
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 259

POSIX Access Control Lists on Linux

Andreas Grünbacher
SuSE Labs, SuSE Linux AG

Nuremberg, Germany
agruen@suse.de

Abstract

This paper discusses file system Access Control Lists
as implemented in several UNIX-like operating systems.
After recapitulating the concepts of these Access Con-
trol Lists that never formally became a POSIX standard,
we focus on the different aspects of implementation and
use on Linux.

1 Introduction
Traditionally, systems that support the POSIX (Portable
Operating System Interface) family of standards [2,
11] share a simple yet powerful file system permission
model: Every file system object is associated with three
sets of permissions that define access for the owner, the
owning group, and for others. Each set may contain
Read (r), Write (w), and Execute (x) permissions. This
scheme is implemented using only nine bits for each ob-
ject. In addition to these nine bits, the Set User Id, Set
Group Id, and Sticky bits are used for a number of spe-
cial cases. Many introductory and advanced texts on the
UNIX operating system describe this model [19].

Although the traditional model is extremely simple,
it is sufficient for implementing the permission scenar-
ios that usually occur on UNIX systems. System ad-
ministrators have also found several workarounds for the
model’s limitations. Some of these workarounds require
nonobvious group setups that may not reflect organiza-
tional structures. Only the root user can create groups
or change group membership. Set-user-ID root utilities
may allow ordinary users to perform some administra-
tive tasks, but bugs in such utilities can easily lead to
compromised systems. Some applications like FTP dae-
mons implement their own extensions to the file system
permission model [15]. The price of playing tricks with
permissions is an increase in complexity of the system
configuration. Understanding and maintaining the in-
tegrity of systems becomes more difficult.

Engineers have long recognized the deficiencies of the
traditional permission model and have started to think
about alternatives. This has eventually resulted in a num-
ber of Access Control List (ACL) implementations on
UNIX, which are only compatible among each other to
a limited degree.

This paper gives an overview of the most successful
ACL scheme for UNIX-like systems that has resulted
from the POSIX 1003.1e/1003.2c working group.

After briefly describing the concepts, some examples
of how these are used are given for better understanding.
Following that, the paper discusses Extended Attributes,
the abstraction layer upon which ACLs are based on
Linux. The rest of the paper deals with implementation,
performance, interoperability, application support, and
system maintenance aspects of ACLs.

The author was involved in the design and implemen-
tation of extended attributes and ACLs on Linux, which
covered the user space tools and the kernel implemen-
tation for Ext2 and Ext3, Linux’s most prominent file
systems. Parts of the design of the system call interface
are attributed to Silicon Graphics’s Linux XFS project,
particularly to Nathan Scott.

2 The POSIX 1003.1e/1003.2c Working
Group

A need for standardizing other security relevant areas in
addition to just ACLs was also perceived, so eventually a
working group was formed to define security extensions
within the POSIX 1003.1 family of standards. The doc-
ument numbers 1003.1e (System Application Program-
ming Interface) and 1003.2c (Shell and Utilities) were
assigned for the working group’s specifications. These
documents are referred to as POSIX.1e in the remain-
der of this paper. The working group was focusing on
the following extensions to POSIX.1: Access Control
Lists (ACL), Audit, Capability, Mandatory Access Con-
trol (MAC), and Information Labeling.

Unfortunately, it eventually turned out that standard-
izing all these diverse areas was too ambitious a goal.
In January 1998, sponsorship for 1003.1e and 1003.2c
was withdrawn. While some parts of the documents pro-
duced by the working group until then were already of
high quality, the overall works were not ready for publi-
cation as standards. It was decided that draft 17, the last
version of the documents the working group had pro-
duced, should be made available to the public. Today,
these documents can be found at Winfried Trümper’s
Web site [27].

Several UNIX system vendors have implemented var-

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association260

ious parts of the security extensions, augmented by
vendor-specific extensions. The resulting versions of
their operating systems have often been labeled “trusted”
operating systems, e.g., Trusted Solaris, Trusted Irix,
Trusted AIX. Some of these “trusted” features have later
been incorporated into the vendors’ main operating sys-
tems.

ACLs are supported on different file system types
on almost all UNIX-like systems nowadays. Some of
these implementations are compatible with draft 17 of
the specification, while others are based on older drafts.
Unfortunately, this has resulted in a number of subtle
differences among the different implementations.

The TrustedBSD project (http://www.trustedbsd.org/)
lead by Robert Watson has implemented versions of the
ACL, Capabilities, MAC, and Audit parts of POSIX.1e
for FreeBSD. The ACL and MAC implementations ap-
pear in FreeBSD-RELEASE as of January, 2003. The
MAC implementation is still considered experimental.

3 Status of ACLs on Linux
Patches that implement POSIX 1003.1e draft 17 ACLs
have been available for various versions of Linux for
several years now. They were added to version 2.5.46
of the Linux kernel in November 2002. Current Linux
distributions are still based on the 2.4.x stable kernels se-
ries. SuSE and the United Linux consortium have inte-
grated the 2.4 kernel ACL patches earlier than others, so
their current products offer the most complete ACL sup-
port available for Linux to date. Other vendors appar-
ently are still reluctant to make that important change,
but experimental versions are expected to be available
later this year.

The Linux getfacl and setfacl command line utilities
do not strictly follow POSIX 1003.2c draft 17, which
shows mostly in the way they handle default ACLs. See
section 6.

At the time of this writing, ACL support on Linux is
available for the Ext2, Ext3, IBM JFS, ReiserFS, and
SGI XFS file systems. Solaris-compatible ACL support
for NFS version 3 exists since March 3, 2003.

4 How ACLs Work
The traditional POSIX file system object permission
model defines three classes of users called owner, group,
and other. Each of these classes is associated with a set
of permissions. The permissions defined are read (r),
write (w), and execute (x). In this model, the owner
class permissions define the access privileges of the file
owner, the group class permissions define the access
privileges of the owning group, and the other class per-
missions define the access privileges of all users that are
not in one of these two classes. The ls -l command dis-
plays the owner, group, and other class permissions in

Entry type Text form
Owner user::rwx
Named user user:name:rwx
Owning group group::rwx
Named group group:name:rwx
Mask mask::rwx
Others other::rwx

Table 1: Types of ACL Entries

the first column of its output (e.g., “-rw-r-----” for
a regular file with read and write access for the owner
class, read access for the group class, and no access for
others).

An ACL consists of a set of entries. The permissions
of each file system object have an ACL representation,
even in the minimal, POSIX.1-only case. Each of the
three classes of users is represented by an ACL entry.
Permissions for additional users or groups occupy addi-
tional ACL entries.

Table 1 shows the defined entry types and their text
forms. Each of these entries consists of a type, a qualifier
that specifies to which user or group the entry applies,
and a set of permissions. The qualifier is undefined for
entries that require no qualification.

ACLs equivalent with the file mode permission bits
are called minimal ACLs. They have three ACL en-
tries. ACLs with more than the three entries are called
extended ACLs. Extended ACLs also contain a mask
entry and may contain any number of named user and
named group entries.

