
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 15

CSE — A C++ Servlet Environment
for High-Performance Web Applications

Thomas Gschwind Benjamin A. Schmit
Abteilung für Verteilte Systeme

Technische Universität Wien
Argentinierstraße 8/E1841

A-1040 Wien, Austria, Europe
{tom,benjamin}@infosys.tuwien.ac.at

http://www.infosys.tuwien.ac.at/Staff/{tom,benjamin}/

Abstract

Current environments for web application development
focus on Java or scripting languages. Developers that
want to or have to use C or C++ are left behind with
little options. We have developed a C/C++ Servlet Envi-
ronment (CSE) that provides a high performance servlet
engine for C and C++. One of the biggest challenges
we have faced while developing this environment was to
come up with an architecture that provides high perfor-
mance while not allowing a single servlet to crash the
whole servlet environment, a serious risk with C and
C++ application development. In this paper we explain
our architecture, the challenges and trade-offs we have
faced, and compare the performance of our environment
to that of top servlet environments available today.

1 Introduction

Every day, the web is applied to more and new appli-
cation domains. In some cases people try to convert
services that historically have been handled by a differ-
ent mechanism, such as USENET News, to the web. In
other cases, such as email, they are complemented by a
mechanism that allows users to access these services via
a web front-end. Due to this success and the increas-
ing number of application domains web server perfor-
mance is of major importance [8, 11] and unresponsive
and slow web sites may send users seeking for alterna-
tives [5].

Traditionally, web services have been implemented
using CGI programs in the form of compiled C and C++
programs or Perl scripts that were executed by the web
server. Although these approaches work perfectly fine
for simple dynamic web content they are cumbersome
to use if a whole business process should be modeled
as a web application. This stems from the fact that they
do not take care of the state-management between sub-
sequent web requests. These issues, however, are taken
care of by newer approaches such as the Java Servlet

Technology [22], the Python Zope Server [14], or dedi-
cated application servers (e.g., Bea Weblogic or JBoss).

One advantage of servlets is that they are executed as
part of a servlet environment that, unlike CGI scripts,
needs not be restarted at each invocation. To protect
one servlet from another, these environments use pro-
gramming languages that take care of memory manage-
ment issues. Another advantage is that these languages
come bundled with standardized libraries providing sup-
port for numerous different tasks.

These advantages, however, have a price. Legacy ap-
plications that make use of C or C++ cannot be easily
integrated. Although technologies such as SWIG [4]
or JNI [16, 25] simplify the integration of legacy ap-
plications into scripting languages they still require de-
velopers of such systems to deal with different systems.
Sometimes the choice of language is mandated by man-
agement or the developers simply prefer the use of C or
C++.

Another advantage of C and C++ is that these lan-
guages provide better performance and a finer grained
integration of the operating system’s security mecha-
nisms. This is probably one of the reasons why the
Apache HTTP Server and the Microsoft Internet Infor-
mation Server, the two most prominent web servers with
a combined market share of over 85% [20], are written
in C and C++ respectively.

In this paper, we present a servlet environment that
is completely implemented in C++. To the best of our
knowledge, our C/C++ Servlet Environment (CSE) is
the first servlet environment that uses the potential of
C++. Similar to the servlet engines implemented in Java,
the architecture of our servlet environment offers ade-
quate protection between the individual servlets to be ex-
ecuted. Hence, our servlet engine provides the following
advantages over those using Java or scripting languages:

• It supports the integration of existing C/C++ code
into web applications without mixing different pro-
gramming languages and converting data types.



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association16

• It provides a better integration into the security
mechanisms provided by the operating system.

• The C++ programming language allows developers
to write more efficient code since they can choose
from a wider range of implementation choices [24].

This paper is structured as follows. In Section 2 we
present the requirements for a servlet environment as
well as the advantages and challenges of using C++.
Section 3 shows how these challenges have influenced
the design and implementation of the C/C++ Servlet En-
vironment, and application development for the CSE is
discussed in Section 4. Related work is presented in Sec-
tion 5 and in Section 6 we compare the performance of
our approach with that of other approaches. Future work
is discussed in Section 7 and we draw our conclusions in
Section 8.

2 Requirements

The main goals during the design of the C/C++ Servlet
Environment were security, stability, ease of use, paral-
lelism, and performance. Before we can have a closer
look at these requirements, however, it is necessary to
give a brief overview of the typical architecture of a web
site. This architecture is depicted in Figure 1.

Client

Client

Web
Server

Script
CGI

Engine
Servlet Database

Figure 1: A Typical Web Site Implementation

A web site must include a web server that handles re-
quests from multiple clients. Requests that cannot be
handled by the web server itself are forwarded to a CGI
program or a servlet engine where a web service is ex-
ecuted. The web service in turn may contact a database
or application server for persistent data storage. Since
HTTP is stateless [7], the client has to transmit the ap-
plication’s current state or a session identifier with each
request. In the latter case a mapping from session iden-
tifier to state has to be maintained by the servlet engine.

CGI programs have the drawback that they have to
be executed anew for each client’s request. Hence, they
need to be started at each request and then have to read
in their configuration data and session state from per-
sistent storage. A servlet engine, on the other hand, is
running all the time and keeps several servlets as well
as their session state in memory. Servlets need to main-
tain the client’s session state (for instance, the contents
of a shopping basket) because web clients only provide
limited functionality to maintain this kind of data.

Since many servlet engines execute several different
servlets within the same process stability is a major con-
cern. If one servlet crashes, the other servlets have to
continue to run unaffectedly. For a servlet engine, it is
very important to recognize and handle this kind of fail-
ure since there is no way of judging the stability of a
user-supplied servlet from within the servlet engine.

