USENIX Association

Proceedings of the
FREENIX Track:
2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

http://www.usenix.org

USENIX Association

Implementation of a Modern Web Search Engine Cluster

Maxim Lifantsev

Tzi-cker Chiueh

Department of Computer Science
Stony Brook University

maxim@cs.sunysb.edu

Abstract

Yuntis is a fully-functional prototype of a complete web
search engine with features comparable to those avail-
able in commercial-grade search engines. In particu-
lar, Yuntis supports page quality scoring based on global
web linkage graph, extensively exploits text associated
with links, computes pages’ keywords and lists of sim-
ilar pages of good quality, and provides a very flexible
query language. This paper reports our experiences in
the three-year development process of Yuntis, by pre-
senting its design issues, software architecture, imple-
mentation details, and performance measurements.

1 Introduction

Internet-scale web search engines represent crucial web
information access tools as well as pose software system
design and implementation challenges that involve pro-
cessing unprecedented volumes of data. To equip these
search engines with sophisticated features compounds
the overall architectural scale and complexity because
this requires integration of non-trivial algorithms that
can work efficiently with huge amounts of real-world
data.

Yuntis is a prototype implementation of a scal-
able cluster-based web search engine that provides
many modern search engine functionalities such as
global linkage-based page scoring and relevance weight-
ing [20], phrase extraction and indexing, and genera-
tion of keywords and lists of similar pages for all web
pages. The entire Yuntis prototype consists of 167,000
lines of code, and represents a 3-man-year effort. In this
paper, we discuss the design and implementation issues
involved in the prototyping process of Yuntis. We intend
this paper to shed some light into the internal workings
of a feature-reach modern web search engine, and serve
as a blueprint for future development of Yuntis.

The next two sections provide background and moti-
vation for development of Yuntis, respectively. Section 4
describes its architecture. Implementation of main pro-
cessing activities of Yuntis is covered in Section 5. Sec-
tion 6 quantifies the performance of Yuntis. We conclude
the paper by discussing future work in Section 7.

chiueh@cs.sunysb.edu

2 Background

The basic service offered by all web search engines is
returning a set of web page URLSs in response to a user
query composed of words, thus providing a fast and
hopefully accurate navigation service over the unstruc-
tured set of (interlinked) pages. To achieve this, a search
engine must at least acquire and examine a set of URLs it
wishes to provide searching capabilities for. This is usu-
ally done by fetching pages from individual web servers
starting with some seed set, and then following the en-
countered links, while obeying some policy that limits
and orders the set of examined pages. All fetched pages
are preprocessed to later allow efficient answering of
queries. This usually involves inverted word indexing,
where for each encountered word the engine maintains
the set of URLs the word occurs in (is relevant to), pos-
sibly along with other (positional) information regarding
the individual occurrences of words. These indexes must
be kept in a format that allows their fast intersection and
merging during querying time, for example, they can be
sorted in the same order by the contained URLs.

The contents of the examined pages can be kept so
that relevant page fragments or whole pages can be also
presented to users quickly. Frequently, some linkage-
related indexes are also constructed, for instance, to an-
swer queries about backlinks to a given page. Modern
search engines following Google’s example [5] can also
associate with a page and index some text that is related
to or contained in the links pointing to the page. With ap-
propriate selection and weighing of such text fragments,
the engine can leverage the page descriptions embedded
into its incoming links.

Developing on the ideas of Page, et al [28] and Klein-
berg [17], search engines now include some non-trivial
methods of estimating the relevance or the “quality” of
a web page for a given query using the linkage graph
of the web. These methods can significantly improve
the quality of search results, as evidenced by the search
engine improvements pioneered by Google [11]. Here
we consider only the methods for computing query-
independent page quality or importance scores based on
an iterative computation on the whole known web link-
age graph [5, 19, 20, 28].

There are also other less widespread but useful search

FREENIX Track: 2003 USENIX Annual Technical Conference

engine functions, such as the following:

e Query spelling correction utilizing collected word
frequencies.

e Understanding that certain words form phrases that
can serve as more descriptive items than individual
words.

e Determining most descriptive keywords for pages,
which can be used for page clustering, classifica-
tion, or advertisement targeting.

e Automatically clustering search results into differ-
ent subgroups and appropriately naming them.

e Building high-quality lists of pages similar to a
given one, thus allowing users to find out about al-
ternatives to or analogs of a known site.

Several researchers have described their design and
implementation experiences building different opera-
tions of large-scale web search engines, for example:
The architecture of the Mercator web crawler is reported
by Heydon and Najork [12]. Brin and Page [5] docu-
ment many design details of the early Google search en-
gine prototype. Design possibilities and tradeoffs for a
repository of web pages are covered by Hirai, et al [13].
Bharat, et al [4] describe their experiences in building
a fast web page linkage connectivity server. Different
architectures for distributed inverted indexing schemes
are discussed by Melnik, et al [24] and Ribeiro-Neto, et
al [31].

In contrast, this paper primarily focuses on design and
implementation details and considerations of a compre-
hensive and extensible search engine prototype that im-
plements analogs or derivatives of many individual func-
tions discussed in the mentioned papers, as well as sev-
eral other features.

3 Motivation

Initially we wanted to experiment with our new model,
the voting model [19, 20], for computing various “qual-
ity” scores of web pages based on overall linkage struc-
ture among web pages in the context of implementing
web searching functions. We also planned to imple-
ment various extensions of the model that could uti-
lize additional metadata for rating and categorizing web
pages, for example, metadata parsed or mined from
crawled pages or metadata from external sources such
as the directory structure dumps for the Open Directory
Project [27].

To do any of this, one needs the whole underlying
system for crawling web pages, indexing their contents,
doing other manipulations with the derived data, and
finally presenting query results in a form appropriate
for easy evaluation. The system must also be suffi-
ciently scalable to support experiments with real datasets
of considerable size, because page scoring algorithms

FREENIX Track: 2003 USENIX Annual Technical Conference

based on overall linkage in general produce better results
when working with more data.

Since there was no reasonably scalable and complete
web search engine implementation openly available that
one could easily modify, extend, and experiment with,
we needed to consider available subcomponents, and
then design and build the whole prototype. Existing web
search engine implementations were either trade secrets
of the company that developed them, systems that were
meant to handle small datasets on one workstation, or
(non-open) research prototypes designed to experiment
with some specific search engine technique.

4 Design of Yuntis
The main design goals of Yuntis were as follows:

e Scalability of data preparation at least to tens of
millions of pages processed in a few days.

e Utilization of clusters of workstations for improv-
ing scalability.

e Faster development via simple architecture.

e Good extensibility for trying out new information
retrieval algorithms and features.

e Query performance and flexibility adequate for
quickly evaluating the quality of search results and
investigating possible ways for improvement.

We chose C++ as the implementation language for al-
most all the functionality in Yuntis because it facilitates
development without compromising efficiency. To attain
decent manageability of the relatively large code-base
we adopted the practice of introducing needed abstrac-
tion layers to enable aggressive code reuse. Templates,
inline functions, multiple inheritance, and virtual func-
tions all provide ways to do this, while still generating
efficient code and getting as close to low-level bit ma-
nipulation as C when needed. We use abstract classes
and inheritance to define interfaces and provide change-
able implementations. Template classes are employed
to reuse complex tasks and concepts. Although addi-
tional abstraction layers sometimes introduce run-time
overheads, the reuse benefits were more important for
building the prototype.

