
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 29

U-P2P: A Peer-to-Peer Framework for

Universal Resource Sharing and Discovery

Neal Arthorne, Babak Esfandiari, Aloke Mukherjee

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada

narthorn@connectmail.carleton.ca

babak@sce.carleton.ca

alokem@cisco.com

Abstract

We present U-P2P, an open source framework for de-

veloping, deploying and discovering file-sharing com-

munities. We address the problem of search in peer-to-

peer file sharing by allowing the end user to add meta-

data to shared documents. Each file-sharing community

allows the sharing of a particular structured document

type. Communities are themselves modeled as struc-

tured documents, thus enabling their sharing and dis-

covery just like any other document. The creator of

a particular community specifies, among other proper-

ties, the document type that it shares and the deployment

model. U-P2P’s extensible architecture allows develop-

ers to create new properties or extend existing ones. For

example, developers can provide new deployment mod-

els or custom privacy and authentication features. U-P2P

makes use of other open source projects such as Jakarta

Tomcat and eXist, an XML database system.

1 Introduction

The current success of peer-to-peer (P2P) file sharing ap-

plications has highlighted the benefits of resource dis-

tribution and redundancy. However, to truly exploit

such advantages, a few roadblocks remain to be cleared.

In particular, search and discovery of resources is still

quite difficult. Most known approaches rely on sim-

ple schemes such as a search for the resource name or

type. File sharing communities are most efficient when

the name of the file carries most if not all of the needed

information. As a result, most file swapping commu-

nities are restricted to swapping music and video files.

Even when the exchange of non-music files is possible,

the difficulty of finding such files has been a sufficient

deterrent. Lack of metadata is the main problem.

Another roadblock to more general applications of

P2P has been the difficulty of creating communities for

specific purposes. This arises partially from the diffi-

culty of defining custom metadata about different types

of files. Another important problem is the current frac-

tured state of peer-to-peer communities. Again, the

lack of metadata about communities makes it difficult

to know what there is to look for in the first place.

We propose a peer-to-peer framework called Univer-

sal Peer-to-Peer (U-P2P) that simplifies the sharing of

custom metadata formats as well as the easy creation,

configuration and discovery of peer-to-peer communi-

ties. In U-P2P, each community is described in part

by the metadata of the files it exchanges. The format

of a community’s metadata is specified using the XML

Schema language, allowing new communities centered

on that file type to be created in any text editor. U-P2P

allows these custom resources to be created and shared

as in traditional file-sharing services.

By logical extension, the description of the commu-

nity itself (the metadata format of its files, the proto-

col used for search, etc) is encapsulated in an XML file.

In U-P2P, creating, sharing or discovering a community

follows the same principles as creating, sharing or dis-

covering a file within that community. As a result, file-

swapping communities such as Napster or Kazaa can be

seen as instances of U-P2P devoted to sharing a few spe-

cific file types and utilizing a given P2P protocol.

2 Related Work

Our focus is on the discovery problem in peer-to-peer

systems. In Napster [1], the only files that could be

shared on the network were MP3 audio files. Search

was based on filenames and relied on users encoding

the artist and title of each song in the MP3’s title. Al-

though metadata such as encoding rate could be used

to sort the results, there was no way to search on these

metadata or define other parameters. On a Gnutella [2]

network, any type of file can be shared: however there is

no explicit metadata handling. Search strings are passed

around without processing between peers and their in-

terpretation is left to the peer. Each peer must imple-

ment its own search algorithm using the search string

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association30

as input. Most Gnutella implementations, like Napster,

simply return filenames that contain the search string.

Gnutella does permit the design of overlay protocols to

encode and decode metadata from search strings. Some

Gnutella developers have proposed using this approach

for richer metadata searches. [3, 4]. Schemas are defined

for common file types: for example an audio file might

be defined to have properties such as artist, title, bit rate,

album, etc. The schema defines a structured format for

searching MP3 metadata that is sent as a search string to

other Gnutella nodes. Responding clients use the query

to search local files annotated using the schema and re-

turns the results using the same structured format. In

practice though, all members of a given communitymust

be able to speak a common language in order to commu-

nicate.