Stability is one reason why Java and interpreted lan-
guages in general are popular for this task. If a Java
servlet crashes only its thread of execution is terminated
and all the other servlets continue to run. Hence, the
worst that can happen is that a servlet consumes overly
much resources such as processor time, memory in the
form of unused but still referenced Java objects, or net-
work bandwidth. The price for these benefits is that all
servlets are executed with the same privileges and that
the operating system’s security mechanisms need to be
re-implemented as part of the servlet engine. Another
drawback is a slight performance overhead since Java
does not allow developers to write code on a level as low
as it can be written with C and C++.

The disadvantage of C and C++ is that these program-
ming languages are not as safe. Bugs in C and C++ pro-
grams typically take down the whole process and they
tend to get apparent at a much later time (typically at
a point of execution that is unrelated to the place that
caused the error). Therefore, even if the application
is catching the signal that a segmentation violation has
occurred, recovery is difficult. Hence, the design of a
servlet engine written in these languages has to solve
those challenges.

Security is necessary to minimize the chance that
servlets can be exploited by an intruder. Our architec-
ture reuses the security mechanisms that have been built
into the operating system. It allows sandboxes, and thus
servlets, within the same servlet environment to be ex-
ecuted with different user privileges. The advantage of
this approach is that system administrators can use stan-
dard access privilege mechanisms and do not have to get
familiar with a new security management system which
can lead to misunderstandings. Additionally, our ap-
proach requires only a single security mechanism to be
checked for possible vulnerabilities.

A disadvantage of C and C++, however, is that such
programs are open to buffer overflow attacks if they have
not been implemented carefully. The threat and impact
of such attacks can be minimized by using the C++ Stan-
dard Template Library which has been designed in order
to minimize such programming mistakes and by using
operating system mechanisms such as a non-executable
user stack area. No programming language or servlet
environment, however, can guarantee that a program or
servlet cannot be exploited by an intruder. The final re-
sponsibility is always up to the developer.



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 17

Ease of use is another important aspect for a servlet
engine. Even though there are servlet engines for Java
that provide good performance, these servlet engines are
of little use to C or C++ programmers that want to use
existing code for their web applications. Using C and
C++ in combination with such servlet engines requires
the use of the Java Native Interface (JNI) [16, 25], the
conversion between C and Java data types, and to deal
with low-level details of both languages. Although sys-
tems such as SWIG [4] can be used to help with this
issue they do not solve the problem of having to deal
with two different languages. Hence, a C++ servlet en-
vironment is more convenient to use for developers that
have to deal with C or C++ code.

A good servlet engine must not only be easy to use but
has to provide good performance as well. This gets ap-
parent by the fact that the two most popular web servers
are implemented in C and C++ respectively. A conve-
nient servlet environment that requires load balancing
among multiple servers to be able to handle the incom-
ing requests loses much of its original appeal. This is
one of the reasons why we have developed the CSE. The
CSE was designed towards optimal performance.

Parallelism is, on a server machine, a prerequisite for
performance and scalability. On a network, the upper
bound of the access time to a service can be high and
thus forbids handling requests in serial. The CSE in-
troduces parallelism by providing several services on
a single machine, by partitioning a service into sev-
eral parts with simple interfaces between them, and by
replicating those parts. Additionally, compared to us-
ing interpreted languages that use a global interpreter
lock for thread locking [28, Section 8.1], the approach
to use C++ has the advantage of having a fine grained
thread locking mechanism as provided by linux-threads
or pthreads [15].

3 Design and Implementation

Figure 2 shows the architecture of our C/C++ Servlet
Environment. It consists of an Apache module, a servlet
server and several sandbox processes. The CSE uses the
Apache server to handle incoming HTTP requests, the
servlet server is used for the management of the sand-
box processes and the sandboxes are responsible for the
execution of the servlets. We use different sandbox pro-
cesses because this protects a servlet in one sandbox
from an unstable one in another sandbox. Additionally,
this approach allows administrators to execute different
sandboxes with different user privileges. Although we
have used C++ for the implementation, our architecture
can be easily reused for a servlet environment imple-
mented in plain C.

3.1 The Apache Module
We use the Apache web server [1] to handle HTTP re-
quests. This approach has several advantages over im-
plementing a new web server for our servlet engine such
as provided by the Tomcat Servlet Engine [2].

• Apache uses a modular design and can be extended
easily.

• It is implemented in C facilitating data exchange
with our C++ servlet engine. C structures are com-
patible to C++ structures.

• Its add-on modules provide features that we would
never have implemented as part of CSE.

• It has a 60% market share [20] and has proven to be
a reliable web server.

• It is free software.

Another advantage of the modular design we have
chosen is that only the web server’s Servlet Module has
to be re-implemented if a different web server has to be
used for a given web site.

The Apache Module registers the URLs that are im-
plemented by the servlet engine’s servlets and the C++
Server Pages. Requests to other URLs such as static web
pages or images are handled by Apache itself without
consulting our module. Servlet requests are forwarded
to the servlet server which assigns them to one of the
sandboxes. One risk of this approach is that the servlet
server might become a bottleneck. Hence, in future ver-
sions of CSE, we plan to extend the Apache module such
that the requests are sent to the appropriate sandbox di-
rectly. Going a step further and executing the servlets
by the Apache module directly, however, is not possible
since that would compromise the web server’s stability.