These named group and named user entries are as-
signed to the group class, which already contains the
owning group entry. Different from the POSIX.1 per-
mission model, the group class may now contain ACL
entries with different permission sets, so the group class
permissions alone are no longer sufficient to represent all
the detailed permissions of all ACL entries it contains.
Therefore, the meaning of the group class permissions
is redefined: under their new semantics, they represent
an upper bound of the permissions that any entry in the
group class will grant.

This upper bound property ensures that POSIX.1 ap-
plications that are unaware of ACLs will not suddenly
and unexpectedly start to grant additional permissions
once ACLs are supported.

In minimal ACLs, the group class permissions are
identical to the owning group permissions. In extended
ACLs, the group class may contain entries for additional
users or groups. This results in a problem: some of
these additional entries may contain permissions that are
not contained in the owning group entry, so the owning
group entry permissions may differ from the group class
permissions.

This problem is solved by the virtue of the mask entry.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 261

With minimal ACLs, the group class permissions map
to the owning group entry permissions. With extended
ACLs, the group class permissions map to the mask en-
try permissions, whereas the owning group entry still de-
fines the owning group permissions. The mapping of the
group class permissions is no longer constant. Figure 1
shows these two cases.

Access Control List
Minimal

Othe
r c

las
s

Owne
r c

las
s

Gro
up

 cl
as

s

rw− −−−r−−

user::rw−
group::r−−
other::−−−

Extended
Access Control List

Othe
r c

las
s

Gro
up

 cl
as

s

Owne
r c

las
s

group::r−−

user::rw−

mask::rw−
other::−−−

user:joe:rw−

entries
masked

rw− rw− −−−

Figure 1: Mapping between ACL Entries and File Mode Per-
mission Bits

When an application changes any of the owner, group,
or other class permissions (e.g., via the chmod com-
mand), the corresponding ACL entry changes as well.
Likewise, when an application changes the permissions
of an ACL entry that maps to one of the user classes, the
permissions of the class change.

The group class permissions represent the upper
bound of the permissions granted by any entry in the
group class. With minimal ACLs this is trivially the
case. With extended ACLs, this is implemented by
masking permissions (hence the name of the mask en-
try): permissions in entries that are a member of the
group class which are also present in the mask entry are
effective. Permissions that are absent in the mask entry
are masked and thus do not take effect. See Table 2.

Entry type Text form Permissions
Named user user:joe:r-x r-x
Mask mask::rw- rw-

Effective permissions r--

Table 2: Masking of Permissions

The owner and other entries are not in the group
class. Their permissions are always effective and never
masked.

So far we have only looked at ACLs that define the cur-

rent access permissions of file system objects. This type
is called access ACL. A second type called default ACL
is also defined. They define the permissions a file system
object inherits from its parent directory at the time of its
creation. Only directories can be associated with default
ACLs. Default ACLs for non-directories would be of no
use, because no other file system objects can be created
inside non-directories. Default ACLs play no direct role
in access checks.

When a directory is created inside a directory that has
a default ACL, the new directory inherits the parent di-
rectory’s default ACL both as its access ACL and default
ACL. Objects that are not directories inherit the default
ACL of the parent directory as their access ACL only.

The permissions of inherited access ACLs are further
modified by the mode parameter that each system call
creating file system objects has. The mode parameter
contains nine permission bits that stand for the permis-
sions of the owner, group, and other class permissions.
The effective permissions of each class are set to the in-
tersection of the permissions defined for this class in the
ACL and specified in the mode parameter.

If the parent directory has no default ACL, the per-
missions of the new file are determined as defined in
POSIX.1. The effective permissions are set to the per-
missions defined in the mode parameter, minus the per-
missions set in the current umask.

The umask has no effect if a default ACL exists.

4.1 Access Check Algorithm
A process requests access to a file system object. Two
steps are performed. Step one selects the ACL entry
that most closely matches the requesting process. The
ACL entries are looked at in the following order: owner,
named users, (owning or named) groups, others. Only
a single entry determines access. Step two checks if the
matching entry contains sufficient permissions.

A process can be a member in more than one group,
so more than one group entry can match. If any of
these matching group entries contain the requested per-
missions, one that contains the requested permissions is
picked (the result is the same no matter which entry is
picked). If none of the matching group entries contains
the requested permissions, access will be denied no mat-
ter which entry is picked.

The access check algorithm can be described in
pseudo-code as follows.

If the user ID of the process is the owner, the owner
entry determines access

else if the user ID of the process matches the qualifier in
one of the named user entries, this entry determines
access

else if one of the group IDs of the process matches the
owning group and the owning group entry contains

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association262

the requested permissions, this entry determines ac-
cess

else if one of the group IDs of the process matches the
qualifier of one of the named group entries and this
entry contains the requested permissions, this entry
determines access

else if one of the group IDs of the process matches
the owning group or any of the named group en-
tries, but neither the owning group entry nor any of
the matching named group entries contains the re-
quested permissions, this determines that access is
denied

else the other entry determines access.

If the matching entry resulting from this selection is the
owner or other entry and it contains the requested
permissions, access is granted

else if the matching entry is a named user, owning
group, or named group entry and this entry con-
tains the requested permissions and the mask entry
also contains the requested permissions (or there is
no mask entry), access is granted

else access is denied.

5 Access ACL Example
Let us start by creating a directory and checking its per-
missions. The umask determines which permissions will
be masked off when the directory is created. A umask of
027 (octal) disables write access for the owning group
and read, write, and execute access for others.

$ umask 027
$ mkdir dir
$ ls -dl dir
drwxr-x--- ... agruen suse ... dir

The first character ls prints represents the file type (d
for directory). The string “rwxr-x---” represents the
resulting permissions for the new directory: read, write,
and execute access for the owner and read and execute
access for the owning group. The dots in the output of
ls stand for text that is not relevant here and has been
removed.

These base permissions have an equivalent represen-
tation as an ACL. ACLs are displayed using the getfacl
command.

$ getfacl dir
file: dir
owner: agruen
group: suse
user::rwx
group::r-x
other::---

The first three lines of output contain the file name,
owner, and owning group of the file as comments. Each

of the following lines contains an ACL entry for one of
the three classes of users: owner, group, and other.

The next example grants read, write, and execute
access to user Joe in addition to the existing permis-
sions. For that, the -m (modify) argument of setfacl is
used. The resulting ACL is again shown using the get-
facl command. The –omit-header option to getfacl sup-
presses the three-line comment header containing the file
name, owner, and owning group to shorten the examples
shown.

$ setfacl -m user:joe:rwx dir
$ getfacl --omit-header dir
user::rwx
user:joe:rwx
group::r-x
mask::rwx
other::---

Two additional entries have been added to the ACL:
one is for user Joe and the other is the mask entry. The
mask entry is automatically created when needed but not
provided. Its permissions are set to the union of the per-
missions of all entries that are in the group class, so the
mask entry does not mask any permissions.

The mask entry now maps to the group class permis-
sions. The output of ls changes as shown next.

$ ls -dl dir
drwxrwx---+ ... agruen suse ... dir

An additional “+” character is displayed after the per-
missions of all files that have extended ACLs. This
seems like an odd change, but in fact POSIX.1 allocates
this character position to the optional alternate access
method flag, which happens to default to a space charac-
ter if no alternate access methods are in use.