Other P2P systems such as FastTrack [5], Opencola

[6] or Bitzi [7] propose variations on that idea, but they

are still limited to a number of predefined schemas. The

latter two have the capability to extract metadata infor-

mation from a file given the file format, but this is only

possible for certain formats.

Clearly, there is a need for shared ontologies if we

want to allow search for any type of file. In the In-

ternet world, the XML Schema format[8] is the cur-

rent choice to represent ontologies, replacing Document

Type Definition (DTD) [9], the schema language de-

fined in the original XML specification. XML Schema

supports the creation of custom and complex data types

for XML tags, which is essential to describe aggregated

or composite resources. For richer semantic descrip-

tions, for example to allow software agents to perform

search instead of humans, there can be a need to de-

scribe relationships between resources. RDF [10] and

more generally the Semantic Web [11] effort address

that need. The Edutella project [12] is a technology for

distributed learning that uses a P2P network for sharing

RDF-formattedmetadata. However in Edutellametadata

is the resource, not the means to describe one.

A P2P system using a semantic layering approach is

not without its drawbacks. First and foremost is get-

ting users of the system to supply metadata for their re-

sources. The addition of metadata requires user-friendly

tools for authoring RDF and schemas and a simplified

approach for users who are not familiar with XML lan-

guages.

What we propose in U-P2P starts, as in Edutella, with

the sharing and discovery of metadata described this us-

ing XML Schema. Once metadata is discovered it is

used to instantiate a particular resource, which is in turn

shared. The next section gives a high-level description

of the principles behind U-P2P as well as its design.

3 Background: XML Schema

U-P2P relies heavily on XML Schema and the following

sections include some examples of XML Schema and a

brief description of the structure of XML Schema docu-

ments.

XML Schema is a Recommendation [8] by the World

Wide Consortium for a schema language for XML. It

constitutes a set of markup tags themselves written in

XML, that are used to describe both the structure of an

XML document and the datatypes of individual elements

and attributes. XML Schema uses the XML Namespace

Recommendation that allows authors to prefix their own

tags with a specific namespace. It also allows importing

types from other schemas both in the current namespace

and from other namespaces.

XML Schema can be used to validate XML docu-

ments using a schema processor. XML documents them-

selves can link to their schema using a schemaLocation

tag. However this is only a suggested method for speci-

fying a schema for the document and they may use other

types of schemas such as DTDs or not require validation

at all.

In XML Schema, there are four basic units that can be

used to describe parts of an XML document: elements,

attributes, simpleTypes and complexTypes.

Elements - Elements are the tags used in XML to

label a piece of data. They have a datatype associated

with them that is either defined at the same time as the

element (anonymously) or is a complexType or simple-

Type. Elements can contain subelements, attributes and

can also be part of an XML Namespace. The structure

of an element can be controlled in XML Schema using

sequences, choices and the same restrictions used to de-

rive simple and complex types. For example an author

can specify that an element called ’name’ should consist

of an exact sequence of the two elements ’firstname’ and

’lastname’.

Attributes - Attributes are properties that belong to a

parent element. They can only use simpleTypes and they

cannot contain any elements or attributes. Attributes can

be optional or mandatory within an element.

Simple Types - These types are either built-in data

types specified in the XML Schema Recommendation or

Simple Types derived from the built-in or existing types

(XML Schema defines some derived types such as date

and time). The Recommendation includes many useful

data types such as string and decimal, that can easily be

manipulated into more specialized Simple Types.

Complex Types - These types are a sequence or

choice between a set of elements and/or attributes. They

are reusable (when defined on a global level) and can be

used in any part of the current schema. Once a Complex

Type is defined an element can use it by specifying the

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 31

type attribute equal to the name of the Complex Type.