3.2 The Servlet Server
The Servlet Server is responsible for the management
of the sandboxes. To do that it processes requests for-
warded by the Apache module and determines, based on
the servlet registry, the sandbox that is responsible for
the servlet’s execution. The Servlet Registry maintains
a mapping of the servlets and the sandboxes they should
be executed in. This mapping defined within the server’s
configuration file.

If a C++ Server Page (CSP) is used, the CSP Manager
converts the CSP document into a servlet and compiles
it. Several Compiler Threads can be started by the server
in order to compile CSPs when they are first requested
or when they have changed. They are synchronized so
that no more than a single thread for a single servlet can
run at a time. The compiled servlet is put into a cache
directory, along with the servlet source code, a config-
uration file containing the destination sandbox, and an
error output file which also serves as a timestamp of the
last compilation attempt. A CSP is only recompiled if



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association18

Database Server Text Database

Servlet
Registry

CSP
Manager

Compiler
Thread(s)

Servlet Server

Sandbox NSandbox 1 Sandbox 2

Web Server

Socket accesses monitorsPair of Sockets

Thread M

Thread 2

Thread
Guardian

Thread 1

Module
Servlet

Figure 2: CSE Architecture

its timestamp is newer than the timestamp of its error
output file. We do not use the CSP’s object file since it
is only created if the compilation is successful. If the
sandbox does not exist yet, it will be created after com-
pilation. Then, the destination sandbox is configured to
host the new servlet. If for some reasons, however, CSP
compilation during run-time is undesired or impossible,
it is possible to compile them before starting the server.

A Guardian Thread watches over the state of the sand-
boxes and restarts them if an unstable web application
crashes. Instead of using a separate thread that sleeps
most of the time, it should also be possible on UNIX
systems to catch the child signal instead. From the per-
formance point of view, however, this poses no differ-
ence.

In order to minimize downtimes of the servlet server,
its configuration can be changed dynamically. The con-
figuration file tells the servlet registry which servlets
should be loaded into which sandboxes. When the ap-
plication server processes a request, it first checks the
timestamp of the configuration file. If there was a change
(or there was no request after startup yet), the config-
uration file is read, and the internal configuration data
is updated. Part of the configuration data, such as the
location of the shared object files, is passed on to the
sandboxes where it is needed. This update process is
also invoked when a sandbox has to be restarted by the
guardian thread.

3.3 The Sandboxes
Several separate tasks, the Sandboxes, handle the actual
execution of the servlets. Each sandbox may encapsulate
one or more web applications consisting of one or more

servlets. The purpose of using several sandboxes is to
take care of the session management and to provide a
barrier for unstable servlets.

The ability to execute several servlets within the same
sandbox increases the scalability of our servlet environ-
ment. This approach allows developers to place servlets
that frequently need to interact with each other into the
same sandbox and hence enables a more efficient com-
munication between the servlets and reduces the number
of context switches required.

The sandbox processes read requests from an input
socket and execute them. The servlets themselves are
loaded as dynamically shared objects. C++ Server Pages
are translated into servlets which in turn are compiled
into shared objects. Shared objects can be loaded into
a running program on demand by a system call. The
disadvantage, however, is that the server’s original pro-
grammer can never be sure about their stability.

If a servlet crashes while processing a request, the
servlet server’s guardian thread notices the crash and
restarts and reinitializes the failed sandbox. If a request
comes in while the destination sandbox is down, it is
buffered and executed as soon as the sandbox is up and
running again.

This architecture has already proved its usefulness:
Our original implementation contained an error that
would crash every sandbox after a little more than 1000
requests. We have not discovered this error until we have
started running the benchmarks because the crashed
sandboxes were always restarted, and (except for a slight
performance loss) no problem was visible.

Additionally, since each sandbox is executed within
its own process, system administrators may choose to



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 19

run different sandboxes with different user privileges.
This architecture provides a finer grained access control
than Java servlet environments which execute all servlets
within the same process and thus with the same user
privileges.

3.4 Persistent Storage
The ability to provide persistent storage is of major im-
portance for most web applications. A voting appli-
cation, for example, has to manage the votes cast by
its users. The persistence mechanism of the CSE can
be used internally by the sandbox’s session manage-
ment if the servlet’s sessionType attribute is set to
DatabaseSession. Alternatively, it may be used di-
rectly by the application developer.

The C++ Servlet Environment has been designed so
that the persistence mechanism can be replaced easily.
The persistence mechanism is encapsulated by a traits
class [19, 24] with which its classes are parameterized.
A traits class can be compared to a set of callback func-
tions with the difference that they are known during
compile time and thus leave more room for optimization.
This approach allows application developers to choose a
persistence level that fits their needs best, e.g., a database
such as MySQL [30], or a file-based database such as
PSTL, a persistent implementation of the Standard Tem-
plate Library [10].

We also provide a general-purpose database interface
which is a set of template classes that offer general
database handling functions, along with data-types used
within a database. They do not contain functions to ac-
cess specific databases but are able to use concepts like
SQL statements and cursors. The template classes pro-
vided are:

DB is used to create, maintain, and close a database con-
nection. How this is done depends on the concrete
database driver. Also, this class allows for the ex-
ecution of SQL statements that do not return any
data such as INSERT statements.

DBQuery helps formulating SQL queries. The query
is written to the object as if it would be written to a
stream.

DBResponse executes an SQL query that returns
some data. Again, the implementation depends
on the concrete database driver. The class has
many features similar to those of a C++ STL con-
tainer [24].

DBIterator implements a C++ STL input itera-
tor [24] that iterates over the elements of a result
set and supports database drivers with and without
cursors.

