mem-
ory address was already set, while the second thread
has cleared the memory address. If this condition oc-
curred while the test-and-set operation was being used in
a mutual-exclusion operation, then neither thread would
assume ownership of the shared resource. Neither thread
would be able to reacquire ownership of the resource and
deadlock would occur.

Atomicity of the test-and-set operation is assured
by making the adjacent memory accesses between
ras start and ras end a restartable atomic se-

quence. Now consider what will happen if the test-and-
set operation is preempted between the memory read
and write operations. Again, two conditions occur. If

int test_and_set(int *addr)
{

int old;

__asm __volatile("__ras_start:");
old = *addr;
*addr = 1;
__asm __volatile("__ras_end:");

return (old);
}

Figure 1: Implementation of a test-and-set atomic oper-
ation protected as a restartable atomic sequence.

*addr is unset, old is unset. The thread is then pre-
empted. At this point the new thread will read *addr
as unset, and set *addr. When the original thread
resumes, its execution is rolled-back to ras start
which corresponds to the instruction to read *addr.
The value of old now corresponds to the correct value
of *addr set by the other thread. The value of *addr
remains unchanged and the correct value is returned by
the test-and-set operation. The other collision condition
occurs analogously.

Restartable atomic sequences should adhere to the fol-
lowing requirements:

1. have a single entry point;
2. have a single exit point;
3. restrict modifications to global/shared data;
4. not execute emulated instructions or invoke system

calls; and
5. not invoke any functions.

The first requirement is to ensure that the roll-back of
the program counter is valid. Nevertheless, the ker-
nel cannot guarantee that the sequence is successfully
restartable; it assumes that the application knows what it
is doing. The second and third requirements are linked.
Access to global/shared data should be restricted to en-
sure that the restartable atomic sequence is idempotent.
An operation is idempotent if it achieves the same result
irrespective of the number of times it executes. Restrict-
ing the restartable atomic sequence to a single global
write in the last instruction of the restartable atomic se-
quence ensures that the operation is idempotent. Ac-
cordingly, a single exit point is desirable. However, if
the atomic operation chooses not to modify any global
data, the restartable atomic sequences may be exited at
any point.

The fourth requirement is to ensure that the kernel is
not entered and thus providing an opportunity for the



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association314

thread to block on a resource and be preempted. In this
case, the kernel will always roll-back execution to the
beginning of the restartable atomic sequence whenever
the thread is unblocked, and the thread will never exit
the restartable atomic sequence. The fifth requirement
is to ensure that the program counter remains within the
range of the registered atomic sequence.

There are two run-time costs associated with
restartable atomic sequences. Because the kernel iden-
tifies restartable atomic sequences by an address range,
restartable atomic sequences cannot be inlined. The in-
ability to inline atomic sequences slightly increases the
overhead of atomic operations due to the cost of subrou-
tine calls. The second run-time cost comes from check-
ing the program counter at each context switch. Al-
though this test can add several cycles to the kernel’s
context switch path, many applications use many more
atomic operations than the number of context switches,
making the additional scheduling overhead negligible.

3 Implementation
The NetBSD operating system is well-known for its
portability and support for many architectures. The
portability of the operating systems stems from a
clear separation of machine-dependent and machine-
independent subsystems. An implementation of
restartable atomic sequences clearly requires access to
machine-dependent information such as the thread pro-
gram counter. However, much of the implementa-
tion can be shared between all architectures and is
machine-independent. Additionally, the user-level inter-
face should be uniform across all architectures. Con-
sequently, the primary objective of this implementation
was to provide a generic interface to be utilised by all
supported architectures. To that end, the implementation
consists of a simple system-call interface and a largely
machine-independent kernel implementation.

Initially, the implementation was intended to support
atomic operations only for use by the threads library.
However, it was recognised that a generic user-level in-
terface would allow applications to find new and innova-
tive uses of restartable atomic sequences. For example,
benchmark utilities, performance counters, and profil-
ing tools may make use of restartable atomic sequences
to ensure that an analysed instruction sequence is exe-
cuted without interruption. Supporting new and innova-
tive uses seemed like a worthwhile goal.