4.1 High-Level Yuntis Architecture

To maximize utilization of a cluster of PC workstations
connected by a LAN, the Yuntis prototype is composed
of several interacting processes running on the cluster
nodes (see Figure 1). When an instance of the proto-
type is operational, each cluster node runs one database
worker process that is responsible for storing, process-
ing, and retrieving of all data assigned to the disks of
that node. When needed, each node can also run one
fetcher and one parser process that respectively retrieve
and parse web pages that are stored on the corresponding

USENIX Association

USENIX Association

DB Querier

DB Manager

Seed Parser
L
Y

> DB Worker

y

Web

v

A

> Page Fetcher

Doc. Parser

<« |

LVS - :_ Web Server

Figure 1: Yuntis cluster processes architecture.

node. There is one database manager process running at
all times on one particular node. This process serves as
the central control point, keeps track of all other Yun-
tis processes in the cluster, and helps them to connect to
each other directly. Web servers answering user queries
are run on several cluster nodes and are joined by the
Linux Virtual Server load-balancer [23] into a single ser-
vice.

There are also a few other auxiliary processes. The
database querier helps with low-level manual exami-
nation and inspection of all the data managed by the
database worker processes. Database rebuilders can ini-
tiate rebuilding of all data tables by feeding into the sys-
tem the essential data from a set of existing data files.
A seed data parsing and data dumping process can in-
troduce initial data into the systems and extract some
interesting data out of it.

A typical operation scenario of Yuntis involves start-
ing up database manager and workers, importing an ini-
tial URL seed set or directory metadata, crawling from
the seed URLSs using fetchers and parsers, and complete
preprocessing of the crawled dataset; then finally we
start the web server process(es) answering user search
queries. We discuss these stages in more detail in Sec-
tion 5.

4.2 Library Building Blocks

We made major design decisions early in the develop-
ment, that would later affect many aspects of the system.
These decisions were about choosing the architecture for
data storage, manipulation, and querying, as well as the
approach to node-to-node cluster data communication.
We also decided on the approach to interaction with web
servers providing the web pages and with web clients
querying the system. These activities capture all main
processing in a search engine cluster. In addition, a pro-

cess model was chosen to integrate all these activities in
one distributed system of interacting processes.

The choices about whether to employ or reuse code
from an existing library or an application, or rather to
implement the needed functionality afresh were made
after assessing the suitability of existing code-bases and
comparing the expected costs of both choices. Many
of these choices were made without a comprehensive
performance or architecture compatibility and suitabil-
ity testing. Our informal evaluation deemed such costly
testing not justified by the low expectation of its pay-
off to reveal a substantially more efficient design choice.
For example, existing text or web page indexing li-
braries such as Isearch [15], ht://Dig [14], Swish [35],
or Glimpse [37] were not designed to be a part of a dis-
tributed large-scale web search engine, hence the cost
of redesigning and reusing them was comparable with
writing own code.

4.2.1 Process Model

We needed an architecture that in one process space
could simultaneously and efficiently support several of
the following: high volumes of communication with
other cluster nodes, large amounts of disk I/O, network
communication with HTTP servers and clients, as well
as significant mixing and exchange of data communi-
cated in these ways. We also wanted to support multiple
activities of each kind that individually need to wait for
completion of some network, interprocess, or disk 1/O.

To achieve this we chose an event-driven program-
ming model that uses one primary thread of control that
handles incoming events via a select-like data polling
loop. We used this model for all processes in our pro-
totype. The model avoids multi-threading overheads
of task switching, stack allocation, and synchronization
and locking complexities. But it also requires to intro-
duce call/callback interfaces to all potentially blocking
operations at all abstraction levels, from file and socket
operations to exchanging data with a (remote) database
table. Moreover, non-preemptiveness in this model re-
quires us to ensure that processing of large data items
can be split into smaller chunks so that the whole pro-
cess can react to other events during such processing.

The event polling loop can be generalized to support
interfaces with the operating system that are more effi-
cient than, but similar to select, such as Kqueue [18].
We also later added support for fully asynchronous disk
I/O operations via a pool of worker threads communi-
cating through a pipe with the main thread.

Another reason for choosing the essentially uni-
threaded event-driven architecture were the web server
performance studies [16, 29] showing that web servers
with such architecture under heavy loads significantly
outperform web servers (such as Apache [2]) that al-

FREENIX Track: 2003 USENIX Annual Technical Conference

ht://Dig

locate a process or a thread per each request. Hence
Apache’s code-base was not used as it has different pro-
cess architecture and is targeted to support highly config-
urable web servers. Smaller select-based web servers
such as thttpd [36] were designed to be just fast light-
weight web servers without providing a more modular
and extensible architecture. In our architecture, commu-
nication with HTTP servers and clients is handled by an
extensible hierarchy of classes that in the end react to
network socket and disk I/O events.

4.2.2 Intra-Cluster Communication

We needed high efficiency of the communication for a
specific application architecture instead of overall gener-
ality, flexibility, and interoperability with other applica-
tions and architectures. Thus we did not use existing net-
work communication frameworks such as CORBA [8],
SOAP [33], or DCOM [9] for communication among
cluster workstations.

We did not employ network message-passing libraries
such as MPI [25] or PVM [30] because they appear to
be designed for scientific computing: they are oriented
to support many tasks (frequently with multiprocessors
in mind) that do not actively use local disks on the clus-
ter workstations and do not communicate actively with
many other network hosts. Because of inadequate com-
munication calls, MPI and PVM require to use a lot of
threads if one needs intensive communication. They do
not have scalable primitives to simultaneously wait for
many messages arriving from different points, as well
as for readiness of disk I/O and other network I/O, for
instance, over HTTP connections.

Consecutively, we developed our own cluster com-
munication primitives. Information Service (IS) is a
call/callback interface for a set of possibly remote pro-
cedures that can consume and produce small data items
or long data streams. The data to be exchanged is un-
typed byte sequences and procedures are identified by
integers. There is also an easy way to wrap this into a
standard typed interface. We have implemented support
for several IS clients and implementations to set up and
communicate over a common TCP socket.

4.2.3 Disk Data Storage

We did not use full-featured database systems mainly
because the expected data and processing load required
us to employ a distributed system running on a cluster
of workstations and use light-weight data management
primitives. We needed a data storage system with mini-
mal processing and storage overheads oriented for opti-
mizing the throughput of data-manipulation operations,
not latency and atomicity of individual updates. Even
high-end commercial databases appeared to not satisfy

FREENIX Track: 2003 USENIX Annual Technical Conference

these requirements completely at the time (May 2000).
An indirect support of our choice is the fact that large-
scale web search engines also use their own data man-
agement libraries for the page indexing data. On the
other hand, our current design is quite modular, hence
one could easily add database table implementations that
could interface with a database management library such
as Berkeley DB [3] or a database management system,
provided these can be configured to achieve adequate
performance.

A set of database manipulation primitives were devel-
oped to handle large-scale on-disk data efficiently. At
the lowest abstraction level are virtual files that are large
continuous growable byte arrays and are used as data
containers for database tables. We have several imple-
mentations of the virtual file interface based on one or
multiple physical files, memory-mapped file(s), or sev-
eral memory regions. This unified interface allows the
same database access code to run over physical files or
memory regions.

