
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 125

Console over Ethernet

Michael Kistler, Eric Van Hensbergen, and Freeman Rawson
IBM Austin Research Laboratory

Abstract

While console support is one of the most mundane
portions of an operating system, console access is crit-
ical, especially during system debugging and for some
low-level system-administration operations. As a result,
densely packed servers and server appliances have ei-
ther keyboard/video/mouse (KVM) cabling and KVM
switches or serial ports, cabling, and concentrators. Fur-
ther increases in the density of server appliances and
blades require eliminating these items. We did so in the
design of a prototype dense-server-blade system that in-
cludes none of the standard external ports for console
devices. Since the standard means for console accesss,
KVM or serial, were not possible, we developed low-
level software to redirect console activity to the Ether-
net interface. This paper describes the console support
over the network interface that we developed for both
our LinuxBIOS-based boot-time firmware and the Linux
operating system. We refer to this code as console over
Ethernet or etherconsole. We found it invaluable in de-
bugging and evaluating our prototype server blades. We
also describe ways of extending our work to make it
more transparent to existing firmware and operating sys-
tems.

1 Introduction
Console support has been a feature of operating systems
since their inception, and it is perhaps one of their most
basic and mundane components. Modern computer sys-
tems make relatively little use of the console during nor-
mal operation and, for reasons of cost, space and sim-
plicity are often run without dedicated terminal equip-
ment connected to the console interface. This is particu-
larly the case for servers packaged as server appliances,
where a server appliance is defined to be a computer sys-
tem specialized to run a single server application, such as
a web server or firewall. However, during system debug
and for certain types of low-level system-administration
tasks, console support is essential.

In this paper we describe several variants of an im-
plementation of Linux console support that use the Eth-
ernet connection as the input/output device. We incor-
porated versions of this console support into both Lin-
uxBIOS [18] and Linux to provide the console support
for a prototype dense-server-blade system that includes
none of the standard external ports for console devices.

We call our console support console over Ethernet or
etherconsole. We found this code to be invaluable for
both the hardware and software bring-up and ongoing
systems management of our prototype. As we used our
implementation, we refined and extended its usefulness,
but we also identified some areas where further enhance-
ments are clearly desirable.

Currently, there are some who believe that consoles
are an anachronism, a hold-over from earlier days, and,
clearly, there are embedded systems environments that
have no console support at all. However, we believe that
for servers, especially during certain portions of their
life-cycles, console function is critical. As noted above,
we needed console support during our debugging efforts,
and we would note that even embedded systems devel-
opers generally use some type of temporary console sup-
port, usually some form of console over a serial line,
during the debugging of their code. For servers, given
the complexity and flexibility of their configurations and
their tendency to have a repair-or-replace rather than a
pure replacement strategy for dealing with failures, there
is a need for console support beyond the development
phase to set low-level configuration values and capture
system message output. In the future, servers may be-
come more like embedded systems and no longer re-
quire console support except during development, but
that does not seem to be the current situation.

The following section provides some additional
motivational background for our work as well as de-
scribing the constraints of our environment. Section 3
describes other console technologies and previous, re-
lated work. In Section 4 we give a detailed description
of the design and implementation of etherconsole. Sec-
tion 5 provides the results of our experimental evalua-
tion of etherconsole, and Section 6 indicates a number
of ways in which our work can be enhanced. Section 7
concludes the paper.

2 Motivation and Intended Environment

Our work on etherconsole is in support of two larger
projects at the IBM Austin Research Laboratory, the
MetaServer and Super-Dense Server projects [10]. The
goal of the MetaServer project is to develop new ap-
proaches to systems management for clusters of server
appliances. A MetaServer cluster consists of a collec-
tion of compute nodes, each of which contains a pro-



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association126

cessor and memory but no local disk, network-attached-
storage nodes, which are used to store application data,
and a MetaServer system that provides a single point of
management and administration for the cluster. These
components are connected by a high speed, switched
network infrastructure, and the cluster connects to an ex-
ternal network through one or more gateways that hide
its internal organization. The compute nodes share a sin-
gle operating system kernel image and root file system
supplied to them over NFS from the MetaServer system.
The operating system environment of the compute nodes
is based on the Red Hat 7.1 Linux distribution and the
Linux 2.4.17 kernel, with key modifications to support
diskless operation. We call this environment the Linux
Diskless Server Architecture (Linux-DSA).

The Super-Dense Server (SDS) project is explor-
ing ways of building servers to reduce their power con-
sumption and heat production as well as increase their
density. It uses a number of boards, or server blades,
plugged into a chassis or backplane where each server
blade is a single-board computer with a processor, mem-
ory, an Ethernet connection, an interface to the I2C sys-
tem management bus, and supporting logic. The server
blades were intentionally designed with a very limited
amount of I/O to reduce their power consumption and
heat production and to increase the overall density of the
prototype. In particular, our server blades do not have
local disks and do not include any of the standard ex-
ternal ports for console devices. Along with the server
blades, other specialized blades are also plugged into the
chassis including an Ethernet switch and a specialized
single-board computer that acts as a system management
controller. Each server blade runs its own copy of a com-
mon operating system image and server-application set,
and the server blades in a chassis are typically config-
ured into a cluster. We developed our own boot-time
firmware based on LinuxBIOS [18] and use the Linux-
DSA operating system and runtime environment from
the MetaServer project. Recently, a number of com-
mercial dense-server and server-blade products have ap-
peared in the marketplace, including ones from Am-
phus [1], Compaq [6] (prior to its merger with Hewlett-
Packard), Hewlett-Packard [12], IBM [14], and Dell [7].
All of these products share concepts similar to those
found in the SDS work, but all still include either stan-
dard or proprietary ports for console devices and require
extra cabling and switches for console access.