The initial design decision was that only thread-
synchronous events will cause an atomic sequence to
be restarted and asynchronous events, such as inter-
rupts, do not cause a restart. Therefore, a restartable
atomic sequence will only be restarted if the thread ex-
ecution context is switched from the processor. Asyn-
chronous events are difficult to protect, since they must

be identified outside the context of the executing thread.
Additionally, the handling of asynchronous events is a
machine-dependent operation and would require inva-
sive changes to the machine-dependent kernel. For ex-
ample, on architectures such as i386 and m68k, it is diffi-
cult to provide a central location to check if the program
counter is within a restartable atomic sequence since in-
terrupts are dispatched via an interrupt table.

Another important consideration is how registered
restartable atomic sequences are handled by the fork and
exec system calls. Restartable atomic sequences are in-
herited from the parent by the child during the fork sys-
tem call. This allows restartable atomic sequences to
continue to work on children of the parent process that
registered the sequences. Restartable atomic sequences
are removed during the exec system call. This property is
intuitive given that the program text has changed and the
instruction sequence for a registered atomic sequence is
different.

The implementation supports the registration of mul-
tiple restartable atomic sequence for a process. A list
of address ranges is maintained for each process. A
per-process limit of the maximum number of registered
restartable atomic sequences is imposed to limit resource
exhaustion.

3.1 Kernel interface
All atomic sequences for a process are manipulated by
the rasctl system call. Its prototype can be found in
<sys/ras.h> and is implemented within the standard
C library. It has a prototype given by

int
rasctl(void *addr, size_t len, int op)

The prototype is intended to be similar to the mmap
system call, since both system calls affect the process
address space. If a restartable atomic sequence is reg-
istered and the process is preempted within the range
addr and addr+len, then the process is resumed at
addr. The operations that can be applied to a restartable
atomic sequence are specified by the op argument. Pos-
sible operations are:

• RAS INSTALL: register a new atomic sequence;
• RAS PURGE: remove a registered atomic sequence

for this process; and
• RAS PURGE ALL: remove all registered atomic se-

quences for this process.

The operation affects the restartable atomic sequence
immediately.

The purge operation should be considered to have un-
defined behaviour if there are any other runnable threads
in the process which might be executing within the reg-
istered atomic sequence at the time of the purge. The



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 315

#include <sys/ras.h>

extern void __ras_start(void);
extern void __ras_end(void);

...
if (rasctl((void *)__ras_start,

(size_t)(__ras_end - __ras_start),
RAS_INSTALL))
errx(1, "rasctl failed");

Figure 2: The registration process for the restartable
atomic sequence presented in Figure 1.

application must be responsible for ensuring that there
is some form of coordination between threads.

The rasctl system call will fail with EINVAL if an
invalid operation is specified, if addr or addr+len
are invalid user addresses, or if the maximum number
of restartable atomic sequences per process is exceeded.
It will return ESRCH if the restartable atomic sequence
cannot be found during a purge operation.

Figure 2 shows an example of registering the
restartable atomic sequence for the test-and-set atomic
operation presented in Figure 1.

3.2 Kernel implementation
All registered restartable atomic sequences for a pro-
cess are recorded in a linked list, p raslist, located
in struct proc of the process. Each element in the
linked list records the start address and end address of
a single registered restartable atomic sequence. Ad-
ditionally, a counter is available to record the number
of restarts actioned for the restartable atomic sequence.
This counter can provide some interesting information
but is rarely useful for most applications. Currently there
is not a user-level interface to access the counter.

A counter, p nras in struct proc records the
number of registered atomic sequences and is used
to simplify the program-counter check. The program
counter is checked within the cpu switch() func-
tion. The cpu switch() function is a machine-
dependent function which is responsible for switching
the context of the active thread on the processor. The
cpu switch() function has a pointer to the proc
structure passed as the first argument, and a check
if p nras is non-zero is an inexpensive test. The
machine-dependent implementation code on the i386
adds merely three instructions to the main execution
path for the case of no registered atomic sequences. If
p nras is non-zero, then ras lookup() is invoked
to compare the program counter with all registered

restartable atomic sequences. The ras lookup()
function is machine-independent and has the function
prototype

caddr_t
ras_lookup(struct proc *p,

caddr_t addr)

It searches the registered restartable atomic sequences
for process p which contains the user address addr. If
the address addr is found within a restartable atomic
sequence, then the restart address of the restartable
atomic sequence is returned, otherwise -1 is returned.
In the case of a match, the machine-dependent code in
cpu switch() uses the start address to reset the pro-
gram counter in the process control block.