DBRow is created when the iterator is accessed. Its in-
dex operator (“[]”) is used to retrieve an actual
data item. It uses either an integer (the column

id) or a string (the column designation) as the ar-
gument.

DBObject is the class that contains data items.
It has the subclasses DBString, DBInt,
DBLong, DBFloat, DBDouble, DBBlob, and
DBDateTime. They store C++ strings, 32-
and 64-bit integers, 32- and 64-bit floating point
numbers, binary content, and dates.

In order to access a given database server, a concrete
database driver (a traits class) for that database must be
written. If the database has a C++ interface, this task is
usually trivial because most work has already been done
at the general-purpose database interface. A concrete
database driver for the successful database MySQL is
already available.

4 Application Development
The C++ Servlet Environment provides two approaches
for writing web applications similar to those available
in Java Servlet Environments: Servlets that use only
C/C++ and C++ Server Pages that use C/C++ code em-
bedded in HTML code.

4.1 Servlets
A Servlet is implemented as a C++ class inheriting from
the Servlet class as shown in Figure 3. Subsequently
this class is compiled into a shared object. Servlets can
access the parameters and cookies that have been passed
as part of the web request and output an HTML page
onto their output stream.

The most important methods and attributes of the
Servlet class are:

service(): This method is called for each client re-
quest that has to be processed. The default im-
plementation calls either doGet() for GET or
doPost() for POST requests. If necessary, this
method may be overridden. The service()
method’s parameters are a ServletRequest ob-
ject providing details about the current request, a
ServletResponse object handling the servlet’s
response, and a Session object containing ses-
sion information if requested.

doGet(), doPost(): These methods are similar to
the service() method but handle only GET or
POST requests.

getSession(): Requests a Session object from the
session manager. The application server auto-
matically executes this method if the servlet’s
sessionType is set. The method is implemented
within the servlet base class.

sessionType: This attribute indicates whether the
sandbox should take care of the servlet’s session
management and the type of session management



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association20

#include <cse/cse.h>

class HelloServlet : public Servlet {
protected:

int counter;

public:
HelloServlet() : counter(0) { session=false; }
virtual ˜HelloServlet() { }
virtual void service(const ServletRequest& rq, ServletResponse& re,

Session* session=NULL) {
re << "<html><head><title>Hello World</title></head>" << endl

<< "<body><h1>Hello World</h1>" << endl
<< "<p>Servlet request count: " << ++counter << "</p>" << endl
<< "</body></html>" << endl;

}
};

Servlet* factory() {
return new HelloServlet();

}

Figure 3: C++ Servlet Example

requested. Valid options are NULL for no session
management, MemorySession for transient ses-
sion management, and DatabaseSession for
persistent session management surviving sandbox
or server restarts.

threadSafe: Indicates whether the servlet is able
to process multiple requests simultaneously. This
functionality, however, is not yet implemented.

The ServletRequest class encapsulates infor-
mation about the current request. It provides ac-
cess to the HTTP request parameters using the
getParameters()method. Such parameters may be
passed as part of the URL in case of a GET request and
as part of the request body in case of a POST request.
The request parameters are decoded and returned as a
map using the parameter names as keys.

Cookies sent with the HTTP request can be obtained
with the getCookies() method. They are automati-
cally transformed into Cookie objects. The return type
is a vector of these objects. Unless a cookie has been
changed there is no need to include it in the response
sent back to the client.

Among other information, the ServletRequest
class also provides the URL of the request (getURL())
and whether the request used the GET or POST method
(getMethod()).

The ServletResponse object contains a stream to
which the output of the servlet is written. For example,

re << rq.getURL();

writes the servlet’s URL to the output. Other interest-
ing attributes of this class are contentType which
specifies the MIME type of the response and cookies
which is an initially empty vector containing the
cookies to be sent to the client.

Session data is provided through the Session class.
Each session has a name and an ID. Together with the
Sandbox name, they uniquely identify the session. The
name distinguishes between different types of sessions
within a single web application. The session IDs are
assigned in a random order, which makes guessing them
almost impossible and thus enhances data security.

The setParameter() and getParameter()
methods allow a servlet to store and retrieve session data.
Depending on the kind of session, these data are stored
within the memory or within a database.

The session identifier must be passed on between sub-
sequent requests to the web server. This can be done
using cookies. The function getCookie() provides
a cookie (as defined in [12]) that contains the session
information. Cookies, however, do not work with all
web clients. If the servlet programmer cannot rely on
them, the methods asLink() and asForm() trans-
form the session designation into a string suitable for
links (in URL-encoded format) or for forms (as a hidden
field).

4.2 C++ Server Pages

C++ Server Pages (CSPs) are stored in the web server’s
document root directory along with static HTML pages
and can be identified by their .csp-extension. When they



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 21

<%#vector%>
<%!vector<string> strings;%>

<% // check whether a string should be removed/added
ServletRequest::Map::const_iterator mi;
if((mi=rq.getParameters().find("remove"))!=rq.getParameters().end())

strings.erase(strings.begin()+atoi(mi->second.c_str()));
if((mi=rq.getParameters().find("string"))!=rq.getParameters().end())

strings.push_back(mi->second); %>

<html><head><title>TableServlet</title></head><body>
<h1>TableServlet</h1>
<p>This servlet stores strings within a table.</p>
<form method=get action=TableServlet.csp><p>Please enter a string:
<input type=text size=64 name=string></input><input type=submit value="Go!">

</input></p></form>
<p><table border=1>
<tr><th colspan=2>Strings entered to date: <%=strings.size()%></th></tr>
<% for (vector<string>::iterator i=strings.begin(); i!=strings.end(); ++i) { %>
<tr>

<td><%=*i%></td>
<td><a href="TableServlet.csp?remove=<%=i - strings.begin()%>">remove</a></td>

</tr>
<% } %>

</table></p>
</body></html>

Figure 4: TableServlet.csp

are requested for the first time these pages are converted
into servlets and subsequently into shared objects.