The permissions of the group class permissions in-
clude write access. Traditionally such file permission
bits would indicate write access for the owning group.
With ACLs, the effective permissions of the owning
group are defined as the intersection of the permissions
of the owning group and mask entries. The effective per-
missions of the owning group in the example are still
r-x, the same permissions as before creating additional
ACL entries with setfacl.

The group class permissions can be modified using
the setfacl or chmod command. If no mask entry exists,
chmod modifies the permissions of the owning group en-
try as it does traditionally. The next example removes
write access from the group class and checks what hap-
pens.

$ chmod g-w dir
$ ls -dl dir
drwxr-x---+ ... agruen suse ... dir

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 263

$ getfacl --omit-header dir
user::rwx
user:joe:rwx #effective:r-x
group::r-x
mask::r-x
other::---

As shown, if an ACL entry contains permissions that
are disabled by the mask entry, getfacl adds a comment
that shows the effective set of permissions granted by
that entry. Had the owning group entry had write access,
there would have been a similar comment for that entry.
Now see what happens if write access is given to the
group class again.

$ chmod g+w dir
$ ls -dl dir
drwxrwx---+ ... agruen suse ... dir
$ getfacl --omit-header dir
user::rwx
user:joe:rwx
group::r-x
mask::rwx
other::---

After adding the write permission to the group class,
the ACL defines the same permissions as before taking
the permission away. The chmod command has a nonde-
structive effect on the access permissions. This preserva-
tion of permissions is an important feature of POSIX.1e
ACLs.

6 Default ACL Example
In the following example, we add a default ACL to the
directory. Then we check what getfacl shows.

$ setfacl -d -m group:toolies:r-x dir
$ getfacl --omit-header dir
user::rwx
user:joe:rwx
group::r-x
mask::rwx
other::---
default:user::rwx
default:group::r-x
default:group:toolies:r-x
default:mask::r-x
default:other::---

Following the access ACL, the default ACL is printed
with each entry prefixed with “default:”. This out-
put format is an extension to POSIX.1e that is found on
Solaris and Linux. A strict implementation of POSIX
1003.2c would only show the access ACL. The default
ACL would be shown with the -d option to getfacl.

We have only specified an ACL entry for the toolies
group in the setfacl command. The other entries required

for a complete ACL have automatically been copied
from the access ACL to the default ACL. This is a Linux-
specific extension; on other systems all entries may need
to be specified explicitly.

The default ACL contains no entry for Joe, so Joe will
not have access (except possibly through group member-
ship or the other class permissions).

A subdirectory inherits ACLs as shown next. Unless
otherwise specified, the mkdir command uses a value of
0777 as the mode parameter to the mkdir system call,
which it uses for creating the new directory. Observe that
both the access and the default ACL contain the same
entries.

$ mkdir dir/subdir
$ getfacl --omit-header dir/subdir
user::rwx
group::r-x
group:toolies:r-x
mask::r-x
other::---
default:user::rwx
default:group::r-x
default:group:toolies:r-x
default:mask::r-x
default:other::---

Files created inside dir inherit their permissions as
shown next. The touch command passes a mode value
of 0666 to the kernel for creating the file.

All permissions not included in the mode parameter
are removed from the corresponding ACL entries. The
same has happened in the previous example, but there
was no noticeable effect because the value 0777 used for
the mode parameter represents a full set of permissions.

$ touch dir/file
$ ls -l dir/file
-rw-r-----+ ... agruen suse ... dir/file
$ getfacl --omit-header dir/file
user::rw-
group::r-x #effective:r--
group:toolies:r-x #effective:r--
mask::r--
other::---

No permissions have been removed from ACL entries
in the group class; instead they are merely masked and
thus made ineffective. This ensures that traditional tools
like compilers will interact well with ACLs. They can
create files with restricted permissions and mark the files
executable later. The mask mechanism will cause the
right users and groups to end up with the expected per-
missions.

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association264

7 Extended Attributes
In this section we begin detailing the implementation of
ACLs in Linux.

ACLs are pieces of information of variable length that
are associated with file system objects. Dedicated strate-
gies for storing ACLs on file systems might be devised,
as Solaris does on the UFS file system [13]. Each inode
on a UFS file system has a field called i shadow. If an
inode has an ACL, this field points to a shadow inode.
On the file system, shadow inodes are used like regu-
lar files. Each shadow inode stores an ACL in its data
blocks. Multiple files with the same ACL may point to
the same shadow inode.

Because other kernel and user space extensions in
addition to ACLs benefit from being able to associate
pieces of information with files, Linux and most other
UNIX-like operating systems implement a more general
mechanism called Extended Attributes (EAs). On these
systems, ACLs are implemented as EAs.

Extended attributes are name and value pairs associ-
ated permanently with file system objects, similar to the
environment variables of a process. The EA system calls
used as the interface between user space and the kernel
copy the attribute names and values between the user and
kernel address spaces. The Linux attr(5) manual page
contains a more complete description of EAs as found on
Linux. A paper by Robert Watson discussing supporting
infrastructure for security extensions in FreeBSD con-
tains a comparison of different EA implementations on
different systems [25].

Other operating systems, such as Sun Solaris, Ap-
ple MacOS, and Microsoft Windows, allow multiple
streams (or forks) of information to be associated with
a single file. These streams support the usual file se-
mantics. After obtaining a handle on the stream, it is
possible to access the streams’ contents using ordinary
file operations like read and write. Confusingly, on So-
laris these streams are called extended attributes as well.
The EAs on Linux and several other UNIX-like oper-
ating systems have nothing to do with these streams.
The more limited EA interface offers several advantages.
They are easier to implement, EA operations are inher-
ently atomic, and the stateless interface does not suffer
from overheads caused by obtaining and releasing file
handles. Efficiency is important for frequently accessed
objects like ACLs.

At the file system level, the obvious and straight-
forward approach to implement EAs is to create an addi-
tional directory for each file system object that has EAs
and to create one file for each extended attribute that has
the attribute’s name and contains the attribute’s value.
Because on most file systems allocating an additional
directory plus one or more files requires several disk
blocks, such a simple implementation would consume

a lot of space, and it would not perform very well be-
cause of the time needed to access all these disk blocks.
Therefore, most file systems use different mechanisms
for storing EAs.

7.1 Ext2 and Ext3
As described in the Linux kernel sources, each inode has
a field that is called i file acl for historic reasons. If this
field is not zero, it contains the number of the file system
block on which the EAs associated with this inode are
stored. This block contains both the names and values of
all EAs associated with the inode. All EAs of an inode
must fit on the same EA block.

For improved efficiency, multiple inodes with identi-
cal sets of EAs may point to the same EA block. The
number of inodes referring to an EA block are tracked
by a reference count in the EA block. EA block shar-
ing is transparent for the user: Ext3 keeps an LRU list
of recently accessed EA blocks and a table that has two
indices (implemented as hash tables of double linked
lists). One index is by block number. The other is by
a checksum of the block’s contents. Blocks that contain
the same data with which a new inode shall be associ-
ated are reused until the block’s reference count reaches
an upper limit of 1024. This limits the damage a single
disk block failure may cause. When an inode refers to
a shared EA block and that inode’s EAs are changed, a
copy-on-write mechanism is used, unless another cached
EA block already contains the same set of attributes, in
which case that block is used.