The RAS INSTALL and RAS PURGE operations of
the rasctl system call invoke the ras install() and
ras purge() functions. They have the prototypes

int
ras_install(struct proc *p,

caddr_t addr, size_t len)
int
ras_purge(struct proc *p,

caddr_t addr, size_t len)

The ras install() function will return EINVAL
if addr or addr+len are invalid user addresses, or if
the maximum number of restartable atomic sequences
per process is exceeded. The ras purge() function
will return ESRCH if the specified restartable atomic se-
quence has not been registered.

The ras fork() function is used to copy all regis-
tered restartable atomic sequences for a process to an-
other. It is primarily during the fork system call when
the sequences are inherited from the parent by the child.
It has the prototype

int
ras_fork(struct proc *p1,

struct proc *p2)

The ras purgeall() function is used to remove
all registered restartable atomic sequences for a process.
It is primarily used to remove all registered restartable
atomic sequences for a process during the exec system
call and to perform the RAS PURGE ALL operation for
the rasctl system call. It has the prototype

int
ras_purgeall(struct proc *p)

The ras fork() and ras purgeall() functions
are guaranteed to complete successfully.



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association316

3.3 Additional kernel issues
Restartable atomic sequences are user-level instruction
sequences that receive special consideration by the ker-
nel. In addition to checking if the program counter is
within a restartable atomic sequence when a thread con-
text is restored, it is also important for the kernel not to
violate the prerequisites for their correct operation. One
potential problem for the kernel is the ptrace facility.

The ptrace facility provides tracing and debugging fa-
cilities. It allows a process (the tracing process) to con-
trol another (the traced process). Most of the time, the
traced process runs normally, however the ptrace facil-
ity provides some kernel capabilities to modify the be-
haviour of the traced process. If the traced process con-
tains registered restartable atomic sequences then the
kernel must ensure that they are protected from modi-
fication by the tracing process, otherwise one or both of
the processes will fail to perform as expected.

There are two specific cases which must be consid-
ered:

• The tracing process attempts to write to a
restartable atomic sequence (PT WRITE I). An
example is when the tracing process attempts to set
a breakpoint.

• The traced process attempts to single-step into a
restartable atomic sequence (PT STEP).

The first case is handled within the machine-
independent ptrace facility. Each write to the code seg-
ment is first checked to ensure that the write is not to
a restartable atomic sequence. Attempting to write to a
restartable atomic sequence fails.

The second case is more difficult to handle, since dif-
ferent architectures handle single-stepping mode differ-
ently. For example, the MIPS R3000 processor does not
have a single-stepping or tracing mode and the facility
is generally handled through software emulation. Soft-
ware emulation works by replacing the next instruction
with an invalid opcode which generates an exception that
the kernel identifies and handles specifically. Protect-
ing the restartable atomic sequences during emulation is
the same as for the first case discussed above. However,
care must be taken, since the same emulation technique
is used to single-step the kernel inside the kernel debug-
ger, and restartable atomic sequences are not supported
within the kernel.

Other architectures such as i386 and m68k provide
tracing support in hardware. On these architectures the
trace trap must check if the program counter is within a
restartable atomic sequence before dispatching the event
to the tracing process via the ptrace facility. The usual
procedure is to continue stepping through the restartable
atomic sequence and only dispatch the event on the first
instruction after the atomic sequence.

4 Performance Evaluation
In this section, the performance of restartable atomic se-
quences is compared with the competing mechanisms.
The test-and-set atomic operation based on restartable
atomic sequences is compared with a syscall-based
mechanism, instruction emulation on the MIPS R3000
processor and memory-interlocked instructions. The
overhead associated with checking the program counter
during a context switch is also investigated.

All microbenchmarks presented in this section are
based on mutual exclusion mechanisms with a test that
enters a critical section using a test-and-set lock and
leaves the critical section by clearing the test-and-set
lock. The benchmark uses a single thread, so that no
contention occurs. The benchmark is measuring the per-
formance of the basic processor architecture, memory
system and mutual exclusion mechanism. The measures
are determined by executing the benchmark in a loop one
million times. The loop overhead and overhead for clear-
ing the lock is eliminated in the published measures.