The goal of etherconsole is to attach a console or
console emulator to a server over a standard Ethernet
connection. In so doing, it provides a complete replace-
ment for all console alternatives for both the firmware
and the operating system. Since a server must have a
network connection (typically Ethernet in commercial
data center environments), reusing it for console attach-

ment adds no additional hardware or cabling for con-
sole support. The network interfaces, cables (or back-
plane wiring) and switches are all required and would be
present no matter how the console is attached. Given our
desire to maximize the packaging density of our server
blades, which led to our decision not to include the ports
required to support standard console interfaces, we were
forced to develop an alternative mechanism for console
support. Our only options were the Ethernet connection
and the I2C system management bus. We rejected the
I2C bus for a number of reasons. First, we wanted to re-
serve it for hardware control and certain low-level mon-
itoring functions that we needed for our other research
work. Second, although the latest versions of the bus
have up to 3.4 megabits per second of bandwidth [23] in
high-speed mode, our implementation runs it at the bus’s
original bandwidth of 100 kilobits per second. Third,
experimentally, we found the I2C bus to be somewhat
unreliable in our implementation. Once we eliminated
the I2C bus from consideration, we were forced to im-
plement the console support for our prototype over the
Ethernet interface.

Our network environment also influenced our de-
sign. We made several important assumptions about the
Ethernet and the systems on it, all of which are true in
our environment and many other clusters and data cen-
ters. First, we assumed the use of high-speed, highly re-
liable links connecting the individual server systems to
an Ethernet switch. Second, we assumed that the switch
is capable of Ethernet data-link-layer [22] switching at
line speed, which means that it does not experience con-
gestion problems or drop packets. Therefore, the net-
work itself is highly reliable, and only the system end-
points create transmission or reception hazards. Third,
since all of the systems, including the management sys-
tem that runs the console monitor or console emulator
program, are on the same physical subnet, we assumed
that no routing is needed. These assumptions imply
that reasonably reliable, high-performance communica-
tion is possible using only link-layer Ethernet protocols
and hardware addressing.

Since we were developing a prototype hardware
platform, we had to do system debug and bring-up. We
initially developed two forms of console over Ethernet,
a link-layer, output-only one, and a full console imple-
mentation using the TCP/IP stack. Recently, we con-
solidated them into a single link-layer implementation
that can function both as a simple message transmitter
and as a full console supporting both input and output.
We needed the link-layer, output-only function to allow
us to track the progress (or lack of it) of early system
initialization and the full-function support as a complete
replacement for the standard console function. Full con-
sole support is required, for example, when some type



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 127

of low-level configuration is needed and the system must
run in single-user mode. Although our systems have net-
work access in single-user mode, standard daemon pro-
cesses such as telnet servers cannot run, so the console
is the only way of providing the input that the machine
requires.

3 Background and Related Work
Others have recognized the cost and complexity issues
with providing console access to large clusters of servers
and have developed a variety of solutions to address
these problems. In this section, we describe both the
alternative approaches to console support used in dense
servers and blades and some work that is a pre-cursor to
our own solution to the problem.

3.1 Alternative Approaches to Console
Support

We have identified five distinct approaches to provid-
ing console support that are in common use in commer-
cial data centers. The first approach employs a Key-
board/Video/Mouse (KVM) switch which connects a
single keyboard, mouse, and display to multiple servers,
typically 4, 8, 16, or 32 machines. To interact with
the console of a particular server, the user selects the
server using a mechanical or programmable selector on
the KVM switch, and the keyboard, mouse, and dis-
play are connected by the switch to that server’s console
ports. A KVM switch that supports N servers requires
3N + 3 cables – 3 between each server and the KVM
switch and 3 from the KVM switch to the shared key-
board, mouse, and display. In addition to standard KVM
switches, there are a number of KVM extenders as well
as KVM-to-Ethernet concentrators that have appeared
on the market. One advantage of KVM switches and ex-
tenders is that they are capable of presenting a graphical
user interface. However, in comparison to console over
Ethernet, all of these products require additional hard-
ware components, cabling, and space.

A common alternative to KVM switches is the use
of a serial console which redirects the console traffic
over a serial port connected to a serial concentrator. Un-
like KVM switches but like etherconsole, serial console
does not support a graphical user interface. Serial con-
soles and concentrators offer the advantage of reducing
the number of cables for N systems to N + 1. Some
newer serial concentrators also offer conversion to an
Ethernet uplink. However, they still add to the cost of
the installation, take up space, and require additional ca-
bling. Given that the console is a vital but rarely used
function in a production installation, this seems like an
excessive price to pay for supporting it.