An example of a Complex Type follows:

<xsd:complexType name="CanadaAddress">

<xsd:sequence>

<xsd:element name="street" type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>

<xsd:element name="postalCode">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:pattern="\w\d\w\s\d\w\d"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="province" type="xsd:string"/>

<xsd:element name="country" type="xsd:string"

fixed="Canada"/>

</xsd:sequence>

</xsd:complexType>

An example conforming to this schema:

<CanadaAddress>

<street>1125 Colonel By Drive</street>

<city>Ottawa</city>

<postalCode>K1S 5B6</postalCode>

<province>Ontario</province>

<country>Canada</country>

</CanadaAddress>

Having defined the above example, the type can then

be used in an element anywhere in the schema or even

referenced from other schema.

XML Schema is powerful enough to describe any

complex XML structures and the support for data types

means the contents of shared documents are validated

using the lexical representation of the data. When shar-

ing large volumes of documents, it is useful to have full

validation at the entry of the system as this will prevent

the spread of unstructured data that can’t be properly

searched and indexed.

4 U-P2P Concepts

U-P2P provides four fundamental services: search, cre-

ate, browse local and view. Each of these services are

provided in the context of a community. We can imagine

the existence of a ”stamps” community that trades pic-

tures and descriptions of stamps from around the world.

On entering the stamp community the U-P2P Search

function offers fields to search for stamps of a given

year, and/or from a given country. Similarly, the Create

function prompts you to upload a picture of the stamp,

Browse Local shows the stamp objects that you have al-

ready downloaded and View displays a picture as well

as the attributes for one of your downloaded stamps.

In traditional P2P applications this functionality

would require downloading a client that knows about

the format of a stamp object and contains customized

search, create and view screens for such an object. In U-

P2P, we use the power of metadata to simplify this task.

Consider the following XML schema describing a stamp

object:

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://w3.org/2001/XMLSchema">

<xsd:element name="stamps">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="desc" type="xsd:string"/>

<xsd:element name="picture" type="xsd:anyURI"/>

<xsd:element name="country" type="xsd:string"/>

<xsd:element name="year" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

The schema above describes the expected elements

of a stamp object and their data types. It is pos-

sible to generate a form from this specification us-

ing XML Stylesheet Language Transformations (XSLT)

[13]. Here is an excerpt from a stylesheet that generates

a search form from the above XML schema:

<xsl:template

name="SchemaTemplate"

match="*[local-name()=’schema’]">

<h3>Search for a Resource</h3>

<p>Enter keywords in any of the fields

below to perform a search.</p>

<form action="search" method="post">

<table border="1" cellpadding="5" cellspacing="0">

<tr><th>Property</th><th>Value</th></tr>

<xsl:for-each select=

"descendant::*[local-name()=’element’

and count(./child::*) = 0]">

<xsl:call-template name="ElementTemplate"/>

</xsl:for-each>

</table>

<p><input type="hidden" name="up2p:community">

<xsl:attribute name="value">

<xsl:value-of select="$communityName"/>

</xsl:attribute>

</input>

<input type="submit" value="Search"/></p>

</form>

</xsl:template>

Similarly, stylesheets can be produced that render

Create forms or display a stamp object. With noth-

ing more than a few XML documents (a schema and

stylesheets for creating, searching and displaying), it is

possible to define a whole new P2P file-sharing applica-

tion! In fact, U-P2P provides default stylesheets for han-

dling display and forms for resources made up of com-

mon types, making the transformation processes trans-

parent to the novice user. Figure 1 shows the relation-

ships between the U-P2P functions, and how they are

accessed through XSL transformations.