The current implementation requires all EAs of an
inode to fit on a single disk block, which is 1, 2, or 4
KiB. This also determines the maximum size of individ-
ual attributes.

If the sets of EAs tend to be unique among inodes, no
sharing is possible and the time spent checking for po-
tential sharing is wasted. If each inode has a unique set
of EAs, each of these sets will be stored on a separate
disk block, which can lead to a lot of slack space. The
extreme case is applications that need to store unique
EAs for each inode. Fortunately for many common
workloads, the EA sharing mechanism is highly effec-
tive.

Alternative designs with fewer limitations have been
proposed [5], but it seems that they are not easy to actu-
ally implement. No alternatives to the existing scheme
exist so far.

7.2 JFS
JFS stores all EAs of an inode in a consecutive range of
blocks on the file system (i.e., in an extent) [3]. The ex-
tended attribute name and value pairs are stored consec-
utively in this extent. If the entire EAs are small enough,
they are stored entirely within the inode to which they

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 265

belong.
JFS does not implement an EA sharing mechanism. It

does not have the one-disk-block limitation of Ext2 and
Ext3. The size of individual attributes is limited to 64
KiB.

7.3 XFS
Of the file systems currently supported in Linux, XFS
uses the most elaborate scheme for storing extended at-
tributes [1]. Small sets of EAs are stored directly in
inodes, medium-sized sets are stored on leaf blocks of
B+ trees, and large sets of EAs are stored in full B+
trees. This results in performance characteristics simi-
lar to directories on XFS: although rarely needed, very
large numbers of EAs can be stored efficiently.

XFS has a configurable inode size that is determined
at file system create time. The minimum size is 256
bytes, which is also the default. The maximum size is
one half of the file system block size. In the minimum
case, the inodes are too small to hold ACLs, so they will
be stored externally. If the inode size is increased, ACLs
will fit directly in the inode. Since inodes and their ACLs
are often accessed within a short period of time, this re-
sults in faster access checks, but also wastes more disk
space.

XFS does not have an attribute sharing mechanism.
The size of individual attributes is limited to 64 KiB.

7.4 ReiserFS
ReiserFS supports tail merging of files, which means
that several files can share the same disk block for stor-
ing their data. This makes the file system very efficient
for many small files. One potential drawback is that tail
merging can consume a noticeable amount of CPU time.

Since ReiserFS is so good at handling small files, EAs
can directly use this mechanism. For each file that has
EAs, a directory with a name derived from a unique
inode identifier is created inside a special directory. The
special directory is usually hidden from the file system
namespace. Inside the inode specific directory, each EA
is stored as a separate file. The file name equals the at-
tribute name. The file’s contents are the attribute value.

ReiserFS does not implement an attribute sharing
mechanism, but such an extension will possibly be im-
plemented in the future. Sharing could even be imple-
mented on a per-attribute bases, so the result would be
a highly efficient and flexible solution. The size of indi-
vidual attributes is limited to 64 KiB.

8 ACL Implementations
An interesting design decision is how ACLs should be
passed between user space and the kernel, and inside
the kernel, between the virtual file system (VFS) and
the low-level file system layer. FreeBSD, Solaris, Irix,

and HP-UX all have separate ACL system calls [9, 17,
21, 23].

Linux does not have ACL system calls. Instead, ACLs
are passed between the kernel and user space as EAs.
This reduces the number of system interfaces, but with
the same number of end operations. While the ACL sys-
tem calls provide a more explicit system interface, the
EA interface is easier to adapted to future requirements,
such as non-numerical identifiers for users and groups in
ACL entries.

The rationale for using separate ACL system calls in
FreeBSD was that some file systems support EAs but not
ACLs, and some file systems support ACLs but not EAs,
so EAs are treated as pure binary data. EAs and ACLs
only become related inside a file system. [24, 26].

The rationale for the Linux design was to provide
access to all meta data pertinent to a file system ob-
ject through the same interface. Different classes of at-
tributes that are recognized by name are reserved for sys-
tem objects such as ACLs. The attribute names “sys-
tem.posix acl access” and “system.posix acl default”
are used for the access and default ACL of a file, re-
spectively. The ACL attribute values are in a canonical,
architecture-independent binary format. File systems
that do not implement ACLs but do implement EAs, or
ones that implement ACLs as something other than EAs,
need to recognize the relevant attribute names.

While it is possible to manipulate ACLs directly as
EAs, at the application level this is usually not done:
since the EA system calls are Linux-specific, such ap-
plications would not be portable. Other systems sup-
port similar EA mechanisms, but with different system
call interfaces. Applications that want to use POSIX.1
ACLs in a portable way are expected to use the libacl li-
brary, which implements the ACL-specific functions of
POSIX.1e draft 17.

The access ACL of a file system object is accessed
for every access decision that involves that object. Ac-
cess checking is performed on the whole path from the
namespace root to the file in question. It is important
that ACL access checks are efficient. To avoid fre-
quently looking up ACL attributes and converting them
from the machine-independent attribute representation
to a machine-specific representation, the Ext2, Ext3,
JFS, and ReiserFS implementations cache the machine-
specific ACL representations. This is done in addition to
the normal file system caching mechanisms, which use
either the page cache, the buffer cache, or both. XFS
does not use this additional layer of caching.

Most UNIX-like systems that support ACLs limit the
number of ACL entries allowed to some reasonable
number. Table 3 shows the limits on Linux.

ACLs with a high number of ACL entries tend to be-
come more difficult to manage. More than a handful of

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association266

File system Max. entries
XFS 25

Ext2, Ext3 32
ReiserFS, JFS 8191

Table 3: Maximum Number of Supported ACL Entries

ACL entries are usually an indication of bad application
design. In most such cases, it makes more sense to make
better use of groups instead of bloating ACLs.

The ReiserFS and JFS implementations define no
limit on the number of ACL entries, so a limit is only
imposed by the maximum size of EA values. The cur-
rent EA size limit is 64 KiB, or 8191 ACL entries, which
is too high for ACLs in practice: besides being impracti-
cal to work with, the time it would take to check access
in such huge ACLs may be prohibitive.

9 Compatibility
An important aspect of introducing new file system fea-
tures is how systems are upgraded, and how systems that
do not support the new features are affected. File system
formats evolve slowly. File systems are expected to con-
tinue to work with older versions of the kernel. In some
situations, like in multiple boot environments or when
booting from a rescue system, it may be necessary or
preferable to use a kernel that does not have EA support.

All file systems that support ACLs on Linux are either
inherently aware of EAs, or are upgraded to support EAs
automatically, without user intervention. Depending on
the file system, this is either done during mounting or
when first using extended attributes.

On all file systems discussed in this paper, when using
a kernel that does not support EAs on a file system with
EAs, the EAs will be ignored. On ReiserFS, EA-aware
kernels actively hide the system directory that contains
the EAs, so in an EA-unaware kernel this directory be-
comes visible. It is still protected from ordinary users
through file permissions.

Working with EA file systems with EA-unaware ker-
nels will still lead to inconsistencies when files are
deleted that have EAs. In that case, the EAs will not
get removed and a disk space leak will result. At least
on Ext2 and Ext3, such inconsistencies can be cleaned
up later by running the file system checker.