Recent developments in hardware, firmware, and
operating system support now make it possible to use

a Universal Serial Bus (USB) [27] port for the console.
The current support in Linux for a full console over USB
is similar to one of our implementations in that it is
based on the pre-existing serial console support in Linux
and is not graphical in nature. The USB serial console
supports communication with a terminal emulator over
a USB-connected serial port. Like the serial console,
the USB serial console requires at least N + 1 cables
for N systems as well as the additional serial concen-
tration hardware and a USB-to-DB9-serial adaptor for
every system. In addition, given the late initialization of
the USB support and infrastructure in Linux, the USB
serial console offers less support for system debug than
the standard serial console. Moreover, USB cables are
limited to 5 meters in length, complicating the cabling
problem. Although there are also KVM switches that
support the USB mouse and keyboard interfaces, they
still use the standard video interface and cable and have
properties that are very similar to standard KVM switch-
ing schemes.

IBM has recently introduced a new form of KVM
switching, C2T Interconnect cable chaining and the Net-
BAY Advanced Connectivity Technology (ACT) [15].
Rather than using a star topology for KVM switching,
ACT daisy chains the server systems together. C2T is
one of the two chaining techniques used; it reduces the
cabling and conversion hardware at the cost of adding a
specialized port to every server in the chain. The daisy
chain ends in either a special KVM switch or KVM-to-
Ethernet converter. Although ACT reduces the amount
of cabling and the number of switches or converters re-
quired, it still relies on cabling, connectors, and support-
ing equipment that reduce density and increase cost.

Finally, there are systems that provide a form of
integrated, hardware-based console. A good example of
such an implementation is the Embedded Remote Ac-
cess (ERA) port [9] found on some recent server sys-
tems from Dell. The ERA port provides console access
to firmware functions as well as hardware monitoring in-
formation using an independent microprocessor, mem-
ory, and set of firmware, and a dedicated network port,
presumably an Ethernet port. Based on the published
information, it appears that the ERA collects informa-
tion over the I2C bus. It serves only as a hardware and
firmware console, but not as the console for the operat-
ing system. It may be possible to modify the operating
system to interact with the ERA over the I2C. This ap-
proach is probably adequate for a single system, but the
characteristics of the I2C bus may well make it unsuit-
able for clusters.

In summary, all of these approaches require ad-
ditional cabling or hardware, which decreases reliabil-
ity and adds complexity to the installation and manage-
ment of a cluster of server blades or appliances. In ad-



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association128

dition, they increase costs, in terms of equipment and
floor space requirements, because they require addi-
tional hardware devices such as KVM switches or serial
concentrators. Finally, all of these console implemen-
tations decrease the density of the server systems them-
selves since they require parts on the server boards that
can be eliminated if console access is provided through
the network interface.

3.2 Other Software Technologies

Portions of our implementation of console over Ethernet
were based on the recently introduced Linux netconsole
feature [17, 25]. After we describe our design and imple-
mentation, we will compare our work with netconsole in
Section 5.4. Here we merely review the key features
of netconsole. As implemented in the openly released
patch to Linux 2.4, netconsole is a module that is dynam-
ically loaded into a running kernel image. It is designed
to support the transmission of console messages, espe-
cially in emergency situations, but it is not intended as
a full console replacement. The netconsole implementa-
tion uses UDP and either broadcasts messages or trans-
mits them to a particular receiving host, whose IP ad-
dress is specified as a parameter to the netconsole kernel
module when it is loaded. Netconsole registers as a con-
sole to allow it to receive the messages being written by
the kernel. To avoid problems when the system is low on
memory, netconsole maintains a dedicated pool of Linux
sk buffs [3], the network buffer structures used by the
kernel. It also relies on special routines added to the net-
work device drivers that send out frames waiting in the
transmission queue without enabling interrupts, polling
for the device to become available if necessary. Netcon-
sole uses a syslog server running on another system to
capture the messages that it sends.

In addition to netconsole, there have been
other console-over-a-network implementations in recent
years. The Fairisle network console [2] is similar to
etherconsole in that it provides remote console support
over a network, in this case, an ATM network. Based
on the readily available documentation, it is difficult to
make a detailed comparison of etherconsole with the
Fairisle network console. In particular, it is not clear
whether the Fairisle network console is a complete re-
placement for all local console function.

One traditional method of accessing systems is
through terminal-oriented protocols such as telnet [5]
and SSH [30]. Although these protocols provide tty ac-
cess to the system and most of the needed function once
the operating system and all of the required infrastruc-
ture are running, unlike etherconsole, they do not offer
true console access and are not available until after ker-
nel and mult-user system initialization has been com-
pleted.