CSPs are HTML documents enriched with special
tags containing, among other things, C++ code. A sam-
ple CSP is shown in Figure 4. The tags used to identify
C++ declarations and code are described below. Except
for the first two tags, they have been designed similar to
the JavaServer Pages (JSP) specification [27] to increase
readability for people familiar with JSPs.

<%$sandbox%> declares the sandbox the CSP be-
longs to. CSPs without this tag are executed within
the default sandbox.

<%#include%> denotes a header file to be included.
As in a normal C++ program, header files provide
declarations for functions and objects defined by a
library. The library itself can be loaded from the
configuration file. Different libraries may be used
for different sandboxes.

<%!definition%> declares an attribute or a
method.

<%@initialization%> indicates code to be
placed into the constructor of the servlet’s class.
Here, attributes (those declared within this class
and those inherited from the Servlet class) are
initialized.

<%code%> executes C++ code. It is written into the
servlet’s service() function at the tag’s loca-
tion.

<%=expression%> evaluates an expression and in-
serts the result into the servlet’s response. It may be
of any type that can be written to an output stream.

<%--comment--%> declares a CSP comment. Un-
like an HTML comment, its contents are not sent to
the web browser.

The example shown in Figure 4 first includes the
vector header file and declares a vector contain-
ing strings. The second block checks for the parame-
ters passed to the CSP and based on these parameters
removes or adds a new string to the vector. The re-
maining part of the servlet is used to display a form to
add a new string and a table with the strings currently
stored in the vector. Additionally, the strings are sup-
plied with links to allow them to be removed.

After the example servlet has been deployed, our CSE
translates it into a C++ servlet as shown in Figure 5. In-
clude directives of the C++ Server Page are converted
into include pre-processor macros at the beginning of the
file (line 1), definitions are converted into attribute and
member function definitions (line 8). Code and expres-
sion directives are used to form the service() mem-



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association22

1 #include <vector>
2 #include <cse/cse.h>
3 #include <string>
4
5 class CSPServlet : public Servlet {
6 protected:
7 virtual void print(ostream& os) const;
8 vector<string> strings;
9

10 public:
11 CSPServlet() : Servlet() { }
12 virtual ˜CSPServlet();
13 virtual void service(const ServletRequest& rq, ServletResponse& re,
14 Session* session= NULL);
15 };
16
17 // ... helper functions ...
18
19 void CSPServlet::service(const ServletRequest& rq, ServletResponse& re,
20 Session* session=NULL) {
21 re << "
22 ";
23 // check whether a string should be removed/added
24 ServletRequest::Map::const_iterator mi;
25 if((mi=rq.getParameters().find("remove"))!=rq.getParameters().end())
26 strings.erase(strings.begin()+atoi(mi->second.c_str()));
27 if((mi=rq.getParameters().find("string"))!=rq.getParameters().end())
28 strings.push_back(mi->second);
29 re << "
30 <html><head><title>TableServlet</title></head><body>
31 <h1>TableServlet</h1>
32 <p>This servlet stores strings within a table.</p>
33 <form method=get action=TableServlet.csp><p>Please enter a string:
34 <input type=text size=64 name=string></input><input type=submit value=\"Go!\">
35 </input></p></form>
36 <p><table border=1>
37 <tr><th colspan=2>Strings entered to date: ";
38 re << strings.size();
39 re << "</th></tr>
40 ";
41 for (vector<string>::iterator i=strings.begin(); i!=strings.end(); ++i) {
42 re << "
43 <tr>
44 <td>";
45 re << *i;
46 re << "</td>
47 <td><a href=\"TableServlet.csp?remove=";
48 re << i - strings.begin();
49 re << "\">remove</a></td>
50 </tr>
51 ";
52 }
53 re << "
54 </table></p>
55 </body></html>
56 ";
57 }

Figure 5: TableServlet.cc Generated from TableServlet.csp



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 23

ber function and HTML code is converted into state-
ments sending it unmodified to the web client (lines 19–
57).

5 Related Work
Since we have started with the implementation of our
C++ Servlet Environment other developers have also
recognized the need for a servlet environment for C++.

The commercial vendor Rogue Wave has developed
Bobcat [21], a C++ servlet engine that has an API simi-
lar to that of the Java Servlet Specification [26]. Unfor-
tunately, its evaluation license contains a non-disclosure
agreement. Hence, we cannot include their product in
this paper and have to assume that it is not yet ready for
a production system.

Ape Software, an Indian company, has developed
Servlet++ [3] under a BSD-like free license, which also
supports a basic form of C++ Server Pages. Unlike CSE,
it does not contain a stand-alone server for the execution
of the servlets but is implemented completely within an
Apache module. Hence, an unstable servlet can com-
promise the stability of the Apache server itself. The
Servlet++ module supports C++ servlets with an inter-
face similar to that of the Java Servlet class. Servlets
are loaded as shared objects. Unlike CSE, servlets and
C++ Server Pages have to be compiled manually. Also,
Servlet++ currently lacks session management, a fun-
damental necessity for every servlet environment, and
hence we left it out of the comparison in section 6.