The database table call/callback interface is at the next
abstraction level, and defines a uniform interface to dif-
ferent kinds of database tables that share the same com-
mon set of operations: add, delete, read, or update (a
part of) a record identified by a key. A database table
implementation composed of disjoint subtables together
with an interface to an Information Services instance al-
lows a database table to be distributed across multiple
cluster nodes while keeping data table’s physical place-
ment completely transparent to the code of its clients.
To support safe concurrent accesses to a database table,
we provide optional exclusive and shared locking at both
the database record and database table levels.

At the highest abstraction level are classes and tem-
plates to define typed objects that are to be stored in
database tables (or exchanged with Information Ser-
vices), as well as to concisely write procedures that ex-
change information with database tables or IS’es via
their call/callback interfaces. This abstraction level en-
ables us to hide almost all the implementation details
of the database tables behind a clean typed interface, at
the cost of small additional run-time overheads. For ex-
ample, we frequently read or write a whole data table
record, when we are actually interested in just a few of
its fields.

4.3 External Libraries and Tools

We have heavily relied on existing more basic and more
compatible libraries and tools than the ones discussed
earlier.

The Standard Template Library (STL) [34] of C++
proved to be very useful, but we had to modify it to en-
hance its memory management functionality by adding
real memory deallocation, and eliminate a hash table

USENIX Association

USENIX Association

implementation inefficiency of erasing elements from a
large, very sparse table.

GNU Nana library [26] is very convenient for log-
ging and assertion checking during debugging, espe-
cially when the GNU debugger (GDB) [10] due to its
own bugs often crashes while working with the core
dumps generated by our processes. Consequently we
had to rely more on logging and on attaching GDB to
a running process, which consumes a fair amount of
processing resources. Selective execution logging and
extensive run-time assertion checking greatly helped in
debugging our parallel distributed system.

The eXternalization Template Library [38] approach
provides a clean, efficient, and extensible way to convert
any typed C++ object into and from a byte sequence for
compact transmission among processes on the cluster of
workstations, or for long-term storage on disk.

Parallel compilation via the GNU make utility and
simple scripts and makefiles, together with right gran-
ularity of individual object files, allowed us to reduce
build times substantially by utilizing all our cluster
nodes for compilation. For example, a full Yuntis build
taking 38.9min for compilation and 2min for linking on
one workstation takes 3.7+2min on 13 workstations.

4.4 Data Organization

We store information about the following kinds of ob-
jects: web hosts, URLs, web sites (which are sets
of URLs most probably authored by the same en-
tity), encountered words or phrases, and directory cate-
gories. All persistently stored data about these objects is
presently organized into 121 different logical data tables.
Each data table is split into partitions that are evenly dis-
tributed among the cluster nodes. The data tables are
split into 60, 1020, 120, 2040, and 60 partitions for the
data respectively related to one of the above five kinds of
objects. These numbers are chosen as to ensure a man-
ageable size of each partition for all data tables at the
targeted size of a manipulated dataset.

All data tables (that is, their partitions) have one of
the following structures: indexed array of fixed-sized
records, array of fixed-sized records sorted by a field
in each record, heap-like addressed set of variable-
sized records, or queues of fixed- or variable-sized
records. These structures cover all our present needs, but
new data table structures can be introduced if needed.
Records in all these structures except queues are ran-
domly accessible by small fixed-sized keys. The system-
wide keys for whole data tables contain a portion used to
choose the partition and the rest of the key is used within
the partition to locate a specific record (or a small set of
matching records in the case of the sorted array struc-
ture).

For each of the above five kinds of web-world objects
there are data tables to map between object names and
internal identifiers which index fixed-sized information
records, which in turn contain pointers into other tables
with variable-sized information related to each object.
This organization is both easy to work with and allows
for a reasonably compact and efficient data representa-
tion.

The partition to store a data record is chosen by the
hash values derived from the name of the object to which
the record is most related. For example, if the hash value
of a URL maps it to the ith partition out of 1020, then
such items as the URL’s name, the URL’s information
record, lists of back and forward links for the URL are
all to be stored in the ¢th partition of the corresponding
data table. One result of such data organization is that
a database key or textual name of an object readily de-
termines the database partition and cluster node the ob-
ject belongs to. Hence, for all data accesses a database
client can choose and communicate directly with the
right worker without consulting any central lookup ser-
vice.

4.5 Data Manipulation

The basic form of manipulation over data stored in the
data tables is when individual data records or their parts
are read or written by a local or remote request and the
accessing client activity waits for completion of its re-
quest. There are two kinds of inefficiencies we would
like to eliminate here: the network latency delay for re-
mote accesses and local data access delays and over-
heads. The latter occur when the data needed to com-
plete a data access has to be brought into memory from
disk and into the CPU cache from memory. This can also
involve the substantial processing overheads of working
with data via file operations instead of accessing mem-
ory regions.

To avoid all these inefficiencies we rely on batched
delayed execution of data manipulation operations —see
Lifantsev and Chiueh [21] for full details. All large vol-
ume data reading (and update when possible) is orga-
nized around sequential reading of the data table parti-
tion files concurrently on all cluster nodes. In most other
cases, when we need to perform a sequence of data ac-
cesses that work with remote or out-of-core data, we do
not execute the sequence immediately. Instead we batch
the needed initiation information into a queue associated
with the group of related data table partitions this se-
quence of data accesses needs to work with. When such
batching is done to a remote node, in most cases we do
not need an immediate confirmation that the batching
has completed in order to continue with our work. Thus
most network communication delays are masked. Af-
ter a large number of such initiation records are batched

FREENIX Track: 2003 USENIX Annual Technical Conference

to a given queue to justify the I/O costs (or when no
other processing can proceed), we execute such a batch
by loading or mapping into memory the needed data par-
titions and then working with the data in memory.

For many data tables, we can guarantee that each of
their partitions will fit into the available memory, thus
they are actually sequentially read from disk. For other
data tables, the utilization of file mapping cache in the
OS is significantly improved. With this approach, even
for limited hardware resources, we can guarantee for a
large spectrum of dataset sizes that in most cases all data
manipulation happens with data already in local memory
(or even CPU cache) via low-overhead memory access
primitives. This model of processing utilizes such prim-
itives as the following: support for database tables com-
posed of disjoint partitions, buffered queues over several
physical files for fast operation batching, classes to start
and arbiter execution of operation batches and individ-
ual batched operations, and transparent memory-loading
or mapping of selected database table partitions for the
time of execution of an operations’ batch.

In the end, execution of a batched operation consists
of manipulating some database data already in memory
and scheduling of other operations by batching their in-
put data to an appropriate queue possibly on other cluster
nodes. We wait for completion of this inter-node queue-
ing only at batch boundaries. Hence, inter-node com-
munication delays do not block execution of individual
operations. High-level data processing tasks are orga-
nized by a controlling algorithm at the database man-
ager process that initiates execution of appropriate oper-
ation batches and initial generation of operations. Both
of these proceed on cluster nodes in parallel.

4.5.1 Flow Control

During execution of operation batches (and operation
generation by database table scanning) we need to have
some flow control: On one hand, to increase CPU uti-
lization, many operations should be allowed to execute
in parallel in case some of them block on I/O. On the
other hand, batch execution (sometimes even execution
of a single operation) should be paused and resumed so
that inter-cluster communication buffers are not need-
lessly large when they are being processed. Our adopted
solution is to initiate a certain large number of opera-
tions in parallel and pause/resume their execution via
appropriate checks/callbacks depending on the number
of pending inter-cluster requests at this node. Allowing
on the order of 100,000 pending inter-cluster requests
appears to work fine for all Yuntis workloads. The ex-
act number of operations potentially started in parallel
is tuned depending on the nature of processing done by
each class of operations and ranges from 20 to 20,000.