Virtual Network Computing (VNC) [26] is a very
commonly used way of gaining access to a graphical
user interface (GUI) over the network. It is often used,
for example, to provide an X Windows session with a
remote Linux host on a Microsoft Windows-based sys-
tem. Like telnet and SSH, VNC depends on a broad
range of underlying system services and thus cannot be
used during system initialization. VNC also requires
more network bandwidth since it must transfer graphi-
cal screen contents to the remote system. Also unlike
etherconsole, which is intended to work with server pro-
grams that catch messages from and interact with large
numbers of server blades, VNC is intended to allow re-
mote, one-to-one access to the graphical user interfaces
of a relatively small number of host systems. Another
commercially available remote GUI-access protocol is
Citrix’s Independent Computing Architecture (ICA) [4],
which is used with Microsoft Windows-based hosts. Al-
though the details of ICA are very different from those
of VNC, they are conceptually quite similar [21].

Finally, although there is a SourceForge project en-
titled “Network Console Project” [20], as of this writing
(early 2003), it appears to be dormant.

4 Design and Implementation
We developed three different console over Ethernet
implementations, and each implementation contributed
features that we found very useful in our work. The
first implementation, which we call etherconsole-T,
is a full replacement for the standard serial console.
Etherconsole-T uses a kernel-level interface to the
socket library to send and receive console messages on a
TCP connection over the Ethernet instead of doing low-
level device operations on the serial port as the serial
console does. The second implementation, referred to
in this paper as coe, is actually more primitive in terms
of function and reuses some technology from the Linux
netconsole implementation described in Section 3. De-
spite its simplicity, we found coe extremely useful in our
work. The final implementation, called etherconsole,
merges the best features of the two previous implemen-
tations. This section describes, in turn, each design and
implementation along with the console emulator code
that we developed to work with it.

4.1 TCP/IP-Based Implementation
Our initial implementation of console over Ethernet is a
straightforward implementation of all of the console and
tty function of the serial console using a TCP connection
rather than a serial line as the transport. Structurally, as
well as functionally, etherconsole-T is very similar to the
serial tty and console code in the standard Linux distri-
bution with the major difference being the way that the
driver code communicates with the console emulation



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 129

Figure 1: etherconsole-T: a TCP/IP-based console over Ethernet

program running on another system. Since etherconsole-
T predated our other work with link-layer communica-
tion protocols, we chose to implement it using transport-
layer protocols rather than link-layer networking. Fig-
ure 1 shows the overall structure of etherconsole-T and
its console emulator program.

Since etherconsole-T is an Ethernet tty, it must fit
into Linux’s overall tty structure including the kernel
line discipline code. It is structured as a character de-
vice with a major and minor number, relying on either
/dev entries or the devfs [11] file system to provide the
required special files. The driver supports multiple mi-
nor numbers and, therefore, multiple Ethernet ttys. The
console= boot parameter is used to specify the name
of the etherconsole-T device and the IP address of the
system running the console emulator program. Since
etherconsole-T depends on a fully configured TCP/IP
stack, console initialization must be delayed until after
TCP/IP is initialized and configured. If etherconsole-T
is to be used for diagnosing early boot problems, TCP/IP
configuration must be done as part of kernel initializa-
tion, using either DHCP or parameters passed to the
kernel. Our server blades use DHCP to obtain the ker-
nel boot image and configuration parameters and always
perform TCP/IP configuration as part of kernel initial-
ization. When etherconsole-T is initialized, it estab-
lishes two socket connections with the console emula-
tor program on the remote host. One of the connections
is used to accept input from the console emulator pro-
gram while the other is used to write data to it. The
etherconsole-T code does all of its communication with
the console emulator using a kernel-level interface to
the standard socket library; the programming technique
it uses is very similar to the one used by the in-kernel

Tux [24] web server. Since input from the console emu-
lator arrives asynchronously, etherconsole-T uses a ded-
icated kernel thread to read it and pass it up through the
tty code.

In addition to the code that works with the tty line
discipline function in the Linux kernel, there is also a
set of direct I/O routines for use by the kernel console
function. These operate in much the same manner as the
functions that interface with the tty code except that they
are invoked through the Linux console structure.

We modified a terminal emulator and telnet pro-
gram written in Java [16] to act as a console emulator for
etherconsole-T. The result uses standard telnet protocol
and terminal emulation techniques once communication
is initiated, but unlike a standard telnet client, it listens
for connections from a system running etherconsole-T,
and when it accepts a pair of connections (one input and
one output) from a server, it opens a separate window
for the console session with the remote system.

Etherconsole-T adds two new files to the Linux
kernel sources with a combined size of 1243 lines of
code. In addition, there are 12 lines of code added to
the tty and system initialization. Our changes to the Java
telnet program to support console emulation are about
220 lines of Java.

4.2 Link–Layer Console Message Trans-
mitter

Although etherconsole-T works well in the context of
our Linux-DSA operating environment, it requires a full
Linux TCP/IP stack and, thus, cannot be used in very
low-level code such as boot-time firmware. Our need
for console support to help debug our server blades led
to our second implementation, coe. Figure 2 depicts the



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association130

Figure 2: coe as deployed on prototype server blades

implementation of coe on our prototype server blades.

We began our work on coe by implementing some
simple extensions to Etherboot [29] and LinuxBIOS
which allowed redirection of print messages over the
Ethernet device as opposed to a serial port. We then
combined this code with portions of Red Hat’s netcon-
sole patch in order to provide a unified, link-layer, mes-
sage transmitter for both our firmware and the Linux ker-
nel.