C Server Pages [9] is a servlet engine that has been
designed with goals somewhat similar to those of the
C++ Servlet Environment, but does not use a free license
(commercial use is non-free). However, this system uses
no sandboxes to encapsulate its servlets, so that it is less
secure. There is currently no support for dynamic con-
figuration, which means that each servlet has to be com-
piled manually (using a tool to transform C Server Pages
into servlets and a C++ compiler), and the server then
has to be restarted. C Server Pages is implemented as a
CGI script, but the author has also built an Apache mod-
ule which is, unfortunately, not yet available for down-
load.

Micronovae [17] is developing a C++ Server Pages
engine which works together with Microsoft’s Internet
Information Server (IIS). Like the previous system, it
does not use the concept of sandboxes. Additionally, it
only provides support for C++ Server Pages but not for
servlets. Unfortunately, their download (beta version)
includes no source code, so that our information about
this system is solely based on our experiences with it.

The Weblet Application Server [29] seems to be a
servlet engine for C++ developed by Webletworks. Un-
fortunately, we were unable to contact the web server of
the application server’s vendor for several months now

and were also unable to obtain a copy or other informa-
tion about the system through other web sites.

Besides C++ servlet engines, there are numerous such
engines for Java and scripting languages. One such
servlet engine is the Apache Tomcat [2] servlet engine,
a subproject of the Apache Jakarta Project. It has com-
plete support of the JavaServer Pages and Java Servlet
specifications and is included in Sun’s reference im-
plementation. Although Tomcat contains its own web
server it can also cooperate with other web servers like
the Apache HTTP Server. JavaServer Pages may be
compiled by the built-in Java compiler or by alternative
Java compilers such as Jikes.

Jetty [18] is a Java Servlet engine developed by the
Australian company Mort Bay. It can cooperate with
the Apache HTTP Server, but Mort Bay suggests to
use the included web server. Jetty is available under a
free license and offers both Java Servlets and JavaServer
Pages. Like Tomcat, Jetty is configured using a set of
XML files and may use alternative Java compilers for
the compilation of JavaServer Pages.

Swill [13] is a lightweight programming library that
provides a simple web server for C and C++. Unlike
our servlet environment, its goal is not to provide a full
fledged web server that allows the execution of multiple
web applications. Instead, it allows developers to embed
the web server into their own programs. This web server
can be used to control the embedding application and to
display the application’s results using a web browser.

Zope [14] is a servlet environment that allows devel-
opers to use Python for servlet development. It includes
a web server and a web administration front-end. Initial
performance results have shown that Zope cannot com-
pete with the top servlet engines. We assume that this is
due to the performance penalty incurred by the Python
interpreter. Zope is probably the right environment for
Python programmers maintaining small web sites.

6 Evaluation

For the evaluation of the C++ Servlet Environment’s per-
formance we have implemented a benchmark suite that
tests various aspects of the different servlet engines. The
tests were performed with the built-in web server. All
servlets were compiled using the individual engine’s de-
fault servlet compiler before the execution of a bench-
mark.

6.1 Benchmarks

Static Page Access. In this benchmark we measure
how long it takes to request a static HTML page together
with 40 embedded images for 100 times. The primary
goal of this benchmark is to measure the throughput of
the servlet engine’s web server.



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association24

Bulletin Board System. We have implemented a
small bulletin board system that stores its entries in the
file system. It allows users to create messages, read them
(using a session for remembering the least recently read
message), and deleting them again.

The test creates 100 messages of 320 characters each.
These messages are then requested 50 times in batches
of 10 messages. Finally, the messages are deleted again
resulting in another 100 requests. The time taken for
these 800 requests (message creation is verified with a
second request) was measured. The goal of this bench-
mark is to check how well the servlet engine maintains
the client’s session state.

Dynamic Page Access. This benchmark uses a shop-
ping cart servlet that we have implemented for each
servlet engine.

For the measurement of this benchmark, we request
the start page once to obtain the cookie containing the
session information. Then, we add an item to the shop-
ping cart, display the shopping cart, remove the item,
and display the shopping cart again. The empty shop-
ping cart page has 2048 bytes. A test run consists of
50 consecutive requests, with a total of 250 dynamic
pages served. This benchmark is intended to measure
the servlet engine’s performance in a typical everyday
situation.

Parallel Page Access. For this request, we used the
previous benchmark and accessed the server simultane-
ously from a varying number of clients, each running on
a different machine. We have measured the time needed
by a single client to execute the same number of requests
as in the previous test. The other clients in the bench-
mark were started before we started the client to be mea-
sured and also were terminated afterwards. The goal of
this benchmark is to see how well the servlet engines can
cope with increasing load.

Mandelbrot Calculation. This test measures the ef-
ficiency of calculation-intensive servlets by computing
the Mandelbrot fractal. It accepts the size of the image,
the area of the fractal to be calculated, and the maximum
recursion depth as parameters. Although we support the
generation of an xpm graphics file the output has been
suppressed during this benchmark since we wanted to
measure the “number crunching” performance only.

A test run consists of 10 accesses to the servlet, calcu-
lating a picture of the Mandelbrot set at a resolution of
1024x768 pixels and a maximum of 256 iterations per
pixel.

System Library Call. Since a main reason for the de-
sign and implementation of the CSE was the possibility
to easily integrate legacy applications into servlets, this
test evaluates the inter-operation with legacy C and C++

code. For the test, we created a small servlet that calls
functions from a shared library. A similar servlet might
e.g. poll sensor data with high frequency in order to cal-
culate a mean value. For C and C++ programs this is a
straight-forward task. Java programs, however, have to
use the Java Native Interface [16] which requires a JNI
wrapper function to be written for each C or C++ func-
tion to be invoked. This benchmark measures how much
performance gets lost at that interface.