FREENIX Track: 2003 USENIX Annual Technical Conference

[Load | Execute Batch [Unload |
Load I Execute Batch | Unload I
| Load | | Execute Batch | Unload|

Figure 2: Operation batches execution pipeline.

4.5.2 CPU and I/O Pipeline

Since most data processing is organized into execution
of operation batches, we optimize it by scheduling it as
a pipeline (see Figure 2). Each batch goes through three
consecutive stages: reading/mapping of database parti-
tions from disk, execution of its operations, and writ-
ing out of modified database data to disk. The middle
stage is more CPU-intensive, while the other two are
more I/O-intensive. We use two shared/exclusive locks
and an associated sequence of operations with them to
achieve pipeline-style exclusive/overlapped execution of
CPU and I/O-intensive sections. This requires us to dou-
ble the number of data partitions so that the data manip-
ulated by two adjacent batches all fits into the available
memory of a node.

5 Implementation of Yuntis

In the following sections we describe the implementa-
tion details and associated issues for the major process-
ing activities of Yuntis mostly in the order of their ex-
ecution. Table 1 provides a coarse breakdown for code
sizes of major Yuntis subsystems.

5.1 Starting Components Up

First, the database manager process is started up on
some cluster node and begins listening on a designated
TCP port. After that, the database worker processes are
started on all nodes and start listening on another desig-
nated TCP port for potential clients, as well as advertise
their presence to the manager by connecting to it. As
soon as the manager knows that all workers are up, it
sends the information about the host and port numbers
of all workers to each worker. At this point each worker
establishes direct TCP connections with all other work-
ers and reports complete readiness to the manager.

Other processes are connected to the system in a sim-
ilar fashion. A process first connects to the manager and
once the workers are ready is given information about
the host and port numbers of all workers. Then the pro-
cess connects and communicates with each worker di-
rectly. Control connections are still maintained between
the manager and most other processes. They are in par-
ticular used for a clean disconnection and shutdown of
the whole system.

5.2 Crawling and Indexing Web Pages

The initial step is to get a set of the web pages and orga-
nize all the data into a form ready for later usage.

USENIX Association

USENIX Association

Subsystem Code Code Logical

Lines Bytes Modules
Basic Libraries 51,790 | 1,635,356 49
Web Libraries 15,286 476,084 24
Info. Services 3,950 107,260 13
Data Storage 16,924 566,721 22
Search Engine 79,322 | 2,855,390 49
Total 167,272 | 5,640,811 157

Table 1: Yuntis subsystem code size breakdown.

5.2.1 Acquiring Initial Data

The data parsing process can read a file with a list of
seed URLs or the files that contain the XML dump of the
directory structure for the Open Directory Project [27]
(publicly available online). These files are parsed while
read and appropriate actions are initiated on the database
workers to inject this data into the system.

Another way of data acquisition is to parse data from
the files for a few essential data tables available from
another run of the prototype and rebuild all other data
in the system. These essential tables are the log of do-
main name resolution results for all encountered host
names, the log of all URL fetching errors, and the
data tables containing compressed raw web pages and
robots.txt files [32]. The rebuilding for each of
these tables is done by one parser on each cluster work-
station that reads and injects into the workers the portion
of the data table stored on its cluster node. We use this
rebuilding, for example, to avoid refetching a large set of
web pages after we have modified the structure of some
data tables in the system.

5.2.2 Fetching Documents from the Web

The first component of crawling is actual fetching of
web pages from web servers. This is done by fetcher
processes at each cluster workstation. There is a fetch
queue data table that can be constructed incrementally
to include all newly encountered URLs. Each fetcher
reads from a portion of this queue located on its node
and attempts to keep retrieving at most 80 documents
in parallel while obeying the robots exclusion conven-
tions [32]. The latter involves retrieving, update, and
consulting contents of the robots. txt files for ap-
propriate hosts. To mask response delays of individual
web servers, we wish to fetch many documents in par-
allel, but too many simultaneous TCP connections from
our cluster might muscle out other university traffic. If
a document is retrieved successfully, it is compressed
and stored in the document database partition local to the
cluster node, then an appropriate record is added to the
document parsing queue. That is, the URL space and the
responsibility for fetching and storing it is split among

the cluster nodes, also the split is performed in such a
way that all URLs from the same host are assigned to
the same cluster node. As a result, in particular to be
polite to web servers, the fetcher processes do not need
to perform any negotiation with each other and have to
communicate solely with local worker processes. The
potential downside of this approach is that URLs might
get distributed among cluster nodes unevenly. In prac-
tice, we saw only 12% deviation from the average of the
number of URLSs in a node.

5.2.3 Parsing Documents

Document parsing was factored into a separate activity
because fetching documents is not the only way of ob-
taining them. Parsing is performed by the parser pro-
cesses on the cluster nodes. Parsers dequeue information
records from the parse queue, retrieve and decompress
the documents, and then parse them and inject the results
of parsing into appropriate database workers. Parsers
start with the portion of the parse queue (and documents)
local to their cluster node, but switch to documents from
other nodes when the local queue gets empty. Most of
the activities in a parser actually happen in a streaming
mode: a parser can communicate to the workers some re-
sults of parsing the beginning of a long document, while
still reading in the end of the document. We also attempt
to initiate parsing of at most 35 documents in parallel on
each node so that parsers do not have to wait on docu-
ment data and remote responses from other workers. A
planned optimization is to eliminate the cost of page de-
compression when parsing recently-fetched pages. An-
other optimization is to have a small dictionary of the
most frequent words in each parser so that for a substan-
tial portion of word indexing we can map word strings
to internal identifiers directly in the parsers. Having a
full dictionary is not feasible as, for instance, we have
collected over 60M words for a 10M pages crawl.

5.2.4 Word and Link Indexing

We currently parse HTML and text documents. Full
text of the documents is indexed along with information
about prominence of and distances between words that
is derived from the HTML and sentence structure. All
links are indexed along with the text that is contained in
the link anchor, surrounds the link anchor within a small
distance but does not belong to other anchors, and the
text of two structurally preceding HTML headers. All
links from a web page are also weighted by an estimate
of their prominence on the page.

As aresult of parsing, we batch the data needed to per-
form actual indexing into appropriate queues on appro-
priate worker nodes. After all parsing is done (and dur-
ing parsing when parsing many documents) these index-
ing batches are executed according to our general data

FREENIX Track: 2003 USENIX Annual Technical Conference

manipulation approach. As a result the following gets
constructed: unsorted inverted indexes for all words, for-
ward and backward linkage information, and informa-
tion records about all newly encountered hosts, URLs,
sites, and words.

5.2.5 Quality-Focused Crawling

Breadth-first crawling can be performed using already
described components because the link-indexing process
already includes an efficient way of collecting all newly
encountered URLSs for later fetching. The problem with
breadth-first crawling is that it is very likely to fall into
(unintended) crawler traps, that is, fetch a lot of URLs
few people are going to be interested in. For example,
even when crawling the sunysb.edu domain of our
university a crawler can encounter huge documentation
or code revision archive mirrors, many pages of which
are quickly reachable with breadth-first search.