Our implementation of coe uses link-layer net-
working only, transmitting raw Ethernet frames with a
special frame type. This allows our console to begin
operation much earlier in system initialization since it
does not depend on IP configuration. Even when done
at the kernel level, IP configuration occurs relatively
late in initialization and relies on the proper exchange
of messages between a kernel-level DHCP client and
a DHCP server or the proper processing of kernel pa-
rameters. The special Ethernet frame type allows other
systems to identify and process coe packets properly
and ensures that these packets do not conflict with the
existing traffic on the network. The use of link-layer
networking also reduces the number of locks that must
be obtained while formatting the message for transmis-
sion since the network stack’s sequence number lock
is no longer needed. To minimize the amount of con-
figuration required and to eliminate the dependency on
module parameters, we changed the code to broadcast
Ethernet frames to the hardware broadcast address of
ff:ff:ff:ff:ff:ff.

We retained from netconsole the use of a pool of
reserved, pre-allocated network buffers that allows for
the transmission of up to 32 console messages in out-of-
memory situations in which the standard network buffer

allocation fails. We also used the same device polling
technique for message transmission over the network.
Network hardware generally has some limitation on the
size of its transmission queue. The coe implementation
checks to determine if the transmission queue of the net-
work device is stopped. If so, it calls a routine in the
network device driver that enters the interrupt handler
to force the processing of transmission interrupts, thus
clearing the queue and allowing coe to transmit a packet.
This scheme improves the reliability and timeliness of
the transmissions.

To receive and display console messages sent by
coe, we wrote a console monitor program, coercv, that
runs on a separate system in the same physical subnet-
work. It uses the packet socket support provided in the
standard Linux kernel to send and receive raw network
packets. Coercv creates a packet socket using the stan-
dard socket system call, specifying PF PACKET as
the protocol family and the coe Ethernet frame type as
the protocol. This causes the Linux kernel to set up a
packet filter [19] for the coe Ethernet frame type; the
packet filter directs incoming frames with the specified
frame type to coercv. The coercv program uses the
recvfrom system call to receive the incoming mes-
sages. For sockets in the PF PACKET protocol family,
the kernel returns the hardware address of the source
of the packet in the sock addr structure passed on
the recvfrom call. This allows coercv to either tag
the messages that it prints with the Ethernet hardware
address or filter the incoming messages and print only
those whose source hardware address matches a speci-
fied value. We also added support to the standard Linux
syslogd program, which logs messages, to capture and
log ones being sent by coe. It uses a map of network



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 131

hardware addresses to tag the messages that it receives
with the hostname of the server to allow the reader of the
log file to determine what system originated each mes-
sage.

Neither coe nor coercv contains much code or is
very complex. Building on the then-current version of
netconsole, coe adds 35 lines of code to the source file,
of which 26 lines are preprocessor conditional compi-
lation statements. The coercv program with optional fil-
tration based on the sending system is slightly more than
100 lines of code. The changes to syslogd are approxi-
mately 75 lines of code.

4.3 Merged Implementation

Finally, our etherconsole implementation combines the
features of the coe and etherconsole-T implementations.
It offers both the low-level, output-only broadcast of
messages from the system and a complete console and
tty similar in function to etherconsole-T. Although it in-
corporates the kernel module packaging features, it is
designed to be built statically into a kernel image, as we
must do with LinuxBIOS, and this also allows it to be
initialized earlier than would be possible if it were a ker-
nel module. Once the network device driver and basic
sockets support have been initialized, etherconsole reg-
isters as a console and can start broadcasting messages.
The Linux kernel maintains a buffer of the most recently
issued console messages and passes these to the console
during the registration process. This generally allows
etherconsole to process all the messages generated by
the system during the boot process, even those issued
before the network is available. The size of the kernel
message buffer can be expanded to prevent the loss of
early boot messages because of buffer wrapping, but this
has not been necessary in our environment. Although
etherconsole initialization is later than standard console
initialization, it still precedes most system initialization
processing and, therefore, supports error diagnosis for a
large fraction of system initialization.

Etherconsole uses a link-layer protocol and, thus, it
can communicate only with other machines on the same
physical subnet. In its default configuration, it performs
all of its output by setting the Ethernet MAC address to
ff:ff:ff:ff:ff:ff to force the hardware to do a
broadcast. However, it can be configured to send output
to a particular target MAC address with the console=
kernel boot parameter. The syntax of this boot parameter
is

console=ttyNn,mac address

where ttyNn is a character-device node in /dev or cre-
ated by devfs [11] with a major and minor number indi-
cating it is an etherconsole device and mac address

is an Ethernet MAC address in 6-byte, hexadecimal no-
tation.

Packets are transmitted by queuing them directly
on the transmission queue of the Ethernet driver and in-
voking a special routine in the device driver to send out
available packets without enabling interrupts, polling for
the device to become available if necessary. To han-
dle input using link-layer protocols, etherconsole regis-
ters as the packet handler for its Ethernet frame type,
so that it receives all incoming packets with that frame
type. Etherconsole discriminates between packets that
are console input and those that are broadcasts from
other etherconsoles on the same subnet by checking the
destination address in the Ethernet frame header. If it
matches the hardware address of the local Ethernet in-
terface, the packet is assumed to be console input. Oth-
erwise, it is treated as a broadcast from another ether-
console and discarded.