So how can a stamp community be found or shared in

the first place? The idea in U-P2P is to see a file-sharing

community as just another type of resource. This is anal-

ogous to the idea of a class in object-oriented program-

ming which specifies the structure of objects. In pure

object-oriented languages such as Smalltalk, a class is

merely another type of object whose structure is speci-

fied by a metaclass. Traversing the analogy in the oppo-

site direction, a specific U-P2P community can be seen

as a class instantiated by a more general metaclass: a

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association32

Resource

XSL

Resource Create
form

Resource
Search form

XSL

RESOURCE

XML SCHEMA

instantiates

Resource

View

XSL

Figure 1: Generation of resource-specific displays

Community-sharing community (in short: a commu-

nity community) shares Community objects:

• an object is an instance of its class, which is an

instance of its metaclass

• mp3 belongs to mp3 community, which belongs to

community community

In U-P2P the problem of discovering the existence of

a community is thus reduced to the problem of finding

an object. This provides a standard way to discover the

existence of resource-sharing communities.

To facilitate this, U-P2P comes packaged with one

”bootstrap” schema that can be used to search for and

more importantly create communities:

<?xml version="1.0"?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="community">

<xsd:complexType>

<xsd:all>

<xsd:element name="displayLocation"

minOccurs="0" type="xsd:anyURI"/>

<xsd:element name="searchLocation"

minOccurs="0" type="xsd:anyURI"/>

<xsd:element name="createLocation"

minOccurs="0" type="xsd:anyURI"/>

<xsd:element name="schemaLocation"

type="xsd:anyURI"/>

<xsd:element name="name"

type="xsd:string"/>

<xsd:element name="category"

minOccurs="0" type="xsd:string"/>

<xsd:element name="keywords"

minOccurs="0" type="xsd:string"/>

<xsd:element name="description"

minOccurs="0" type="xsd:string"/>

<xsd:element name="protocol"

minOccurs="0" type="protocolType"/>

</xsd:all>

<xsd:attribute name="title" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="protocolType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value=""/>

<xsd:enumeration value="Generic Central Server"/>

<xsd:enumeration value="Gnutella"/>

<xsd:enumeration value="JXTA"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

As can be seen, a community can have many

attributes: keywords, deployment protocol, secu-

rity... This means that a community can be

created by choosing specific values for such at-

tributes (e.g. keywords: stamps, Canadian;

deployment: Napster-style). The search for

a community is made in similar fashion, by filling out a

similar form. As of now however, we only provide one

type of deployment protocol, ”Napster-style”, in which

the peer that creates the community also acts as a broker.

Other deployment models, such as ”Gnutella-style” (no

broker required) and ”centralized repository” (a client-

server option with no local copies of files) are currently

being developed. This means that searching for a doc-

ument could either be completely decentralized, or that

on the other extreme full persistence of files could be as-

sured by a central storage of files. Deployment decisions

are thus left entirely up to the creator of the given com-

munity. Also, we have not yet explored various secu-

rity or privacy schemes. Such possibilities are discussed

later in this paper, in the section on design. The modu-

lar aspect of our design should hopefully allow the open

source development community to provide support for

many more of these attributes.

The schema combined with default stylesheets as de-

scribed above allow U-P2P to become an engine for

creating and searching for communities which trade all

sorts of different types of files. A stamp collector us-

ing U-P2P for the first time will go to the community

search form and type ”stamp” into the keyword field.

Upon finding a community of collectors, he or she might

download the community including the community’s

schema and stylesheets. U-P2P then offers the option

of entering the community. Once in the community the

collector can perform all the actions one would expect of

a file-sharing application devoted specifically to sharing

stamps.

Figure 2 shows snapshots of a stamp view, a stamp

search form and finally the root community view, the

highest level of abstraction in U-P2P.

5 U-P2P Architecture and Design

Like other file-sharing services, U-P2P consists of a

client and a file server running on a user’s computer. The

client part of U-P2P is implemented using Java Server

Pages (JSPs)[15] running on a local web server. The pro-

totype uses Jakarta Tomcat [16], but any server capable

of serving JSPs may be used. The user connects to the

U-P2P network by pointing their browser at the address

of the local web server, typically localhost:8080.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 33

Figure 2: The ”stamps” community

WebAdapter

Repository

PeerNetwork

Adapter

Web

Browser

Jakarta

Tomcat

P2P

Network

Java
Servlets

&
JSPs

XMLdb

Figure 3: The U-P2P Architecture

The web server acts as GUI, and dispatches search and

create requests to the other peers. In the current pro-

totype, U-P2P follows the Napster model. This means

that there is also a central server that acts as a database

for information about all shared objects in the system.