We thus employ the approach of crawling focused by
page quality scores [7]. In our implementation, after
fetching a significant new portion of URLs from an ex-
isting fetch queue (for instance, a third of the number of
URLSs fetched earlier), we execute all operations needed
to index links from all parsed documents and then com-
pute page quality scores via our voting model [20] for all
URLSs and the currently known web linkage graph (see
Section 5.3.1). After this the fetch queue is rebuilt (and
organized into a priority queue) by filling it with yet un-
fetched URLs with best scores. Then document fetching
and parsing continues with the new fetch queue start-
ing with the best URLs according to the score estimates.
Thus, we can avoid wasting resources on unimportant

pages.
5.2.6 Post-Crawling Data Preprocessing

After we have fetched and parsed some desired set of
pages, all indexing operations initiated by parsing must
be performed so that we can proceed with further data
processing. This involves building lists of backlinks,
lists or URLs and sites located on a given host, and
URLSs belonging to a given site. A site is a collection
of web pages assumed to be controlled by a single en-
tity, a person or an organization. Presently any URL is
assigned to exactly one site and we treat as sites whole
hosts, home pages following the traditional /~user-
name/ syntax, and home pages located on the few most
popular web hosting services. We also merge all hosts
with the same domain suffix into one site when they are
likely to be under control of a single commercial entity.
In order to perform phrase extraction and indexing de-
scribed later, direct page and link word indexes are also
constructed. They are associated with URLs and con-
tain word identifiers for all document words and words
associated with links from the document.

FREENIX Track: 2003 USENIX Annual Technical Conference

5.3 Global Data Processing

After collecting a desired set of web pages, we perform
several data processing steps that each work with all col-
lected data of a specific kind.

5.3.1 Computing Page Quality Scores

We use a version of the developed voting model [20]
to compute global query-independent quality scores for
all known web pages. This model subsumes Google’s
PageRank approach [19] and provides us with a way to
assess importance of a web page and reliability of the
information presented on it in terms of different infor-
mation retrieval tasks. For example, page scores are
used to weigh word occurrence counts, so that unimpor-
tant pages can not skew the word frequency distribution.
Our model uses the notion of a web site for determining
the initial power to influence final scores and to properly
discount the ability of intra-site links to increase site’s
scores. As a result a site can not receive a high score
just by the virtue of being large or heavily interlinked,
which was the case for the public formulation of PageR-
ank [5, 28].

The score computation proceeds in several stages.
The main stage is composed of several iterations, each
of which consists of propagating score increments over
links and collecting them at the destination pages. As
with all other large volume data processing, these score
computation steps are organized using our efficient
batched execution method. Since in our approach later
iterations monotonically incur smaller amount of incre-
ments to propagate, the number of increments and the
number of web pages that are concerned also reduces.
To exploit this we rely more on caching and touching
only the needed data at the later iterations.

5.3.2 Collecting Statistics

Statistics collection for various data tables happens as a
separate step and in parallel on all cluster nodes by se-
quential scanning of relevant data table partitions, then
statistics for different data partitions are joined. The
most interesting use of statistics is for estimation of the
number of objects that have a certain parameter greater
(or lower) than a given value. This is achieved by
closely approximating such dependencies using the dis-
tribution of the values of such object parameters and the
histogram approximations of these distributions. Most
types of parameters we are interested in, such as the
quality scores for web pages, more or less follow the
power-law distribution [1], meaning that most objects
have very small values of the parameter that are close to
each other and few objects have very high values of the
parameter. This knowledge is used when fitting distri-
butions to their approximations and moving the internal
boundaries of the collected histograms. As a result in

USENIX Association

USENIX Association

three passes over data we can arrive at a close approx-
imation that does not significantly improve with more
passes.

5.3.3 Extracting and Indexing Phrases

To experiment with phrases for instance as keywords
of documents we perform phrase extraction and index
all extracted phrases. Phrases are simply sequences of
words that occur frequently enough. Phrase extraction
is done in several stages corresponding to the possible
phrase lengths (presently we limit the length to four).
Each stage starts with considering forward word/phrase
indexes for all documents that constitute top 20% with
respect to page quality scores from Section 5.3.1. We
thus both reduce processing costs and can not be manip-
ulated by low-score documents. All sequences of two
words (or a word and a phrase of length 7 —1) are counted
(weighted by document quality scores) as phrase candi-
dates. The candidates with high scores are chosen to be-
come phrases. New phrases are then indexed by check-
ing for all “two-word” sequences in all documents if they
are really instance of chosen phrases. Eventually com-
plete forward and inverted phrase indexes are built.

This phrase extraction algorithm is purely statistical:
it does not rely on any linguistic knowledge. Yet it ex-
tracts many common noun phrases such as “computer
science” or “new york”, although along with incomplete
phrases that involve prepositions and pronouns like “at
my”. Additional linguistic rules can be easily added.

5.3.4 Filling Page Scores into Indexes

In order to be able to answer user queries quicker, it is
beneficial to put page quality scores for all URLs into all
inverted indexes and sort the lists of URLs in them by
these scores. Consecutively, to retrieve a portion of the
intersection or the union of URL lists for several words
with highest URL scores (which constitutes the result of
a query), we do not have to examine the whole lists.

Page quality scores are filled into the indexes simply
by consulting the score values for the appropriate URLs
in the URL information records, but this is done via our
delayed batched execution framework so that the infor-
mation records for all URLs do not have to fit into the
memory of the cluster. To save space we map four-byte
floating point score values to two-byte integers using a
mapping derived from approximating the distribution of
score values (see Section 5.3.2).

In addition we also fill similar approximated scores
into indexes of all words (and phrases) associated with
links pointing to URLs. To do this we also keep full
URL identifiers of linking URLSs in these indexes. This
allows us to quickly assess the weight of a all words used
to describe a given URL via incoming links. Sorting of

various indexes by the approximated page score values
is done as a separate data table modification step.

5.3.5 Building Linkage Information

We use a separate stage to construct the data tables about
backward URL to URL linkage, forward web site to
URL on other sites linkage, and backward URL on other
sites to site linkage from forward URL to URL link-
age data. At this time we also incorporate page quality
scores into these link lists for later use during querying.

5.3.6 Extracting Keywords

We compute characteristic keywords for all encountered
pages to be later used for assessing document similarity.
They are also aggregated into keyword lists for web sites
and ODP [27] categories. All these keyword lists are
later served to the user as a part of the information record
about an URL, site, or category.

Keywords are words (and phrases) most related to a
URL and are constructed as follows: inverted indexes
for all words that are not too frequent and not too rare
(as determined by hand-tuned bounds) are examined and
candidate keywords are attached to the URLSs that would
receive the highest scores for a query composed of the
particular word. For all word-URL pairs, the common
score boundary to pass as a candidate keyword is tuned
to reduce processing, while yielding enough candidates
to choose from. Since both document and link text in-
dexes are considered similarly to query answering, ex-
tracted document keywords are heavily influenced by the
link text descriptions. Thus, we are sometimes able to
get sensible keywords for not fetched documents.

For all URLs the best of candidate keywords are cho-
sen according to the following rules: we do not keep
more than 30 to 45 keywords per URL depending on
URL’s quality score, and we try to discard keywords
that have scores smaller by a fixed factor on the log-
scale than the best keyword for the URL. We also discard
keywords that have a phrase containing them as another
candidate keyword of the same URL with a score of the
same magnitude on log-scale. The resulting URL key-
words are then aggregated into candidate keyword sets
for sites and categories, which are then similarly pruned.