ACL-unaware kernels will only see the traditional file
permission bits and will not be able to check permissions
defined in ACLs. The ACL inheritance algorithm will
not work.

10 EA and ACL Performance
Since ACLs define a more sophisticated discretionary
access control mechanism, they have an influence on all
access decisions for file system objects. It is interesting

to compare the time it takes to perform an access deci-
sion with and without ACLs.

Measurements were performed on a PC running SuSE
Linux 8.2, with the SuSE 2.4.20 kernel. The machine
has an AMD Athlon processor clocked at 1.1 GHz and
512 MiB of RAM. The disk used was a 30 GB IBM
Ultra ATA 100 hard drive with 7200 RPM, an average
seek time of 9.8 ms, and 2 MiB of on-disk cache. The
Ext2, Ext3, Reiserfs, and JFS file systems were created
with default options on an 8 GiB partition. On XFS, to
compare EAs that are stored in inodes and EAs that are
stored externally, file systems with inode sizes of 256
bytes and 512 bytes were used. These file systems are
labeled XFS-256 and XFS-512, respectively.

Table 4 compares the times required for the initial ac-
cess check to a file with and without an ACL after system
restart. To exclude the time for loading the file’s inode
into the cache, a stat system call was performed before
checking access. The time taken for the stat system call
is not shown. The first access to the access ACL of a
file may require one or more disk accesses, which are
several orders of magnitude slower than accessing the
cache. The actual times these disk accesses take vary
widely depend on the disk speed and on the relative lo-
cations of the disk blocks that are accessed. The function
used for measuring time has a resolution of 1 microsec-
ond. In the ACL case, the file that is checked has a five-
entry access ACL.

Without ACL With ACL
Ext2 9 1743
Ext3 10 3804

ReiserFS 9 6165
XFS-256 14 7531
XFS-512 14 14

JFS 13 13

Table 4: Microseconds for Initially Accessing a File After
System Restart, with and without ACLs

XFS with 512-byte (or larger) inodes and JFS store
the ACLs directly in the inodes. Therefore, no additional
disk accesses are needed for retrieving the ACLs.

After the first repetition, all information is fully
cached. Figures 2 4 show micro-benchmarks of basic
operations in this state. Each test repeats the same oper-
ation many times and averages the total time spent over
the number of repetitions. In all configurations except
XFS-256 with ACLs, the time per access check drops
to around 1 2 microseconds, as the leftmost measure-
ments in Figures 3 and 4 show.

Figure 2 compares the speed of various system calls.
The getpid system call is included to show the overhead
of switching between the user and kernel address spaces.
The ls -l command indicates in its output if a file has an

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 267

extended ACL. Internally, it uses the acl extended file
function from the libacl library. This function is almost
as fast as the stat system call, which ls -l also calls for
each file, so the additional overhead is small. For com-
parison, the acl get file measurement shows the time it
takes to retrieve a five-entry ACL.

 0

 5

 10

 15

M
ic

ro
se

co
nd

s

getpid stat acl_extended_file acl_get_file

Ext2
Ext3

ReiserFS
XFS-256

JFS-512
JFS

Figure 2: Various System Calls and Library Functions

Figure 3 shows the time taken for one access system
call, depending on the number of directory levels in the
pathname argument. Figure 4 shows the performance
of the same operation with a five-entry access ACL on
each directory. XFS’s overhead for converting the ACL
from its EA representation to its in-memory representa-
tion results in a noticeable difference, particularly with
256 byte inodes.

 0

 5

 10

 15

 1 2 3 4 5 6 7 8 9 10

M
ic

ro
se

co
nd

s

Directory nesting depth

Ext2
Ext3

ReiserFS
XFS-256

XFS-512
JFS

Figure 3: The Access System Call without ACLs

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

M
ic

ro
se

co
nd

s

Directory nesting depth

Ext2
Ext3

ReiserFS
XFS-256

XFS-512
JFS

Figure 4: The Access System Call with ACLs

Tables 5 and 6 show the overhead involved when

copying files from one file system to another. All the
files that are copied have ACLs, but no additional EAs.
Figure 5 shows the distribution of file sizes in the sam-
ple data sets. The tests show the time taken from start-
ing the cp command to the return from the sync com-
mand, which we start immediately after the cp com-
mand. The sync command ensures that all files are im-
mediately written. The first series uses a version of cp
that does not support EAs or ACLs. The second series
uses a version of cp that supports both EAs and ACLs.
In both of the benchmarks, the source file system type
is held constant, while the destination file system type is
changed.

The sample size for the benchmark in Table 5 is small
enough for all files to fit in main memory. The time for
first reading the data into memory is not included in the
results. These tests were repeated five times. The re-
sults show the median and the standard deviation of the
results. The sample size for the benchmark shown in Ta-
ble 6 is larger than either main memory or the file system
journals. These tests were only executed once.

File Without EAs With Overhead
system or ACLs ACLs (%)

Ext2 18.3 0.2 18.8 0.2 +3
Ext3 22.0 2.4 22.7 0.5 +3

ReiserFS 9.0 0.1 12.8 0.1 +42
XFS-256 19.0 0.2 34.1 0.2 +80
XFS-512 20.1 0.4 21.4 0.2 +7

JFS 38.2 0.6 36.5 0.2 4

Table 5: Seconds for Copying Files From Memory to a File
System (11351 files, 608 directories, total file size = 137 MiB)

File Without EAs With Overhead
system or ACLs ACLs (%)
Ext2 595 578 3
Ext3 613 623 +2

ReiserFS 518 538 +4
XFS-256 547 641 +17
XFS-512 549 566 +3

JFS 654 590 11

Table 6: Seconds for Copying Files Between File Systems
(96183 files, 6323 directories, total file size = 2.8 GiB)

Note that both benchmarks use ACLs excessively,
which is a worst-case scenario. The overheads for real
workloads should be much smaller.

It can be observed that the overhead of ACLs varies
widely among the supported file systems. The differ-
ences show more when the I/O load is low, and get
smaller as the I/O load rises. For ACLs, the Ext2 and
Ext3 implementations have little overhead. ReiserFS
EAs have a relatively high overhead. This may improve
if attribute sharing is implemented. For XFS, increas-

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association268

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 1000 10000 100000

N
um

be
r

of
 F

ile
s

File Size in Bytes

137 MiB Sample 2.8 GiB Sample

Figure 5: Distribution of File Sizes for Samples of Tables 5
and 6

ing the inode size so that ACLs can be stored directly in
inodes makes a big difference.

It is unclear why JFS appears to be faster when copy-
ing ACLs than when not copying ACLs.

11 NFS and ACLs

Full ACL support over NFS requires two things: First,
a mechanism so that all access decisions are performed
in a way that honors the ACLs. Second, extensions
to the NFS protocol for manipulating ACLs on remote
mounted file systems.

The NFS protocol performs client-side caching to im-
prove efficiency. In version 2 of the protocol, decisions
as to who gets read access to locally cached data are per-
formed on the client. These decisions are made under
the assumption that the file mode permissions bits and
the IDs of the owner and owning group are sufficient to
do that. This assumption is obviously wrong if an ex-
tended permission scheme like POSIX ACLs is used on
the server.