As with Napster, the information about the location of

files is stored centrally but file transfers are conducted

between peers. We are considering other possible peer

configurations, such as the Gnutella distributed model

and a hybrid one like FastTrack.

5.1 Architectural Model

U-P2P consists of three major components shown in 3:

the WebAdapter, PeerNetworkAdapter, and the Repos-

itory. These components form the core of U-P2P and

provide all the services needed to share and discover re-

sources on a Peer-to-Peer network.

WebAdapter - Glues the components together and

provides a single point of access for the user inter-

face. This component currently supports a browser-

based GUI, but could be replaced for alternate GUIs.

Repository - Stores all shared XML resources in a

persistent XML database (using the XML:DB Database

API [17]) and provides local search capabilities to the

WebAdapter and the PeerNetworkAdapter. This allows

for distributed P2P topologies: each nodemust be able to

execute searches against its own set of shared resources.

PeerNetworkAdapter - Provides an interface to the

underlying Peer-to-Peer network and is responsible for

servicing search requests, publishing resources and

downloading resources from the network.

The above components are modeled as Java in-

terfaces, with their implementations as DefaultWe-

bAdapter, DefaultRepository and GenericPeerAdapter

respectively. Additional classes include:

FileMapper - Maps resource IDs to real files on the

local file system. When a file is ’uploaded’ it is as-

signed an ID and mapped without modifying the file.

The FileMapper is persistent in case of shutdown of the

U-P2P client and file mappings are restored on startup.

FileMapEntry - Holds a reference to a resource file

and all its attachments, pulled from the resource in the

upload process. Attachment names must be unique

within a resource. Resource IDs are generated from the

content of the XML file using an MD5 hashing function.

When hashing, a special ResourceProcessor is used that

omits any attachment links within the XML. This allows

the hash to stay consistent when the links are changed

by another peer upon download of the resource.

BasePeerNetworkAdapter - A skeleton class that

holds a reference to a DefaultRepository and implements

the accessor for the repository. The GenericPeerAdapter

is the generic P2P implementation included with U-P2P,

which follows a Napster-type model. Any developer

wishing to provide an alternative peer-to-peer deploy-

ment, such as a fully distributed one, or one that would

plug into an existing network, would have to provide a

different adapter.

DatabaseAdapter - Performs the dirty details needed

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association34

CreateServlet

UploadServlet

SearchServlet

DownloadServlet

create.jsp

view.jsp

download.jsp

displayResults.jsp

search.jsp

WebAdapter

Create

View

Search

External

Download

Requests

DatabaseViewer
Diagnostic

Tool

Figure 5: U-P2P Servlets

to get an XML database up and running and to config-

ure the port that it runs on. The current implementation

uses eXist 0.8, an open source XML database [18]. If

a switch were made to a different XMLdb implementa-

tion, this class would be sub-classed or replaced.

The class diagram in figure 4 illustrates the relation-

ships between these classes.

The web-based user interface requires that dynamic

pages be served up to the user for such activities as

Search, Create and View. The general flow of events

that occur in one of these activities involves the user ac-

cessing a JSP, the JSP submitting a form to a Servlet and

the Servlet talking to theWebAdapter and then returning

through a JSP.

Figure 5 shows the pages and Servlets involved in

each activity as well as the two extra Servlets needed for

diagnostic reasons and for servicing download requests.

5.2 Security in U-P2P

In peer-to-peer systems, data integrity, authentication

and authorization are concerns that are shared with other

network communication systems. In U-P2P we are con-

cerned with a layering of meta-data that is used on top

of an existing network that may or may not be secure.