6.2 Benchmark Results
The hardware for the performance tests consisted of two
computers with AMD Duron/800 MHz processors run-
ning Linux. They were linked via a 100 Mbit/s switch
in order to ensure constant network bandwidth. For the
dynamic and parallel tests, we used 1–8 identical Intel
Pentium II/350 MHz computers as clients, with the same
server as above.

The results of our tests are shown in Table 1. We have
included Tomcat as Sun’s Java reference implementa-
tion, Jetty as an independent implementation in Java, and
CSP and Micronovae as other C/C++ solutions. Since
little information about the inner workings of Microno-
vae is available, we can only speculate why it performs
better or worse than the other systems.

As shown by the static page access benchmark using
Apache as front-end was the right choice for this bench-
mark. Tomcat and Jetty both did not perform as well.
Although they can be set up to be used in combination
with Apache, this setup is complicated. Mort Bay even
recommends to use Jetty for static documents as well. In
our evaluation, the Windows Internet Information Server
was slightly faster than Apache on Linux. We assume
that this effect is caused by the operating system.

The dynamic and parallel access benchmark, whose
result is shown in Figure 6, reveals why Tomcat has be-
come Sun’s reference implementation. Both Java imple-
mentations perform much better than we would have as-
sumed initially. Although we knew that our implemen-
tation leaves room for improvements, this was a surprise
to us.

The CSE and Jetty scale equally well, but not as good
as Tomcat and slightly worse than Micronovae. The
CSE does not perform as well because in its current im-
plementation the servlet server might be a bottleneck,
as we have mentioned in Section 3.1. Jetty performs
slower because it seems that its implementation has not
been as well optimized as Tomcat’s. CSP scales worst
in our benchmark. Obviously, using the CGI for servlet
execution is, at best, only a solution when C/C++ ap-
plications should be integrated into a web server whose
performance is not an issue.

In the bulletin board system test all systems were rela-
tively close together, which indicates that bulk transfers



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 25

Engine CSE Tomcat Jetty CSP Micronovae
Static Page Access 35.79s 54.79s 48.20s 35.79s 35.03s
Bulletin Board System 3.96s 2.34s 3.66s 4.74s 2.40s
Dynamic Page Access 20.34s 18.83s 21.73s 24.62s 25.77s
Mandelbrot Calculation 10.69s 33.55s 33.22s 10.95s 14.86s
System Library Call 12.94s 209.39s 207.15s 14.16s 7.58s

Table 1: Evaluation Results

 0

 2

 4

 6

 8

 10

 12

 14

 1  2  3  4  5  6  7  8
Number of Clients

S
ec

on
ds

CSP
Jetty
CSE
Micronovae
Tomcat

Figure 6: Parallel Page Access Benchmark Times

in Java are similarly fast as in C/C++. CSP’s bad result
is likely caused by the fact that it creates and initializes a
new task for every servlet invocation. The difference of
this benchmark over the others is that the bulletin board
system’s entries are stored on the file system. Hence we
assume that Micronovae performs worse than the other
approaches due to differences in the file system imple-
mentation between Linux and Windows.

The C/C++ based systems have a clear advantage
when performing CPU intensive computations as shown
by the Mandelbrot calculation. It seems that the Java
just-in-time compiler is unable to optimize the code as
well as the GNU compiler. In the direct comparison,
the compiler from Microsoft Visual C++ which is used
within Micronovae performs worse than its GNU equiv-
alent, but we do not know what optimizations are per-
formed.

The library benchmark shows severe limitations of the
Java-based systems. In our scenario, C code is more than
16 times faster when many function calls into a legacy C
application need to be done. It seems that the Java Native

Interface (JNI) which handles C/C++ library calls has
not been optimized at all. CSP takes slightly more time
than the CSE but is still an order of magnitude faster than
the Java-based systems. The very good performance of
Micronovae is probably caused by a different shared li-
brary mechanism provided by the Windows platform.

7 Future Work

The current implementation of the CSE has some room
for optimization. This gets apparent by looking at the
architecture presented in Section 3. Requests to the in-
dividual servlets are delegated to the sandboxes by the
servlet server. This is a potential bottleneck and could
be solved by letting the Apache module themselves del-
egate the requests to the individual sandboxes. Addi-
tionally, our current implementation does not yet allow
the simultaneous execution of a servlet’s service()
method. This stems from the fact that we do not yet
honor a servlet’s threadSafe attribute, which results
in a loss of performance.



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association26

During our tests we identified that our servlet engine
is not yet capable of handling binary content correctly.
We assume that this bug is located within the Apache
module that passes the result of the sandboxes back to
the clients. Our current assumption is that we do not
handle the NULL character correctly since it indicates
the end of a C string.

In future versions we also plan to implement a test
environment for servlets and C++ Server Pages that sup-
ports testing outside the CSE. To test the servlet, the en-
vironment would be linked to the servlet and could be
debugged like a stand-alone C++ application.

In future versions of the CSE, we also plan submit it
to the BOOST web site [6] which provides a collection
of free peer-reviewed portable C++ source libraries. The
focus of BOOST is on libraries that work well with the
C++ Standard Library and are suitable for eventual stan-
dardization.

8 Conclusions
The contribution of this paper is an architecture that en-
ables the implementation of high-performance web ap-
plications using C or C++ while providing the stability
known from Java servlet engines.

We have also implemented a C++ Servlet Environ-
ment using this architecture. Although our implemen-
tation has not yet been optimized and provides enough
room for further performance improvements, it offers
similar performance as the top servlet engines available
today.