Because NFSv2 clients perform some access deci-
sions locally, they will incorrectly grant read access to
file and directory contents cached on the client to users
who are a member in the owning group in two cases.
First, if the group class permissions include read access,
but the owning group does not have read access. Second,
if the owning group does have read access, but a named
user entry for that user exists that does not allow read
access. Both situations are rare. Workarounds exist that
reduce the permissions on the server side so that clients
only see a safe subset of the real permissions [7, 10]. No
anomalies exist for users who are not a member in the
owning group.

There are two ways to solve this problem. One is to
extend the access check algorithm used on the client.
The other is to delegate access decisions to the server
and possibly cache those decisions for a defined period
of time on the client. The first solution would proba-
bly scale better to a high number of readers on the client
side, as long as the server and all clients can agree on
the access check algorithms use. Unfortunately, this ap-

proach falls apart as soon as servers implement different
permission schemes.

Version 3 of the NFS protocol therefore defines a new
remote procedure call (RPC) called ACCESS for dele-
gating access decisions to the server. This RPC is simi-
lar to the access system call. NFSv3 clients are expected
to use this RPC for determining to whom to grant access
to cached contents.

The NFSv3 protocol unfortunately does not define
mechanisms for transferring ACLs. As a consequence,
different vendors have implemented proprietary protocol
extensions that are incompatible with each other. Solaris
implements an NFSv3 protocol extension called NFS
ACL that supports ACLs only. Irix implements a more
general protocol that supports EAs and passes ACLs as
special EAs.

NFSv4 defines the structure and semantics of its own
kind of ACLs, along with RPCs for transferring them
between clients and servers. NFSv4 ACLs are similar
to Microsoft Windows ACLs [14]. Unfortunately, the
designers of NFSv4 have mostly ignored the existence
of POSIX ACLs, so NFSv4 ACLs are not compatible
with POSIX ACLs. Marius Aamodt Eriksen describes
a one-way mapping between POSIX ACLs and NFSv4
ACLs [6], but this mapping is impractical. One of the
central concepts in POSIX ACLs, which is needed to
ensure compatibility with legacy POSIX.1 applications,
is the mask entry. The NFSv4 ACL model could be
extended by the mask concept. Although this would
greatly improve interoperability with POSIX ACLs, pro-
posals to extend the NFSv4 specification have so far
been rejected.

Partial NFSv3 support has been added in the 2.2 Linux
kernel series. The ACCESS RPC was added to the ker-
nel NFS daemon in version 2.2.18, but the NFS client
only correctly uses the ACCESS RPC in the 2.5 ker-
nel series. A patch for older kernels exists since kernel
version 2.4.19, which is included in the SuSE and Unit-
edLinux products.

Because the ACCESS RPC can lead to noticeable net-
work overhead even on file systems that are known not
to include any ACLs, the Linux NFSv3 client allows to
mount file systems with the noacl mount option. Then
the NFS client will use neither the ACCESS RPC nor the
GETACL or SETACL RPCs. To ensure that no ACLs
can be set on the server, the Ext2, Ext3, JFS, and Reis-
erFS file systems can be mounted on the server without
ACL support by omitting the acl mount option.

Since March 3, 2003, an implementation of Sun’s
NFS ACL protocol for Linux (which is also included
in SuSE Linux 8.2) is available at http://acl.bestbits.at/,
with friendly permission from Sun to use it. The NFS
ACL protocol was chosen because it is simple and sup-

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 269

ports POSIX 1003.1e draft 17 ACLs well enough. So-
laris ACLs are based on an earlier draft of POSIX
1003.1e, so its handling of the mask ACL entry is
slightly different than in draft 17 for ACLs with only
four ACL entries. This is a corner case that occurs only
rarely, so the semantic differences may not be notice-
able.

12 Samba and ACLs
Microsoft Windows supports ACLs on its NTFS file sys-
tem, and in its Common Internet File System (CIFS)
protocol [20], which formerly has been known as the
Server Message Block (SMB) protocol. CIFS is used to
offer file and print services over a network. Samba is an
Open Source implementation of CIFS. It is used to offer
UNIX file and print services to Windows users. Samba
allows POSIX ACLs to be manipulated from Windows.
This feature adds a new quality of interoperability be-
tween UNIX and Windows.

The ACL model of Windows differs from the POSIX
ACL model in a number of ways, so it is not possible to
offer entirely seamless integration. The most significant
differences between these two kinds of ACLs are:

• Windows ACLs support over ten different permis-
sions for each entry in an ACL, including things
such as append and delete, change permissions,
take ownership, and change ownership. Current
implementations of POSIX.1 ACLs only support
read, write, and execute permissions.

• In the POSIX permission check algorithm, the most
significant ACL entry defines the permissions a
process is granted, so more detailed permissions
are constructed by adding more closely matching
ACL entries when needed. In the Windows ACL
model, permissions are cumulative, so permissions
that would otherwise be granted can only be re-
stricted by DENY ACL entries.

• POSIX ACLs do not support ACL entries that deny
permissions. A user can be denied permissions be
creating an ACL entry that specifically matches the
user.

• Windows ACLs have had an inheritance model that
was similar to the POSIX ACL model. Since Win-
dows 2000, Microsoft uses a dynamic inheritance
model that allows permissions to propagate down
the directory hierarchy when permissions of parent
directories are modified. POSIX ACLs are inher-
ited at file create time only.

• In the POSIX ACL model, access and default ACLs
are orthogonal concepts. In the Windows ACL
model, several different flags in each ACL entry
control when and how this entry is inherited by con-
tainer and non-container objects.

• Windows ACLs have different concepts of how per-

missions are defined for the file owner and owning
group. The owning group concept has only been
added with Windows 2000. This leads to different
results if file ownership changes.

• POSIX ACLs have entries for the owner and the
owning group both in the access ACL and in the
default ACL. At the time of checking access to an
object, these entries are associated with the current
owner and the owning group of that object. Win-
dows ACLs support two pseudo groups called Cre-
ator Owner and Creator Group that serve a similar
purpose for inheritable permissions, but do not al-
low these pseudo groups for entries that define ac-
cess. When an object inherits permissions, those
abstract entries are converted to entries for a spe-
cific user and group.

Despite the semantic mismatch between these two
ACL systems, POSIX ACLs are presented in the Win-
dows ACL editor dialog box so that they resemble na-
tive Windows ACLs pretty closely. Occasional users are
unlikely to realize the differences. Experienced admin-
istrators will nevertheless be able to detect a few dif-
ferences. The mapping between POSIX and Windows
ACLs described here is found in this form in the SuSE
and the UnitedLinux products, while the official version
of Samba has not yet integrated all the improvements re-
cently made:

• The permissions in the POSIX access ACL are
mapped to Windows access permissions. The per-
missions in the POSIX default ACL are mapped to
Windows inheritable permissions.

• Minimal POSIX ACLs consist of three ACL en-
tries defining the permissions for the owner, own-
ing group, and others. These entries are required.
Windows ACLs may contain any number of entries
including zero. If one of the POSIX ACL entries
contains no permissions and omitting the entry does
not result in a loss of information, the entry is hid-
den from Windows clients. If a Windows client sets
an ACL in which required entries are missing, the
permissions of that entry are cleared in the corre-
sponding POSIX ACL.