For this reason, the bulk of security measures are left

up to the network adapter used to communicate with the

underlying network. Each peer network has its own re-

quirements for security. Thus it would not be suitable

for U-P2P to impose a minimum level of security for all

networks using the U-P2P layering: this would restrict

the ability to join public, non-secure networks such as

Gnutella or Freenet. Instead, it is up to the founder of

a community to decide which network adapter to use:

the level of security provided by the adapter will then be

used in all network communication.

It is reasonable to assume that a set of standard

adapters could be made available alongside a secured

version of each adapter. The currently available central-

ized peer-to-peer adapter could for example, communi-

cate through Secure Sockets Layer SSL [19] channels

and wrap all XML resources with an XML Signature

[20]. This would ensure that the content of the resources

have not been tampered with while in transit or when

shared by another user. The current Tomcat 4 platform

used by U-P2P has full provisions for SSL communi-

cation, but the current release of U-P2P is not secured.

U-P2P also uses the Java Servlet standard that provides

role-based security suitable for deployment and integra-

tion with existing infrastructure.

It should be noted that the current implementation of

U-P2P uses MD5 sums to generate a unique ID when a

resource is first uploaded to the network. This ID is not

intended for security purposes, but as a simple means to

check if multiple users are sharing the same resource. In

a future release of U-P2P, the core of U-P2P could make

use of the MD5 sum and XML Signatures for integrity

and authentication of shared resources, with the security

of communications remaining in the network adapter.

6 Case Studies

Two separate case studies have been developed to study

the usefulness and the performance aspects of U-P2P.

The first case study attempts to solve the known prob-

lem of searching for design patterns. However, as the

number of design patterns that are properly documented

and formatted is not sufficient to observe the behavior of

U-P2P under high load, another series of tests were run

using the Genome database.

6.1 Pattern Repository

The Carleton Pattern Repository [21] was started in

1999. It served as a repository for software design pat-

terns and provided extensive search capabilities over a

small list of patterns. The patterns were represented in

XML using a DTD designed especially for the reposi-

tory project [22]. The original pattern repository project

included plans to expand the repository to a distributed

model.

The distributed model proposed was for each author

group to have a repository server with a fixed list of the

other servers in the network. The servers would form

a highly distributed mesh and send out their searches to

all other servers. This model was not implemented and

evidently, no one else has pursued the idea.

Using the DTD as a basis, we have developed an XML

Schema for representing design patterns [23]. This is

used as the basis of a file-sharing community for design

patterns. In addition to the schema a custom stylesheet is

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 35

DefaultWebAdapter

DefaultRepository FileMapper

BasePeerNetworkAdapter

GenericPeerAdapter

Repository

WebAdapter

DatabaseAdapter

#dbAdapter

PeerNetworkAdapter

FileMapEntry

1

0…*

#repository

#peerNetwork

#repository

#mapper

Figure 4: U-P2P core classes

required to render this complex object since the default

stylesheet is tailored to simpler formats. Another design

problem is deciding which parts of the design pattern

should be indexed. For simplicity, our current imple-

mentation of U-P2P uploads the entire XML pattern file

to make it fully searchable.

To our knowledge, prior to our work there has been

no way to share design patterns in a peer-to-peer fashion

that incorporates meta-data search. When fully imple-

mented this U-P2P based system will expand the benefits

of peer-to-peer file-sharing to this area. Such a system

would allow computer scientists and students to publish

a rich collection of patterns into an underlying peer-to-

peer network, search them using rich queries and repli-

cate popular patterns to increase their accessibility. The

community-discovery aspect could also be used to ac-

cess sub-communities devoted to different classes of de-

sign patterns or based on different underlying networks.

6.2 Drosophila Genome Project

A performance evaluation was made using a client and

server running on a single computer. The performance

characteristics for creating objects and searching were

measured. Running on the same node removed the ef-

fect of network latency and emphasizes the delays in-

curred by the software and the XML database. There

were two major challenges to measuring U-P2P’s per-

formance characteristics. The first challenge was hav-

ing multiple communities, each with a large collection

of objects. The second was automating the process of

publishing and searching for objects.