Like etherconsole-T, etherconsole contains tty sup-
port as well, which allows us to use it as a full console
replacement. To provide tty support, etherconsole re-
quires the character-device node described above. Early
in boot, the system uses the console entry points directly,
but once the init thread opens /dev/console, subse-
quent console interactions use the tty entry points. Ether-
console provides all of the entry points needed by the
tty code. However, many of the entry points do noth-
ing more than return since they are not applicable to the
underlying Ethernet device.

Our final etherconsole implementation supports
coercv and the modified syslogd we developed for coe
as well as a Java console emulator similar to that used
with etherconsole-T.

Our link-layer etherconsole including both the
code inherited from the original netconsole implemen-
tation and all of the function that we added is 470 lines
of code.

5 Experience and Evaluation
This section describes our experience with our console-
over-Ethernet implementations.

5.1 Usage
Since our server blades are prototypes, we wrote our
own boot firmware based on LinuxBIOS [18] and ether-
boot [29], which allowed us to integrate etherconsole
into both our firmware and our Linux kernels. Using
etherconsole allowed us to debug and perform low-level
systems management for server blades that do not have
any standard external ports for console devices. We were
able to track the progress of boot from power-on or re-
set through power-on self-test, firmware initialization,
hardware set-up, and operating system load to the com-
pletion of kernel initialization. This proved invaluable



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association132

for fault isolation and problem determination. It also al-
lowed us to monitor the concurrent initialization of mul-
tiple blades on a single display, making it easy to de-
termine when the blades were all up following a cluster
reboot. Moreover, it externalized kernel messages re-
garding problems encountered during normal operation.
Our full console function allowed us to manage systems
running in single-user mode, start and stop subsystems
outside the context of normal init processing, and per-
form other types of management and debugging opera-
tions when normal telnet or SSH services were unavail-
able.

One usage difficulty that is not an issue in our en-
vironment, but might be in other situations, is the fact
that there are a few commonly used commands such as
ifconfig that manipulate the Ethernet interface and
the network configuration. Since our systems are disk-
less and totally dependent on network communication,
shutting down the Ethernet interface with an ifconfig
down command effectively shuts down an entire node of
our cluster. However, for disk-based environments, care
must be taken to restrict the usage of commands that may
unintentionally terminate console operation.

5.2 Performance and Reliability
Since console and tty support is not a performance path,
we did not perform any formal performance studies.
However, in our very extensive experience with our
implementations, we did not observe any performance
problems, in terms of either the speed of the console or
the overhead imposed on the system. Also we found
that we did not lose messages even when using the im-
plementations that operate at the link layer. Even for a
configuration where 8 blades are broadcasting boot-time
messages simultaneously, the period of heaviest activ-
ity, the load imposed on a switched 100 Mbit Ethernet
is insignificant. If one or more specific MAC addresses
are used instead, the network load is even less. As men-
tioned in Section 2, our network environment is such that
the network itself is reliable at the link layer, and the
implementation techniques used in our link-layer code
avoid the problems that can occur with network trans-
mission on busy systems. We have not found any need
for additional reliable delivery or flow control mecha-
nisms. In passing, it is worth noting that we also use
link-layer networking very successfully in our environ-
ment for remote disk access [28].

Having a second network interface and dedicating
it to console support offers the advantages of clean traf-
fic separation and the possibility of having a different
network topology for console messages, but our experi-
ence indicates that these benefits are outweighed by the
cost, complexity and additional space required for this
design. Our implementation of console over Ethernet

achieves more than adequate performance and reliabil-
ity with very little impact on other network traffic using
the single Ethernet interface on our blades. The paper
by Felter, et al, [10] contains detailed performance stud-
ies of our server blades. All of these studies were con-
ducted with one or more of our console-over-Ethernet
implementations active on all the blades.

5.3 Security Considerations
One possible concern with console over Ethernet is se-
curity. Putting the system console on the network cre-
ates the possibility of break-ins and denial-of-service at-
tacks. By using link-layer protocols, etherconsole hides
the console from systems outside the physical subnet.
Link-layer protocols do not use IP addresses and are
not routable beyond the subnet. In addition, the hard-
ware addresses required for interaction with the console
are not exposed and have no meaning outside the sub-
net. Within the subnet, access to the console can be
further restricted using VLANs [13]. A private VLAN
can be created consisting of only those machines that
require console access; machines in the physical sub-
net but not part of the VLAN will be unable to access
consoles within the VLAN. A more sophisticated con-
sole emulation program can act as a form of firewall and
bridge, receiving connections from the outside on an-
other VLAN, doing the necessary protocol conversions,
and forwarding legitimate messages to the etherconsoles
over the private VLAN. This idea is explored further in
Section 6.