5.3.7 Building Directory Data

The Open Directory Project [27] freely provides a classi-
fication directory structure similar to Yahoo [39] in size
and quality. Any selected part of the ODP’s directory
structure can be imported and incorporated by Yuntis.
Description texts and titles of listed URL’s are fully in-
dexed as a special kind of link texts. All the directory
structure is fully indexed, so that the user can easily navi-
gate and search the directory or its parts, as well as see in
what categories a given URL or a subcategory are men-

FREENIX Track: 2003 USENIX Annual Technical Conference

tioned. For some reason the latter feature appears to be
unique to Yuntis despite the numerous web sites using
ODP data.

One interesting problem we had to resolve was to de-
termine the portion of subcategory relations in the direc-
tory graph that can be treated as subset inclusion rela-
tions. Ideally we want to treat all subcategory relations
this way, but this is impossible since the subcategory
graph of ODP is not acyclic in general. We ended up
with an efficient iterative heuristic graph-marking algo-
rithm, that likely can be improved, but behaves better in
the cases we tried than corresponding methods in ODP
itself or Google [11]. Note that all the directory index-
ing and manipulation algorithms are distributed over the
cluster and utilize the delayed batched execution frame-
work.

5.3.8 Finding Similar Pages

Locating web pages that are very similar in topic, ser-
vice, or purpose to a given (set of) pages (or sites) is a
very useful web navigation tool on its own. Algorithms
and techniques used for finding similar pages can also
be used for such tasks as clustering or classifying web
pages.

Yuntis precomputes lists of similar pages for all pages
(and sites) with respect to three different criteria: pages
that are linked from high-score pages closely with the
source page, pages that have many high-scored key-
words common with the source page, and pages that
link to many of the pages the source page does. The
computation is organized around efficient volume pro-
cessing of all relevant pieces of “similarity evidence”.
For example, for textual similarity we go from pages to
all their keywords, find other pages that have the same
word as a keyword, choose the highest of these similar-
ity evidences for each word, and send them to the rele-
vant destination pages. At each destination page all sim-
ilarity evidences from different keywords for the same
source page are combined and some portion of most sim-
ilar pages is kept. As a result, all processing consumes
linear time in the number of known web pages, and the
exact amount of processing (and similar pages kept) can
be regulated by the values that determine what evidence
is good enough to consider (or to qualify for storage).

5.4 Data Compaction and Checkpointing

Data table partitions organized as heaps of variable-sized
records usually have many unused gaps in them after be-
ing extensively manipulated: Empty space is reserved
for fast expected future growth of records. Not all space
freed after a record shrinking is later used for another
record. To reclaim all this space on disk we introduced a
data table compaction stage that removes all the gaps in
heap-like table partitions and adjusts all indexes to the

FREENIX Track: 2003 USENIX Annual Technical Conference

records in each such partition that are contained in the
associated information partition. The latter is cheap to
accomplish as each such information partition easily fits
in memory.

All data preparation in Yuntis is organized in stages
that roughly correspond to the previous subsections.
To alleviate the consequences of hardware and soft-
ware failures, we introduced data checkpointing after all
stages that take considerable time, as well as the option
to restart processing from any such checkpoint. Check-
pointing is done by synchronizing all data from memory
to files on disks and “duplicating” the files by making
new hard links. When we later want to modify a file
with more than one hard link, we first duplicate its data
to preserve the integrity of earlier checkpoints.

5.5 Answering User Queries

User queries are answered by any of the web server
processes; they handle HTTP requests, interact with
database workers to get the needed data, and then for-
mat the results into HTML pages. Query answering for
standard queries is organized around sequential reading,
intersecting and merging of the beginnings of relevant
sorted inverted indexes according to the structure of the
query. Then additional information for all candidate and
resulting URLSs is queried in parallel, so that URLs can
be clustered by web sites and URL names and docu-
ment fragments relevant to the query can be displayed
to the user. For flexible data examination, Yuntis sup-
ports 13 boolean-like connectives (such as OR, NEAR,
ANDNOT, and THEN) and 19 types of basic queries that
can be freely combined by the connectives. In many
cases exact information about intra-document positions
is maintained in the indexes and utilized by connectives.
An interesting consequence of phrase extraction and in-
dexing it that it can considerably speed up (for example,
by a factor of 100) many common queries that (implic-
itly) include some indexed phrases. In such cases, the
work of merging the indexes for the words that form the
phrase(s) has been already done during phrase indexing.

6 Performance Evaluation

Below we describe the hardware configuration of our
cluster and discuss the measured performance and sizes
of the handled datasets.

6.1 Hardware Configuration

Presently Yuntis is installed on a 12-node cluster
of Linux PC workstations each running a Red Hat
Linux 8.0 with a 2.4.19 kernel. Each system has one
AMD Athlon XP 2000 CPU with 512MB of DDR RAM
connected by a 2*¥133MHz bus, as well as two 80GB
7200 RPM Maxtor EIDE disks model 6Y080LO with av-
erage seek time of 9.4msec. Two large partitions on each

USENIX Association

USENIX Association

Documents Stored 4,065,923
URLSs Seen 34,638,326
Hyper Links Seen 87,537,723
Inter-Site Links 18,749,662
Web Sites Recognized 2,833,110
Host Names Seen 3,139,435
Canonical Hosts Seen 2,448,607
Words Seen 30,311,538
Phrases Extracted 574,749
Avg. Words per Document 499.5
Avg. Links per Document 20.4
Avg. Document Size 13.1 KB
Avg. URLs per Site 12.2
Avg. Word Length 9.89 char-s
Total Final Data Size 87,446 MB
Avg. Data per Document 21,039 B
Compressed Documents 13,739 MB
Inverted Doc. Text Indexes | 23,188 MB
Inverted Link Text Indexes | 11,125 MB
Other Word Data 1,628 MB
Keyword Data 1,922 MB
Page Similarity Data 25,908 MB
All Linkage Indexes 2,861 MB
Other URL Data 4,613 MB
Other Host, Site, and 2.458 MB
Category Data

For\yard Word Indexes 29.528 MB
(not in total)

Table 2: Data size statistics.

two disks are joined by LVM [22] into one 150G ext3 file
system for data storage. The nodes are connected into
a local network by full-duplex 100Mbps 24-port Com-
pex SRX 2224 switch and 12 network cards. The ample
4.8Gbps back plane capacity of the switch ensured that it
will not become the bottleneck of our configuration. The
full-duplex 100Mbps connectivity of each cluster node
has not yet become a performance bottleneck: So far
we have seen sustained traffic of around 7MBps in and
7MBps out for each node out of the potentially avail-
able 12.5+12.5MBps. With additional optimizations or
increase of CPU power leading to higher communica-
tion volume generated by each node, we might have to
use a higher-capacity cluster connectivity, for instance,
channel bonding with several 100Mbps cards per node.
A central management workstation with an NFS server
is also connected to the switch, but does not noticeably
participate in the workloads of Yuntis, simply providing
a central place for logs, configuration files, and some-

times the executables. The cluster is connected to the
outside world via the 100Mbps campus network and a
155Mbps OC3 university link.

6.2 Dataset Sizes

Table 2 provides various size statistics. We can for ex-
ample see that the bulk of the stored data falls on the
text indexes, similarity lists, and compressed documents.
This data and later performance figures are for a partic-
ular crawl of 4 million pages started by fetching 1.3 mil-
lion URLs listed in the non-international portion of ODP.
All these numbers simply provide order-of-magnitude
estimates of the typical figures one would get for sim-
ilar datasets on similar hardware.