• The mask entry in POSIX ACLs has no corre-
spondence in Windows ACLs. If permissions in
a POSIX ACL are ineffective because they are
masked and such an ACL is modified via CIFS,
those masked permissions are removed from the
ACL.

• Because Windows ACLs only support the Cre-
ator Owner and Creator Group pseudo groups for
inheritable permissions, owner and owning group
entries in a default ACL are mapped to those
pseudo groups. For access ACLs, these entries are

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association270

mapped to named entries for the current owner and
the current owning group (e.g., the POSIX ACL en-
try “u::rw” of a file owned by Joe is treated as
“u:joe:rw”).

If an access ACL contains named ACL entries
for the owner or owning group (e.g., if one of Joe’s
files also has a “u:joe:...” entry), the permis-
sions defined in such entries are not effective unless
file ownership changes, so such named entries are
ignored. When an ACL is set by Samba that con-
tains Creator Owner or Creator Group entries, these
entries are given precedence over named entries for
the current owner and owning group, respectively.

• POSIX access ACL and default ACL entries that
define the same permissions are mapped to a Win-
dows ACL entry that is flagged as defining both ac-
cess and inheritable permissions.

13 Backup and Restore
An important but easily overlooked aspect of introduc-
ing new features like EAs and ACLs is backup. Standard
tools like GNU tar and GNU cpio do not include EA or
ACL support. The ustar and cpio archive formats on
which these tools are based do allow certain extensions,
but no standards for storing EAs or ACLs have yet been
defined.

The current version of POSIX.1 [11] defines a new
utility called pax, which stands for portable archive in-
terchange. The pax utility supports both the ustar and
cpio archive formats in addition to the new pax archive
format. This new format is based on ustar and is, to a
large degree, compatible with ustar. Pax introduces a
mechanism called extended headers. Extended headers
consist of a list of attributes very similar to EAs. They
are used to store things that cannot be represented in
ustar headers, such as sub-second resolution file times-
tamps, or file sizes of 8 Gib or more.

The pax archive format is a good match for storing
EAs and ACLs. As neither EAs nor ACLs are part of any
POSIX standard, no specific format for EAs or ACLs to
use in extended headers has been defined. The specifi-
cation leaves room for vendor-specific attributes tagged
with the vendor name, so even if no agreement can be
reached soon on the EA or ACL formats to be used, the
vendor-specific extensions can at least be distinguished
and implementations may support more than one exten-
sion.

A benefit of the pax format is that most pax archives
can also be restored with tar implementations. To tar,
extended headers look like files of an unknown type. The
information stored in the extended headers will be lost,
but files and directories will be extracted correctly. This
will not work for pax archives that contain files 8 GiB or
more in size; this is the maximum file size in tar archives.

The following solutions exist for backing up (and later
restoring) EAs and ACLs:

• Jörg Schilling’s implementation of pax and tar
called star includes support for POSIX.1e ACLs
and a few others. The resulting archives are
portable among systems that implement various
versions of POSIX ACLs, including FreeBSD, Irix,
HP-UX, Compaq/HP Tru64, Linux, Solaris. A
patch that implements Linux EA support in star ex-
ists as well. Star is available from ftp://ftp.berlios.
de/pub/star/.

• On the XFS file system, the xfsdump and xfsrestore
utilities can be used. However, the backup format
is file-system–specific, so this approach is not rec-
ommended.

• Finally, the getfattr and getfacl utilities can dump
ACLs and EAs to text files, which the setfattr and
setfacl utilities are able to restore. This works rea-
sonably well for restoring complete backups, but it
is impractical for restoring individual files.

14 Application Support for ACLs
Today, the most basic tools that are needed to operate a
system with EAs and ACLs are available: there is EA
and ACL support in the basic file utilities (ls, cp, and
mv), there are utilities for manipulating EAs and ACLs
from the command line, and there are solutions for back-
ing up and restoring a system that uses those features.
Still, there are many applications that are lacking sup-
port. Although for many of them this is irrelevant, there
are some classes of applications for which this leads to
problems. This includes file managers, editors, and file
system synchronization tools.

File managers usually can copy and move files and al-
low permissions to be changed. UNIX kernels have no
functions for copying files or for moving files across file
system boundaries. Therefore, these operations are im-
plemented by reading from the source file and copying
the data to the destination file. The kernel has no way of
telling which sequences of operations are file copies or
moves and which are something else, so it cannot pre-
serve EAs and ACLs automatically. This means that ap-
plications must take care of preserving EAs and ACLs
themselves as needed.

Front-ends that allow manipulation of permissions
usually allow manipulation of the standard POSIX.1 per-
missions, but none are known yet that allow manipula-
tion of ACLs. It is quite likely that for the foreseeable
future, ACL editing support will not become available
except with the command line utilities.

Some editors suffer from the file copying problem as
well. There are two ways of safely modifying a file. One
is to create a copy of the original file and then to mod-
ify the original file. The other is to rename the origi-

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 271

nal file and then to create a new file that includes the
modifications in the original file’s place. The latter is
equivalent to copying files as far as EAs and ACLs are
concerned. The option used also has additional conse-
quences for files that are symlinks and for files with a
link count greater than one. Emacs and vi, the most pop-
ular editors on UNIX-like systems, both can be config-
ured to use either method.

When preserving permissions, it is important that as
much information is preserved as possible. Although
this seems obvious, correctly implementing this is not
trivial. There are a number of complications that make
that operation prone to implementation errors. This is
especially true if the source and destination files reside
on different file systems, only one of which has ACL
support. To take this additional burden from program-
mers, the current version of libacl includes functions for
copying EAs and ACLs between files [8].

It would also be nice to have EA and ACL support in
popular utilities like scp and rsync. Unfortunately, util-
ities that transfer files between different systems have a
much harder time handling incompatibilities. Only some
UNIX-like systems support the POSIX.1e ACL library
functions and other systems have their own operating
system interfaces. Even worse, the semantics of ACLs
differs widely among UNIX systems alone, not to speak
of non-UNIX systems. The semantics and system inter-
faces for EAs unfortunately are different among various
systems as well.

15 Conclusions and Future Work
Integrating support for EAs was an important step that
is going to simplify the development of various sorts
of applications, including system level security exten-
sions, such as Capabilities and Mandatory Access Con-
trol schemes, Hierarchical Storage Management, and
many user space solutions.

POSIX.1e ACLs are a consequent extension of the
POSIX.1 permission model. They support more fine-
grained and complex permission scenarios that are diffi-
cult or impossible to implement in the traditional model.

It is unfortunate that neither of these areas has been
formally standardized. Already there is a wild mix of
implementations with subtle differences and incompat-
ibilities. As more implementations become available,
future standardization is becoming more and more un-
likely.

As for POSIX ACLs, although they are a substantial
improvement, many restrictions remain:

• More find-grained permissions would be useful.
For directories, the write permission includes the
rights to add and remove files. For files, it allows
overwriting of existing contents as well as append-
ing. For directories, the sticky bit helps, but its ap-

plicability is limited. Ext2 and Ext3 support flags
like append and immutable that can be set on a per-
file basis. ACL permissions would be per-user or
per-group.