Denial-of-service attacks are a special form of se-
curity exposure that have recently received considerable
attention. One possible form of this type of attack is
to send the console a very large number of messages or
faulty command strings to handle. Processing them can
consume a substantial amount of resource, slowing the
system down significantly. A related form of attack is
to send a command that somehow causes a very large
amount of console output. As most software developers
recognize, one way to slow down a program dramati-
cally is to have it do a very large number of printf
calls, and one way to slow down a kernel module in
Linux is to fill it with printks. In many cases, Linux
protects against this form of attack by limiting message
generation rates. For example, the rate limiting support
in the TCP/IP protocol stack of the Linux 2.4 kernel
detects and suppresses duplicate messages issued faster
than some fixed rate. This decreases the load imposed
by any console implementation, including etherconsole,
and reduces the possibility of lost messages.

5.4 Comparison with Netconsole
We made three very significant extensions to netconsole.
First, we designed etherconsole to be built into the ker-



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 133

nel and enabled at boot time, rather than being packaged
as a kernel module that can be used only after the system
is fully initialized. This allows etherconsole to start op-
eration much sooner than netconsole, so that messages
generated during system boot can be observed remotely.
Second, etherconsole uses a link-layer protocol that re-
quires only basic network hardware support and MAC-
level addressing, whereas netconsole uses UDP sockets,
requiring full IP configuration and addressing. Third, we
added support for input by incorporating the tty support
described above. In addition, etherconsole also derives
from our very first implementation of the full console
over Ethernet, which was a completely independent de-
velopment that started before netconsole appeared.

6 Future Work

There are a number of areas in which our work can be
extended, something that we hope to encourage by mak-
ing our code available to the open source community.

6.1 Functional Extensions

Our implementation has a few functional deficiencies.
In particular, it does not handle the control-alt-
delete key sequence for rebooting nor does it process
the sys req key used by some Linux kernel debugging
features. Rather than relying on command line parame-
ters, the DHCP [8] support in the firmware and kernel
can be used to receive additional console configuration
and control information such as the hardware address of
a particular workstation running the console emulation
program for this system.

An interesting and more challenging functional ex-
tension is to support a remote gdb debugger over the Eth-
ernet. In principle, many of the same techniques used
in the private gdb serial code should also work with
an Ethernet interface. In particular, our code already
uses polling to clear the transmission queue and oper-
ates with minimal overhead at the link layer. The major
open question is how to handle the network buffers. The
debugging environment is even more restrictive than the
console, and we need to recycle a fixed pool of network
buffers that is completely private to the gdb stub code to
avoid unwanted interactions with the system being de-
bugged.

6.2 Subnet Console Server and Reflector

A useful extension to our console emulator software
would be to incorporate a telnet or SSH server that
would allow console access outside the physical sub-
net. Such a program can accept telnet or SSH connec-
tions over TCP/IP from workstations outside the sub-
net, perform appropriate authorization and authentica-
tion checking, and then link these connections with the

console of a particular system, doing the conversion be-
tween the TCP/IP and link-layer protocols.

6.3 Serial Port Emulation

Most server firmware and operating systems allow con-
sole interactions to be directed to one of the computer’s
serial ports. As discussed above, this is commonly used
as the means of accessing the console of a server appli-
ance or blade. For systems using x86-compatible pro-
cessors, the serial port is an I/O port with an address de-
fined in the system configuration. The firmware or oper-
ating system uses the OUTB instruction to send data and
commands to the serial port and the INB instruction to
receive data or read the port status. An alternative con-
sole over Ethernet design can intercept data and com-
mands issued to the serial port and redirect these over
the network to a console emulator running on another
system. In this solution, no change is necessary to the
operating system; it is simply configured to use the se-
rial console. Figure 3 illustrates this concept. As indi-
cated in the figure, communication can be at either the
link layer using Ethernet frames or the transport layer
using TCP or UDP.

A variety of mechanisms can be used to intercept
read and write requests to a serial port. One approach
is to add this feature to the firmware of the machine.
In this case, the firmware is configured to trap INB and
OUTB instructions written to a specific port and process
them on its own. Since machines capable of DHCP and
remote boot already have the basic mechanisms for IP
connectivity built into their firmware, we can leverage
this existing support to provide the transport for con-
sole communications. Another approach is to develop
special serial port hardware that, instead of transmitting
data to a physical port on the machine, transmits it to the
network interface. Finally, a programmable network in-
terface can pretend to be the serial device by owning the
bus resources for it. It would then translate operations
on the serial I/O port into the corresponding network in-
teractions.

6.4 Frame Buffer Emulation

Some operating systems do not support character-based
consoles and require the use of a graphical user interface
instead. They are better supported with a frame buffer
emulation approach. In this case, an area of memory is
used to hold a dummy frame buffer, and the network in-
terface sends characters from the frame buffer. Input oc-
curs by transmitting characters and mouse movements to
the system through the network interface and then pass-
ing them to the operating system by emulating normal
keyboard and mouse input.