We use the bzip2 library [6] for compressing individ-
ual web pages. This achieves a compression factor of
3.87. bzip2 is very affective when applied to individ-
ual pages: compressing the whole document data table
partitions would save only 0.38% of space. We have not
yet seriously considered additional compression of other
data tables beyond compact data representation with bit
fields.

6.3 Data Preparation Performance

As we have demonstrated [21], the batched data-driven
approach to data manipulation leads to performance im-
provements by a factor of 100 via both better CPU and
memory file cache utilization. It also makes the perfor-
mance much less sensitive to the amounts of available
memory.

Table 3 provides various performance and utilization
figures for different stages of data preprocessing. The
second to last column gives the amount of file data du-
plication needed to maintain the checkpoint for the pre-
vious stage. The data shows that phrase extraction, sim-
ilarity precomputation, and filling of scores into indexes
are the most expensive tasks after the basic tasks of pars-
ing and indexing. Various stages exhibit different inten-
sity of disk and network I/O according to their nature,
as well as perform differently in terms of CPU utiliza-
tion. We are planning to instrument the prototype to de-
termine, for each stage, the exact contributions of the
possible factors to non-100% CPU utilization, and then
improve on the discovered limitations.

Peak overall fetching speed reaches 217 doc-s/sec
and 3.6 MB/sec of document data. Peak parsing speed
reaches 935 doc-s/sec. Sustained speed of parsing with
complete indexing of encountered words and links is
304 doc-s/sec. Observed overall crawling speed when
crawling 4M pages with fetch queue rebuilding after
getting each 0.6M pages was 67 doc-s/sec. The speed
to do all parsing and complete all incurred indexing
is 297 doc-s/sec. The speed of all subsequent pre-
processing is 90 doc-s/sec. The total data preparation

FREENIX Track: 2003 USENIX Annual Technical Conference

Processing Stage Til-ne CPU Utilization Disk I/O Netw. I/O | Total Disk Data
(min) (%) (MB/s) (MB/s) (GB)

User | Sys. | Idle | In Out | In Out | Cloned | Kept

Doc. Parsing & Indexing 168 55 7 35 1.2 1.9 1.2 1.1 9 73
Post-Parsing Indexing 69 46 42 1.8 2.6 1.2 1.2 54 76
Pre-Score Statistics 6 43 3 46 | 14.8 | 0.03 | 0.01 0 0 76
Page Quality Scores 69 27 13 57 1.6 6.4 | 0.77 | 0.77 3 76
Linkage Indexing 9 63 10 24 1.9 3.2 1.8 1.8 4 76
Phrase Extr. & Indexing 276 39 12 47 | 2.9 22| 23 2.3 52 110
Word Index Merging 25 28 11 58 | 0.57 34 0 0 53 110
Scores into Word Index 87 57 16 25 2.3 2.5 3.9 3.9 53 110
Scores into Link Text Index 42 51 12 34 1.9 1.8 3.0 2.9 20 110
Word Statistics 33 57 2 37| 6.8 | 0.09 | 0.30 0 1 110
Choosing Keywords 44 29 7 59 | 3.0 1.8 | 0.66 | 0.60 53 113
Building Directory Data 8 26 5 66 1.7 2.8 | 0.67 | 0.64 2 117
Word Index Sorting 23 28 8 60 | 04 34| 0.02 0 54 117
Finding Similar Pages 116 44 11 43 | 2.7 23| 25 2.5 0 143
Scores into Other Indexes 33 63 19 17 | 22 23| 44 4.4 12 143
Sorting Other Indexes 5 33 2 54 | 0.05 4.8 | 0.09 0 14 143
Data Table Compaction 13 15 12 66 | 10.0 7.7 0 0 4 117

Table 3: Average per-cluster-node data processing performance and resource utilization.

speed excluding fetching of documents it thus 69 doc-
s/sec. Provided this performance scales perfectly with
respect to both the number of cluster nodes and the data
size, it would take a cluster of 430 machines to pro-
cess in two weeks the 3 - 10° pages presently covered
by Google [11], which looks like a quite reasonable re-
quirement.

6.4 Query Answering Performance

Because Yuntis was built for experimenting with dif-
ferent search engine data preprocessing stages, we did
not optimize query answering speeds beyond a basic
acceptable level. Single one-word queries usually take
10 to 30sec when no relevant data is in memory and
0.1 to 0.5sec when all needed data is in the memory of
the cluster nodes. The longer times are dominated by
the need to consult a few thousands of URL informa-
tion records scattered on the disks. We currently do not
have any caching of (intermediate) query results, except
the automatic local file data caching in memory by the
OS. The performance for multiword queries heavily de-
pends on the specific words used: our straightforward
sequential intersecting of word indexes would be signif-
icantly outperformed by a more optimized zig-zag merg-
ing based on binary search in the cases when very large
indexes yield a much smaller intersection.

FREENIX Track: 2003 USENIX Annual Technical Conference

6.5 Quality of Search Results

To illustrate the usability of Yuntis we provide the sam-
ples in Table 4, report that Yuntis served 125 searches
per day on average in February 2003, and encourage
the reader to try it for themselves at http://yuntis.
ecsl.cs.sunysb.edu/.

7 Enhancements and Future Directions

There are a number of general Yuntis improvements
and extensions one can work on such as overall perfor-
mance and resource utilization optimizations (especially
for query answering), better tuning of various parame-
ters, and implementation of novel searching services, for
instance, classifying pages into ODP’s directory struc-
ture [27]. As Table 3 shows, phrase extraction and in-
dexing is one of the most important areas of performance
optimization. One approach is to move phrase indexing
into the initial document parsing and derive the phrase
dictionary in a separate stage using a much smaller sub-
set of good representative documents.

Another significant project is to build support for au-
tomatic work rebalancing and fault tolerance, so that
cluster nodes can automatically share the work most
equally, be seamlessly added, or go down during exe-
cution affecting only the overall performance. The ap-
proach here can be to consider sets of related partitions
together with different batches of operations to them as
the atomic units of data and work to be moved around.

USENIX Association

http://yuntis

USENIX Association

Results for query
university

Keywords for
www.apple.com

Pages linked like

www . subaru.com

Pages textually like
wWww.Cs.sunysb.edu

www.indiana.edu apple computer inc

www.umich.edu apple macintosh

www.stanford.edu apple computers

wWww . wsu.edu macintosh computer

www.uiuc.edu macintosh computers

www.cam.ac.uk apple and
www.about .bham.ac.uk quick time
www . cmu . edu apple has

www.msu.edu computer the

www.cornell.edu made with macintosh

www.toyota.com

WWW.Vw.Ccom

www . sunysb.edu
www.cs.uiuc.edu

www . saabusa.com wWWw.CS.umass.edu

www.pontiac.com www.cs.berkeley.edu

www . suzuki.com www.cs.colorado.edu

www . porsche.com Www.Cs.man.ac.uk

www.oldsmobile.com www-cs.stanford.edu
www.saturncars.com www.cs.virginia.edu
www.volvocars.com www.cs.unc.edu

www . mazdausa .com wWww . suny . edu

Table 4: Top ten results for four typical Yuntis queries.