As already mentioned, restartable atomic sequences
use an optimistic mechanism that assumes that atomic
sequences are rarely preempted and are inexpensive for
this common case. By way of example, a system with
a 100MHz i486DX processor executes one million iter-
ations of the benchmark outlined above in 0.38 seconds
with only 4 restarts actioned.

4.1 Syscall-based atomic operations
The syscall-based mechanism uses the kernel to per-
form all the necessary actions to ensure atomicity.
The mechanism only works on uniprocessor systems
and is successful because the NetBSD kernel is not
preemptable[4]. Support is provided by two system calls
to acquire and release the lock on behalf of the thread.
These system calls were added to a NetBSD kernel for
the explicit purpose of comparing its performance with
restartable atomic sequences.

The system calls take the address in the process ad-
dress of the lock. The acquire system call will block
the current thread until the lock is released. The re-
lease system call will release the lock to any blocked
threads. The system calls are implemented using the
tsleep()/wakeup() kernel facility.

The elapsed times to execute the test-and-set
atomic operation based on the syscall mechanism and
restartable atomic sequences for various processors are
shown in Table 1. From this benchmark it can be seen
that on the MIPS R3000 processor, restartable atomic
sequences provide almost ninety-fold performance im-
provement over syscall-based atomic operations. The
run-time cost for syscall-based atomic operations is
high. The kernel must be invoked on every atomic oper-
ation, requiring that a trap be fielded, dispatched and ar-



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 317

system RAS syscall

DECstation 5000/25 0.40 35.6
100MHz i486DX 0.32 21.5
DECstation 5000/260 0.17 9.7
Alchemy Pb1000 EVB 0.04 2.4
Broadcom BCM91250A EVB 0.04 1.4

Table 1: Elapsed times (in microseconds) to execute the
test-and-set atomic operation based on the syscall mech-
anism and restartable atomic sequences (RAS).

guments checked. Modern processors in the MIPS fam-
ily appear to be less sensitive to system-call overhead,
however restartable atomic sequences continue to pro-
vide a significant performance improvement.

4.2 Instruction emulation

The original MIPS instruction set architecture (ISA) im-
plemented in the R3000 processor did not provide any
memory-interlocked instructions. The MIPS II ISA im-
plemented in the R4000 and most subsequent proces-
sors introduced a load-locked/store-conditional instruc-
tion pair. The MIPS R3000 processor will generate
a trap if it attempts to execute a load-locked or store-
conditional instruction. This trap can be intercepted by
the kernel and the necessary actions performed to ade-
quately emulate the instruction pair.

Instruction emulation has the advantage that software
can be written for any processor in the family and the
unsupported instructions are supported transparently.

The NetBSD kernel currently emulates the load-
locked and store-conditional instructions for the MIPS
R3000 processor. The current implementation only op-
erates on uniprocessor systems and is successful because
the kernel is not preemptable[4].

Although instruction emulation requires no special
hardware, its run-time cost is high. Similar to the
syscall-based mechanism, the kernel must be invoked
on every emulated instruction, requiring that a trap be
fielded, dispatched and arguments checked. A sin-
gle test-and-set atomic operation on the DECstation
5000/25 based on restartable atomic sequences can ex-
ecute in 0.4 microseconds. The test-and-set atomic op-
eration using instruction emulation executes in 56 mi-
croseconds. The cost of instruction emulation is higher
than the syscall-based test-and-set atomic operation,
since each test-and-set operation uses a load-locked and
store-conditional instruction, which generates two traps
to the kernel to emulate the instructions. Therefore, on
the MIPS R3000 processor, the syscall-based mecha-
nism is faster than instruction emulation.

4.3 Memory-interlocked instructions
The performance of atomic operations based on
restartable atomic sequences is compared with memory-
interlocked instructions on processors that provide such
functionality. Two memory-interlocked implementa-
tions are considered. An inlined version uses compiler
and assembler optimisations to schedule the memory-
interlocked instructions in the instruction stream at the
point of invocation. A non-inlined version wraps the
memory-interlocked instructions in a function call. Due
to the overhead associated with dispatching a function
call, the inlined version is almost always expected to
provide a performance gain. As mentioned in Section 2,
restartable atomic sequences cannot be inlined.