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association134

Figure 3: Serial device emulation

7 Conclusions

By redirecting console interactions over the network in-
terface, console over Ethernet allows us to construct
servers without standard external ports or cables and the
associated infrastructure for console devices. This elim-
inates the cost, complexity, and fragility of console ca-
bling and switches, while allowing for higher density
packaging of server systems. As with the chassis that
we used for our prototype server blades [10], even the
Ethernet cables become unnecessary if the server is a
blade that plugs into an appropriately wired backplane.
Eliminating the separate network for console traffic sim-
plifies the design and wiring of the backplane, reducing
the cost of the chassis and the total cost of a blade server
deployment.

Source Code Availability

Source code for our implementation is available
from the IBM Linux Technology Center web
site at http://oss.software.ibm.com-
/developerworks/opensource/linux.

Acknowledgments

Wes Felter, Tom Keller, Elmootazbellah Elnozahy,
Bruce Smith, Ram Rajamony, Karthick Rajamani, and
Charles Lefurgy contributed very heavily to the SDS
project. We would also like to thank the management
of the IBM Austin Research Laboratory for their sup-
port of our work. Our shepherd, Chuck Cranor, and the
anonymous referees provided many helpful comments
that improved the quality of this paper. All trademarks
are the property of their respective owners.

References
[1] Amphus, Inc. Virgo: A ManageSite-enabled, fully

manufacturable, ultra-dense server design, 2001.

[2] R. Black. The Fairisle network console.
http://www.cl.cam.ac.uk/Research/SRG-
/bluebook/18/netcon/netcon.html.

[3] D. Bovet and M. Cesati. Understanding the Linux
Kernel, Second Edition. O’Reilly and Associates,
Inc., 2002.

[4] Citrix Corporation. Citrix independent com-
puting architecture. http://www.citrix.com/press-
/corpinfo/ica.asp, 2002.

[5] D. Comer and D. Stevens. Internetworking with
TCP/IP, Volume 3: Client–Server Programming
and Applications, BSD Socket Edition. Prentice
Hall, 1993.

[6] Compaq, Inc. Proliant BL10e Server, January
2002.

[7] J. Delaney. Dell blade: Maximum power, mini-
mum space. PC Magazine, February 2003.

[8] R. Droms and T. Lemon. The DHCP Handbook:
Understanding, Deploying, and Managing Auto-
mated Configuration Services. Macmillan Techni-
cal Publishing, 1999.

[9] Y.-C. Fang, J. Jancic, A. Saify, and S. Zaiback. Us-
ing Dell embedded remote access to facilitate re-
mote management of HPC clusters. Dell PowerSo-
lutions, November 2002.

[10] W. Felter, T. Keller, M. Kistler, C. Lefurgy, K. Ra-
jamani, R. Rajamony, F. Rawson, B. Smith, and
E. VanHensbergen. On the performance and use
of dense servers. To appear in the IBM Journal of
Research and Development, 2003.



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 135

[11] R. Gooch. Linux devfs (device file system)
FAQ. http://www.atnf.csiro.au/people/rgooch-
/linux/docs/devfs.html, August 2002.

[12] Hewlett-Packard Company. HP bc1100, December
2001.

[13] IEEE. IEEE standards for local and metropolitan
area networks: Virtual bridge local area networks,
IEEE Standard 802.1Q-1998, 1998.

[14] International Business Machines Corporation.
BladeCenter. http://www.ibm.com, September
2002.

[15] International Business Machines Corporation. The
Decision Maker’s Guide to Server Connectivity
and Console Switching. http://www.ibm.com, July
2002.

[16] The Java telnet/ssh applet. http://javassh.org, 2002.

[17] M. Johnson. Red Hat, Inc.’s network console
and crash dump facility. http://www.redhat.com-
/support/wpapers/redhat/netdump, 2002.

[18] R. Minnich, J. Hendricks, and D. Webster. The
Linux BIOS. In The Fourth Annual Linux Show-
case and Conference, October 2000.

[19] J. Mogul, R. Rashid, and M. Accetta. The packet
filter: An efficient mechanism for user-level net-
work code. In Proceedings of the 11th ACM Sym-
posium on Operating Systems Principles (SOSP),
pages 39–51, 1987.

[20] Network Console Project. http://sourceforge.net-
/projects/netconsole, 2003.

[21] J. Nieh, J. Yang, and N. Novik. A comparison of
thin–client computing architectures. Technical Re-
port CUCS-022-00, Columbia University, Novem-
ber 2000.

[22] L. Peterson and B. Davie. Computer Networks,
Second Edition. Morgan Kaufman, 2000.

[23] Philips Corporation. I2C-Bus. http://www.-
semiconductors.philips.com/buses/i2c, 2003.

[24] Red Hat, Inc. TUX 2.1, 2001.

[25] Red Hat, Inc. Netconsole, 2002.

[26] T. Richardson, Q. Stafford-Fraser, K. Wood, and
A. Hopper. Virtual network computing. IEEE In-
ternet Computing, 2(1), January/February 1998.

[27] USB. http://www.usb.org, 2003.

[28] E. Van Hensbergen and F. Rawson. Revisiting
link-layer storage networking. Technical Report
RC22609, IBM Research, October 2002.

[29] K. Yap and M. Gutschke. Etherboot user manual,
July 2002.

[30] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and
S. Lehtinen. SSH protocol architecture, September
2002.