An important scalability (and work balancing) issue is
posed by the abundance of power-law distributed prop-
erties [1] on the Web. As a result, many data tables have
few records that are very large, for example, individual
occurrence lists for most frequent words grow over 1GB
at around 10 million document datasets, whereas most
other records in the same table are under few KB. Han-
dling (reading, updating, appending, or sorting) such
large records efficiently requires special care such as not
attempting to load (or even map) them into memory as
a whole, and working with them sequentially or in small
portions. In addition, such records reflect poorly on the
ability to divide the work equally among cluster nodes
by random partitioning of the set of records. A known
solution is to split the records into subparts; for exam-
ple, a word occurrence list can be divided according to a
partitioning of the whole URL space. We are planning to
investigate the compatibility of this approach with pro-
cessing tasks that need to consider such records as a
whole, and whether it is best to do this splitting for all
records in a table or only for the extremely large ones.

8 Conclusions

We have described the software architecture, major em-
ployed abstractions and techniques, and implementation
of the main processing tasks of Yuntis, a 167,000 lines
feature-rich operational search engine prototype. We
have also discussed its current configuration, its perfor-
mance, and the characteristics of handled datasets, as
well as outlined some existing problems and roads for
future improvements.

The implementation of Yuntis allowed us to experi-
ment with, evaluate, and identify several enhancements
of our voting model [20] for assessing quality and rele-
vance of web pages. The same is true for other search
engine functions (such as phrase indexing, keyword ex-
traction, similarity lists precomputation, and directory
data usage), as well as their integration in one system —

all while working with realistic datasets of millions of
web pages.

The most important contributors to this success were
the following: First, the approach of data partition-
ing and operation batching provided high cluster per-
formance without task-specific optimizations leading to
convenience of implementation and faster prototyping.
Second, the modular, layered, and typed architecture for
data management and cluster-based processing allowed
us to build, debug, extend, and optimize the prototype
rapidly. Third, the event-driven call/callback processing
model was useful for allowing us to have a relatively
simple, efficient, and coherent design of all components
of our comprehensive search engine cluster.

Acknowledgments

This work was supported in part by NSF grants IRI-
9711635, MIP-9710622, EIA-9818342, ANI-9814934,
and ACI-9907485. The paper has greatly benefited
from the feedback of its shepherd, Erez Zadok, and the
USENIX anonymous reviewers.

Availability

The Yuntis prototype can be accessed online at http:
//yuntis.ecsl.cs.sunysb.edu/. Its source code
is available for download at http://www.ecsl.cs.
sunysb.edu/ "maxim/yuntis/.

References

[1] Lada A. Adamic. Zipf, power-laws, and pareto - a
ranking tutorial. Technical report, Xerox Palo Alto
Research Center, 2000.

[2] The Apache Web Server, www . apache . org.
[3] The Berkeley Database, www.sleepycat .com.

[4] Krishna Bharat, Andrei Broder, Monika Hen-
zinger, Puneet Kumar, and Suresh Venkatasubra-
manian. The Connectivity Server: fast access to
linkage information on the Web. In Proceedings

FREENIX Track: 2003 USENIX Annual Technical Conference

http://www.ecsl.cs

of 7th International World Wide Web Conference,
14-18 April 1998.

[5] Sergey Brin and Lawrence Page. The anatomy of
a large-scale hypertextual Web search engine. In
Proceedings of 7th International World Wide Web
Conference, 14-18 April 1998.

[6] The bzip2 Data Compressor, www.digistar.
com/bzip2.

[7] Junghoo Cho, Hector Garcia-Molina, and
Lawrence Page. Efficient crawling through
URL ordering. In Proceedings of the Seventh

World-Wide Web Conference, 1998.

[8] The Common Object Request Broker Architecture,
WWw . corba.org.

[9] The Distributed Component Object Model, www .

microsoft.com/com/tech/DCOM. asp.

[10] The GNU Project Debugger, sources.redhat.
com/gdb.

[11] Google Inc., www.google.com.

[12] Allan Heydon and Marc Najork. Mercator: A scal-
able, extensible Web crawler. World Wide Web,
2(4):219-229, December 1999.

[13] Jun Hirai, Sriram Raghavan, Hector Garcia-
Molina, and Andreas Paepcke. WebBase: A repos-
itory of web pages. In Proceedings of the 9th Inter-
national World Wide Web Conference, Amsterdam,
Netherlands, May 2000.

[14] The ht://Dig Search Engine, www.htdig.org.

[15] The Isearch Text Search Engine, www.cnidr.
org/isearch.html.

[16] Dan Kegel. The C10K Problem, www.kegel.
com/cl0k.html.

[17] Jon M. Kleinberg. Authoritative sources in a hy-
perlinked environment. In Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 668—677, San Francisco, California,
25-27 January 1998.

[18] Jonathan Lemon. Kqueue: A generic and scal-
able event notification facility. In Proceedings of
the FREENIX Track (USENIX-01), pages 141-154,
Berkeley, California, June 2001.

[19] Maxim Lifantsev. Rank computation methods for
Web documents. Technical Report TR-76, ECSL,
Department of Computer Science, SUNY at Stony
Brook, Stony Brook, New York, November 1999.

[20] Maxim Lifantsev. Voting model for ranking Web
pages. In Peter Graham and Muthucumaru Mah-
eswaran, editors, Proceedings of the International
Conference on Internet Computing, pages 143—
148, Las Vegas, Nevada, June 2000.

FREENIX Track: 2003 USENIX Annual Technical Conference

[21] Maxim Lifantsev and Tzi-cker Chiueh. I/O-
conscious data preparation for large-scale web
search engines. In VLDB 2002, Proceedings of
28th International Conference on Very Large Data
Bases, August 20-23, 2002, Hong Kong, China.

[22] The Logical Volume Manager, www.sistina.
com/products_lvm.htm.

[23] The Linux Virtual

linuxvirtualserver.org.

Server, WWW .

[24] Sergey Melnik, Sriram Raghavan, Beverly Yang,
and Hector Garcia-Molina. Building a distributed
full-text index for the Web. In Proceedings of the
10th International World Wide Web Conference,
Hong Kong, May 2001.

[25] The Message Passing Interface, www-unix.mcs.
anl.gov/mpi.

[26] The GNU Nana

software/nana.

Library,

WWW.gnu.org/

[27] The Open Directory Project, www . dmoz . org.

[28] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The pagerank citation ranking:
Bringing order to the Web. Technical report, Stan-
ford University, California, 1998.

[29] Jef Poskanzer. Web Server Compar-
isons, www .acme .com/software/thttpd/
benchmarks.html.

[30] The Parallel Virtual Machine, www.csm.ornl.
gov/pvm.

[31] Berthier Ribeiro-Neto, Edleno S. Moura, Mar-
den S. Neubert, and Nivio Ziviani. Efficient dis-
tributed algorithms to build inverted files. In Pro-
ceedings of the 22nd Annual International ACM
SIGIR Conference on Information Retrieval, pages
105-112, Berkeley, California, August 1999.

[32] Web Robots Exclusion, www.robotstxt .org/
wc/exclusion.html.

[33] The Simple Object Access Protocol, www.w3 .
org/TR/SOAP.

[34] The Standard Template Library, www.sgi.com/
tech/stl.

[35] The Simple Web Indexing System for Humans,

swish-e.org.

[36] The thttpd Web Server, www.acme.com/
software/thttpd.

[37] The Webglimpse Search Engine Software,
webglimpse.net.

[38] The eXternalization Template Library, =xtl.
sourceforge.net.

[39] Yahoo! Inc., www.yahoo.com.

USENIX Association

ht://Dig