To compare the performance of the two implementa-
tions of memory-interlocked instructions and restartable
atomic sequences, a performance index is introduced.
The metric is calculated by

M = 100
(

tNI − t

tNI

)
,

where t is the execution time of the atomic-operation
mechanism and tNI is the execution time for a non-
inlined memory-interlocked instruction. Therefore, the
performance index provides an indication of improve-
ment over a non-inlined memory-interlocked instruc-
tion. A performance index of zero indicates no per-
formance improvement. A performance index of one-
hundred indicates zero cost associated with an operation,
or effectively infinite performance improvement.

The performance indices comparing atomic opera-
tions based on restartable atomic sequences and inlined
memory-interlocked instructions are shown in Table 2.
The table is ordered approximately corresponding to the
processing power (or age) of the processor.

Table 2 shows that for older processors, restartable
atomic sequences exhibit an additional cost over
memory-interlocked instructions. On these machines,
restartable atomic sequences are paying the penalty of
the function call. The modern processors tend to indi-
cate a potential performance improvement of restartable
atomic sequences over memory-interlocked instructions.
This improvement is mainly attributed to the introduc-
tion of on-chip caches and memory controllers.

Table 2 clearly shows that the memory subsystem is
crucial for efficient performance of lock operations. The
Chalice CATS, Digital DNARD and Netwinder systems
which have an ARM processor show significant perfor-
mance improvement with restartable atomic sequences.
This processor appears to be very sensitive to memory
performance. However, newer processors in the ARM
family such as the Xscale show the memory subsystem
has been significantly improved so that inlined memory-
interlocked instructions outperform restartable atomic



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association318

sequences. For the Xscale case, restartable atomic se-
quences are paying the penalty of being non-inlined. On
this particular Xscale system, the memory controller is
integrated into the CPU, the memory the that memory-
interlocked instruction is manipulating is cacheable, and
so the memory-interlocked instruction is inexpensive.

The systems based on the Alpha processor also show
significant performance improvement with restartable
atomic sequences. These systems generally have small
performance indices for the inlined memory-interlocked
instructions; an indication that the cost associated with
function invocation is negligible. The AlphaServer 1200
is a multiprocessor system, so the hardware causes sig-
nificant extra bus activity. However, the benchmark was
run with a uniprocessor kernel.

The microbenchmark results presented in Table 2
demonstrate that an architecture and memory system
cannot necessarily provide efficient functionality com-
pared with a combination of kernel and compiler opti-
misation. On modern processors, restartable atomic se-
quences can provide improved performance in atomic
operations.

4.4 Run-time overhead of restartable
atomic sequences

As mentioned in Section 2, there is a run-time over-
head associated with checking if the program counter
is within a restartable atomic sequence on every context
switch. The context-switch time was measured to ob-
tain an indication of the cost of checking the program
counter. The context-switch time was determined by
measuring the time it takes a token to be passed through
a pipe between two processes. The token is passed be-
tween the two processes twenty times for a single mea-
surement. Of 16000 measurements, the shortest time
was chosen as the true context-switch measurement,
since it most-likely represents the uninterrupted time to
perform the context switch. Context-switch times are
measured for increasing number of registered atomic se-
quences and are shown for the DECstation 5000/25 and
100MHz i486DX in Figure 3.

Since the restartable atomic sequences are recorded
in a linked list for each process the context-switch times
increase linearly with increasing number of registered
atomic sequences. By one-hundred registered atomic
sequences the context-switch time for the DECstation
5000/25 has doubled. About 130 registered atomic se-
quences are required to double the context-switch time
on the 100MHz i486DX.

For a small number of sequences in the list, the per-
formance is not likely to be a significant issue. Never-
theless, one way to improve the performance might be
to order the list according to the start address. Then
the ras lookup() function could quickly abort the

20

40

60

80

100

120

140

160

180

0 50 100 150 200

context-switch time

number of registered atomic sequences

DECstation 5000/25

100MHz i486DX

Figure 3: Context-switch time (milliseconds) for DEC-
station 5000/25 and 100MHz i486DX with increasing
number of registered atomic sequences.

search when it finds a sequence with a start address
higher than the program counter. Similarly, the first
and last addresses of all restartable atomic sequences
could be recorded in a header which would allow the
ras lookup() function to quickly check if it is nec-
essary to traverse the list. Realistically, applications will
not make use of so many restartable atomic sequences.
Indeed, the current implementation places an arbitrary
restriction of sixteen sequences per process. Since the
threads library is currently the only user of restartable
atomic sequences, only one restartable atomic sequence
is expected to be registered for an application.