Our C++ Servlet Environment uses an API which is
based on that provided by Java Servlets and JavaServer
Pages. This design choice has the advantage that devel-
opers familiar with this technology will immediately be
able to write C++ Servlets and C++ Server Pages.

Providing a servlet environment for C++ is important
since it allows developers to reuse existing C++ code
without having to use the Java Native Interface [16, 25]
and hence without having to deal with different lan-
guages and the conversion of different type systems. As
we have explained in Section 5, this need has recently
been identified by other researchers as well. Although
similar, these products are slightly incompatible to each
other. Hence, we think that the standardization of a C++
Servlet Environment will be important for the future of
this technology.

Availability
The C/C++ Servlet Engine is freely available under the
GNU General Public License. A more detailed descrip-
tion of the design and implementation of the CSE can be
found in [23]. The CSE as well as its documentation
is available for download from the CSE homepage at
http://www.infosys.tuwien.ac.at/CSE/.

Acknowledgements
We would like to thank Dave Beazley, Andreas
Grünbacher, and the many anonymous reviewers for
their helpful comments. We also gratefully acknowl-
edge the financial support provided by the USENIX Ad-
vanced Computing Systems Association and by the Eu-
ropean Union as part of the EASYCOMP project (IST-
1999-14191).

References
[1] Apache Software Foundation. The Apache

HTTP Server. http://httpd.apache.org/
docs-2.0/.

[2] Apache Software Foundation. The Apache Tomcat
Servlet Engine. http://jakarta.apache.
org/tomcat/.

[3] Ape Software. The Servlet++ Homepage, 2002.
http://www.apesoft.net/servlet++/.

[4] David M. Beazley. SWIG: An easy to use tool for
integrating scripting languages with C and C++. In
Proceedings of the USENIX Fourth Annual Tcl/Tk
Workshop. USENIX, July 1996.

[5] Nina Bhatti, Anna Bouch, and Allan Kuchinsky.
Integrating user-perceived quality into web server
design. Technical Report HPL-2000-3, Hewlett-
Packard Laboratories, January 2000.

[6] The Boost Homepage. http://www.boost.
org/.

[7] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul,
Henrik Frystyk, Larry Masinter, Paul J. Leach, and
Tim Berners-Lee. Hypertext Transfer Protocol—
HTTP/1.1, June 1999. RFC2616.

[8] Pankaj K. Garg, Kave Eshgi, Thomas Gschwind,
Boudewijn Haverkort, and Katinka Wolter. En-
abling network caching of dynamic web objects. In
Proceedings of the 12th International Conference
on Modelling Tools and Techniques for Computer
and Communication System Performance Evalua-
tion. Springer-Verlag, April 2002.

[9] Teodoro González. C Server Pages. http://
www.cserverpages.com/.

[10] Thomas Gschwind. PSTL—A C++ Persistent
Standard Template Library. In Proceedings of the
6th USENIX Conference on Object-Oriented Tech-
nologies and Systems, pages 147–158. USENIX,
January 2001.

[11] Arun Iyengar, Mark S. Squillante, and Li Zhang.
Analysis and characterization of large-scale web
server access patterns and performance. The World
Wide Web Journal, 2:85–100, 1999.



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 27

[12] Dave Kristol and Lou Montulli. HTTP State Man-
agement Mechanism, February 1997. RFC2109.

[13] Sotiria Lampoudi and David M. Beazley. SWILL:
A simple embedded web server library. In Pro-
ceedings of the 2002 USENIX Annual Technical
Conference. USENIX, June 2002.

[14] Amos Latteier and Michel Pelletier. The Zope
Book. New Riders Publishing, July 2001.

[15] Bil Lewis and Daniel J. Berg. Multithreaded Pro-
gramming with Pthreads. Prentice-Hall, 1997.

[16] Sheng Liang. The Java Native Interface: Program-
mer’s Guide and Specification. Addison-Wesley,
June 1999.

[17] Micronovae. The Micronovae CSP Engine Home-
page, 2002. http://www.micronovae.
com/CSP.html.

[18] Mort Bay Consulting. Jetty—Java HTTP server
and servlet container, 2002. http://www.
mortbay.org/jetty/.

[19] Nathan C. Myers. Traits: A new and useful tem-
plate technique. C++ Report, June 1995.

[20] Netcraft. Netcraft Web Server Survey, Octo-
ber 2002. http://www.netcraft.com/
survey/.

[21] Rogue Wave Software. The Bobcat Servlet Con-
tainer: Using C++ to Integrate Applications and
Business Logic with the Web.

[22] Peter Rossbach and Hendrik Schreiber. Java
Server and Servlets: Building Portable Web Appli-
cations. Addison-Wesley, March 2000.

[23] Benjamin A. Schmit. A C++ Servlet Environ-
ment. Master’s thesis, Technische Universität
Wien, 2002. Draft version.

[24] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, special 3rd edition,
February 2000.

[25] Sun Microsystems. Java Native Interface Specifi-
cation, May 1997. http://java.sun.com/
j2se/1.4/docs/guide/jni/.

[26] Sun Microsystems. Java Servlet Specification (Ver-
sion 2.3), August 2001.

[27] Sun Microsystems. The JavaServer Pages Specifi-
cation (Version 1.2), August 2001.

[28] Guido van Rossum. Python/C API Reference Man-
ual. Python Labs, October 2002.

[29] Webletworks. The Weblet Application Server
Homepage. http://www.webletworks.
com/.

[30] Michael Widenius and David Axmark. MySQL
Reference Manual. O’Reilly & Associates, June
2002.