• The creator of a file is also the initial file owner.
There is no way to restrict the file owner from mod-
ifying permissions. It is impossible to implement
upload directories securely at the file system level
that don’t allow to modify existing files, or that
don’t allow users to create files that other users can
read.

• It is not possible to completely delegate adminis-
tration of a directory to a regular user. It would be
necessary to ensure that this locally-privileged user
cannot be denied access to files below that direc-
tory and that this user can change permissions, and
potentially also assign or take ownership of files.

On UNIX-like systems, it is easier to work around
problems than on other popular systems, but these
workarounds cause complexity and may contain bugs. It
may be better to solve some of the existing problems at
their root. All extensions must be designed carefully to
simplify the integration with existing systems like Win-
dows/CIFS and NFSv4.

The UNIX way of identifying users and groups by nu-
meric IDs is a problem in large networks [18]. Like the
whole POSIX.1 permission model, current implementa-
tions of POSIX.1e ACLs are based on these unique IDs.
Maintaining central user and group databases becomes
increasingly difficult with increasing network size. The
CIFS and NFSv4 protocols solve this problem differ-
ently.

In CIFS, users and groups are identified by globally
unique security identifers (SIDs). Processes have a num-
ber of SIDs, which determine their privileges. CIFS
ACLs may contain SIDs from different domains.

In NFSv4, users and groups are identified by a string
of the form “user@domain”. Implementations of NFSv4
are expected to have internal representations for local
users, such as unique user or group IDs. ACLs may con-
tain local and non-local user or group identifiers.

Current implementations of POSIX ACLs only sup-
port numeric user or group identifiers within the lo-
cal domain. Allowing non-local identifiers in ACLs
seems possible but difficult. A consequent implemen-
tation would require substantial changes to the process
model. At a minimum, in addition to non-local user
and group identifiers in ACL entries, file ownership and
group ownership for non-local users and groups would
have to be supported.

16 Acknowledgments
I would like to thank SuSE for allowing me to continue
working on ACLs. Much of what was achieved in recent

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association272

months would not have been possible without the de-
velopers from Silicon Graphics’s XFS for Linux project.
Many thanks to Robert Watson and Erez Zadok and to
the anonymous Usenix reviewers for their many sugges-
tions that have lead to countless improvements in the
text.

References
[1] Curtis Anderson: xFS Attribute Manager De-

sign. Technical Report, Silicon Graphics, October
1993. http://oss.sgi.com/projects/xfs/design docs/
xfsdocs93 pdf/attributes.pdf

[2] Austin Common Standards Revision Group. http:
//www.opengroup.org/austin/

[3] Steve Best, Dave Kleikamp: How the Journaled
File System handles the on-disk layout. IBM devel-
operWorks, May 2000. http://www-124.ibm.com/
developerworks/oss/jfs/

[4] B. Callaghan, B. Pawlowski, and P. Staubach: NFS
Version 3 Protocol Specification. Technical Report
RFC 1813, Network Working Group, June 1995.

[5] Andreas Dilger: [RFC] new design for EA on-
disk format. Mailing list communication, July
10, 2002. http://acl.bestbits.at/pipermail/acl-devel/
2002-July/001077.html

[6] Marius Aamodt Eriksen: Mapping Between
NFSv4 and Posix Draft ACLs. Internet Draft,
October 2002. http://www.citi.umich.edu/u/marius/
draft-eriksen-nfsv4-acl-01.txt

[7] Andreas Grünbacher: Known Problems and Bugs
in the Linux EA and ACL implementations. March
20, 2003. http://acl.bestbits.at/problems.html

[8] Andreas Grünbacher: Preserving ACLs and EAs
in editors and file managers. February 18, 2003.
http://www.suse.de/˜agruen/ea-acl-copy/ for a de-
scription.

[9] Hewlett-Packard: acl(2): Set a file’s Access Con-
trol List (ACL) information. HP-UX Reference.
http://docs.hp.com/

[10] Hewlett-Packard: acl(4): Access control list. Com-
paq Tru64 Reference Pages. http://www.hp.com/

[11] IEEE Std 1003.1-2001 (Open Group Technical
Standard, Issue 6), Standard for Information
Technology—Portable Operating System Interface
(POSIX) 2001. ISBN 0-7381-3010-9. http://www.
ieee.org/

[12] IEEE 1003.1e and 1003.2c: Draft Standard for
Information Technology—Portable Operating Sys-
tem Interface (POSIX)—Part 1: System Applica-
tion Program Interface (API) and Part 2: Shell

and Utilities, draft 17 (withdrawn). October 1997.
http://wt.xpilot.org/publications/posix.1e/

[13] Jim Mauro: Controlling permissions with ACLs.
Describes internals of UFS’s shadow inode con-
cept. SunWorld Online, June 1998.

[14] Microsoft Platform SDK: Access Control Lists.
http://msdn.microsoft.com/

[15] Mark Lowes: Proftpd: A User’s Guide March 31,
2003. http://proftpd.linux.co.uk/

[16] S. Shepler, B. Callaghan, D. Robinson, R. Thur-
low, C. Beame, M. Eisler, D. Noveck: NFS version
4 Protocol. Technical Report RFC 3010, Network
Working Group, December 2000.

[17] Silicon Graphics: acl(4): Access Control Lists. Irix
manual pages. http://techpubs.sgi.com/

[18] J. Spadavecchia, E. Zadok: Enhancing NFS Cross-
Administrative Domain Access. Proceedings of the
Annual USENIX Technical Conference, FreeNIX
Track, Pages 181–194. Monterey, CA, June 2002.

[19] W. Richard Stevens: Advanced Programming in
the UNIX(R) Environment. Addison-Wesley, June
1991 (ISBN 0-2015-6317-7).

[20] Storage Networking Industry Association: Com-
mon Internet File System Technical Reference.
Technical Proposal, March 2002. http://www.snia.
org/tech activities/CIFS/

[21] Sun Microsystems: acl(2): Get or set a file’s Ac-
cess Control List. Solaris 8 Reference Manual Col-
lection. http://docs.sun.com/

[22] Sun Microsystems: NFS: Network file system pro-
tocol specification. Technical Report RFC 1094,
Network Working Group, March 1989.

[23] Robert N. M. Watson: acl(3): Introduction to
the POSIX.1e ACL security API. FreeBSD Library
Functions Manual. http://www.FreeBSD.org/

[24] Robert N. M. Watson: TrustedBSD: Adding
Trusted Operating System Features to FreeBSD.
USENIX Technical Conference, Boston, MA, June
28, 2001. http://www.trustedbsd.org/docs.html

[25] Robert N. M. Watson: Introducing Support-
ing Infrastructure for Trusted Operating System
Support in FreeBSD. BSDCon 2000, Monterey,
CA, September 8, 2000. http://www.trustedbsd.org/
docs.html

[26] Robert N. M. Watson: Personal communication.
March 28, 2003.

[27] Winfried Trümper: Summary about Posix.1e. Pub-
licly available copies of POSIX 1003.1e/1003.2c.
February 28, 1999. http://wt.xpilot.org/publications/
posix.1e/