5 Discussion

Based on the performance results presented in Section 4,
restartable atomic sequences is the default default mech-
anism for implementing atomic operations in the threads
library on the NetBSD operating system. The mech-
anism provides the foundation for the implementation
of a POSIX-compliant mutual-exclusion facility and the
primitives for mutual exclusion in the library scheduler.

The threads library uses a blocking construct
in the mutual-exclusion facility. This facility
provides the pthread mutex lock() and
pthread mutex unlock() functions. The im-
plementation uses a test-and-set atomic operation to test
the ownership of a mutual-exclusion flag (mutex). If a
mutex is owned by another thread, the scheduler blocks
the current thread and switches another thread onto
the available execution context. Eventually a thread
will release ownership of the mutex and any blocked
threads waiting on the mutex will be given the execution
context.

The blocking construct within the threads library uses
a single test-and-set atomic operation and therefore uses



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 319

system performance index

HP9000/340
33

61

100MHz i486DX
41

65

SPARCstation 20
8

62

DECstation 5000/260
41

44

Sun Ultra5
0

11

Chalice CATS
92

9

Sun Ultra60
34

11

Digital DNARD
90

13

IBM Walnut EVB
52

20

Netwinder
91

12

Digital Multia 500AU
76

18

100MHz Intel Pentium
86

25

Broadcom BCM91250A EVB
51

0

Alchemy Pb1000 EVB
66

23

400MHz Xscale i80321
46

68

200MHz Intel Pentium Pro
81

47

Digital AlphaStation 200
71

11

266MHz Intel Pentium II
80

42

Digital PC164
70

0

Digital AlphaServer 1200
79

2

Apple Power Macintosh G4
62

12

Apple iBook G3
72

14

Samsung UP1500
91

0

1000MHz AMD Athlon
68

25

AMD Athlon XP2000+
74

26

1000MHz Intel Pentium 4
80

43

AMD Athlon MP2000+
71

25

Table 2: Performance index of a test-and-set atomic operation based on restartable atomic sequences (black) and
inlined memory-interlocked instructions (white). Larger values of the performance index indicate improved perfor-
mance over non-inlined memory-interlocked instructions.



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association320

a single restartable atomic sequence. When the threads
library is loaded, an initialisation function invokes the
rasctl system call to register the restartable atomic se-
quence of the test-and-set atomic operation. Since the
library must support atomic operations transparently on
both uniprocessor and multiprocessor systems, the test-
and-set atomic operation invokes the underlying test-
and-set mechanism through function pointers. The ini-
tialisation function checks for a multiprocessor system
with the hw.ncpu sysctl variable. On a multiprocessor
system the test-and-set atomic operation uses memory-
interlocked instructions.

The use of function pointers to choose the underly-
ing atomic mechanism introduces additional execution
cost in the mutual-exclusion facility. It also means that
the atomic locks are no longer inlined, and the perfor-
mance of memory-interlocked instructions is relegated
to the non-inlined case considered in Section 4.

The thread library introduces additional overhead
to the mutual-exclusion facility and the full per-
formance demonstrated in Table 2 is not attain-
able. For comparison, a microbenchmark sim-
ilar to the one used in Section 4 was devel-
oped which invoked pthread mutex lock() and
pthread mutex unlock() in a loop one million
times. The benchmark uses a single thread so that no
contention occurs. On a 1000MHz AMD Athlon proces-
sor, the benchmark of a test-and-set restartable atomic
sequence completes in 75 milliseconds. On the same
processor, the mutex operation (using restartable atomic
sequences) completes in 125 milliseconds. Therefore,
the mutual-exclusion facility of the threads library intro-
duces 66% overhead. Nevertheless, restartable atomic
sequences improve the performance of the mutex func-
tions, where the mutex benchmark using non-inlined
memory-interlocked instructions takes 135 milliseconds
to complete. From this result, it can be seen that the per-
formance improvement of restartable atomic sequences
propagates directly into the mutual-exclusion facility of
the threads library.

However, these microbenchmarks do not represent
typical usage in multi-threaded applications. A mi-
crobenchmark based on a row-parallel LU matrix de-
composition provides a complement of computation
and mutex contention. An LU decomposition on a
1000 × 1000 matrix uses around 14,000 test-and-set
atomic operations per thread. Running the benchmark
on a 1000MHz AMD Athlon processor using from
one to one-hundred threads, there was no statistical
difference between restartable atomic sequences and
memory-interlocked instructions (p-value 0.7). Simi-
larly, a benchmark of the multi-threaded apache web
server (version 2.0.44) using the httpperf HTTP perfor-
mance measurement tool (version 0.8) also showed no

statistical difference in either the request rate or data-
transfer rate. Therefore, it may be concluded, from a per-
formance perspective, that most applications will not be
adversely affected by the implementation of restartable
atomic sequences.

For processors which do not provide memory-
interlocked instructions, restartable atomic sequences do
provide a significant benefit. In the future this benefit
may become more significant if restartable atomic se-
quences are extended for use within the NetBSD ker-
nel. To realise improved performance on multipro-
cessor systems and attain targets for real-time laten-
cies, a preemptable NetBSD kernel would place in-
creased demand on atomic operations within the ker-
nel. While much of the design decisions discussed in
Section 3 are readily extended to a kernel-level imple-
mentation, actioning restarts only on context switches
is likely to be insufficient. Interrupts must also action
restarts. Consequently, a kernel-level implementation of
restartable atomic sequences will require many more in-
vasive changes to machine-dependent subsystems. The
lessons learned from this implementation of user-level
restartable atomic sequences serves as a good starting
point.

6 Conclusion
Restartable atomic sequences have been implemented
on the NetBSD operating system to provide a generic
framework for atomic operations for use by the POSIX
threads library. Restartable atomic sequences are ap-
propriate for uniprocessor systems that do not support
memory-interlocked instructions. Moreover, on mod-
ern processors that do have hardware support for syn-
chronisation, better performance may be possible with
restartable atomic sequences.

This paper has presented an overview of an imple-
mentation of user-level restartable atomic sequences on
the NetBSD operating system and discussed design de-
cisions encountered during its implementation. Per-
formance comparisons between restartable atomic se-
quences, a syscall-based mechanism and instruction em-
ulation for mutual exclusion demonstrated the advan-
tages of restartable atomic sequences.

Availability
The kernel and user implementation discussed in this
paper has been adopted by the NetBSD Project and
is currently available under a BSD license from the
NetBSD Project’s source servers. A complete set of re-
gression tools for memory-interlocked instructions and
restartable atomic sequences is available within the
source tree. The next formal release which will use
the implementation will be NetBSD 2.0. Further infor-
mation about the NetBSD Project can be found on the



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 321

Project’s web server at www.netbsd.org.

Acknowledgements
Thanks to Artem Belevich, Allen Briggs, Simon Burge,
Martin Husemann, Jason Thorpe, Valeriy Ushakov, Mar-
tin Weber, Nathan Williams, and Berndt Wulf for the
performance data presented in Tables 1 and 2.

References
[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and

H. M. Levy. Scheduler activations: Effective ker-
nel support for the user-level management of par-
allelism. ACM Transactions on Computer Systems,
10(1):53–79, February 1992.

[2] B. N. Bershad, D. R. Redell, and J. R. Ellis. Fast
mutual exclusion for uniprocessors. In Fifth Sym-
posium on Architectural Support for Programming
Languages and Operating Systems, 1992.

[3] L. Lamport. A fast mutual exclusion algorithm.
ACM Transactions on Computer Systems, 5(1):1–
11, February 1987.

[4] M. K. McKusick, K. Bostic, M. J. Karels, and J. S.
Quarterman. The design and implementation of the
4.4BSD operating system. Addison-Wesley, 1996.

[5] J. M. Mellor-Crummey and M. L. Scott. Al-
gorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on
Computer Systems, 9(1):21–65, February 1991.

[6] N. J. Williams. An implementation of scheduler ac-
tivations on the NetBSD operating system. In Pro-
ceedings of the 2002 Usenix Annual Technical Con-
ference, 2002.