Creating a community and populating it with files

manually was too time-consuming so we sought out

archives containing large numbers of XML objects.

One example of such a repository can be found at the

Berkeley Drosophila Genome Project (BDGP) [24] This

project maintains a database of annotations of different

parts of the Drosophila (fruitfly) genome. The project

makes these annotations available in different forms in-

cluding as a large XML file. This file is split such that

each annotation was stored in an individual file. Another

pre-requisite for U-P2P communities is a valid XML

schema. As with many existing XML repositories, the

BDGP repository is described using the older DTD tech-

nology. This has been transformed into XML Schema

with the help of the dtd2xs [25] package.

Although the BDGP collection was not intended for

a peer-to-peer environment, it does present one possi-

ble peer-to-peer application. The BDGP is part of Fly-

Base, a distributed project involving scientists at many

different institutions. Each annotation contains a collec-

tion of information that can be enriched as information

is gathered. With U-P2P each institution (or even each

scientist) could maintain their own local database of an-

notations. By searching on a specific gene’s name these

multiple annotations could be discovered, viewed and

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association36

Average search time in Fruitfly Community

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hundreds of Files in Community

S
e

a
rc

h
 t

im
e

 i
n

 s
e

c
o

n
d

s

Figure 6: Evolution of search time based on community

size

dynamically reconciled, rather than requiring curation of

each annotation at a central repository.

Manually publishing and searching for large numbers

of files was not practical, so these operations were au-

tomated. An XMLRPC interface was designed for the

publish function. A command-line XMLRPC client was

written to take advantage of this capability allowing the

rapid addition of multiple objects. Search used a differ-

ent approach, relying on the URL to encode an XPath

search expression for a servlet designed to handle XPath

formatted queries. These two command-line tools can

then be used to script more complex experiments.

The time to publish and search was measured as

repository size increases. One hundred files were pub-

lished to the Fruitfly Community. Measurements are

shown in Figures 6 and 7. 6 shows that publishing time

increases in a linear fashion with number of files cre-

ated. A set of fifty search queries was executed after one

hundred files were added to the community. The same

queries were repeated every one hundred files, up to fif-

teen hundred files. Finally each set of fifty execution

times for various search queries was averaged and plot-

ted versus the number of files. Figure 7 illustrates that

the initial publishing of objects is costly: two orders of

magnitude slower than the steady state time to publish.

An explanation for this is the overhead required to cre-

ate a new collection, a new object and whatever other

internal data structures are used by the XML database.

Eventually this time settles down to a steady state. On a

Pentium 4 system this value was 1s.

Another interesting set of experiments was performed

to determine whether publish and search times are af-

fected by the presence of other communities. The first

experiment 8 measures the time to add the first 10 files

to a community as the number of existing communities

is increased from none to three. Each community was

created using 100 or so objects: the Fruitfly community

was then created and the time to add the first 10 files

recorded.

Time to publish a file

0.001

0.01

0.1

1

10

100

1000

1 11 21 31 41 51 61 71 81 91

File number out of 100

T
im

e
 i
n

 s
e

c
o

n
d

s

0

5000

10000

15000

20000

25000

30000

35000

F
ile

 s
iz

e
 i
n

 b
y
te

s

File size
Time to add

Figure 7: Time to publish based on community size

Time to add first 10 files to Fruitfly Community

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

File number

T
im

e
 t

o
 a

d
d

 i
n

 m
s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

F
ile

 s
iz

e

File sizes

1-3 existing communities
No existing communities

Figure 8: Time to publish when increasing the number

of communities

Adding a file when there are no published objects in-

curs a performance penalty but these quickly converge to

the 1s figure mentioned previously. Adding the first ob-

ject to a community in the presence of other communi-

ties does not incur this penalty. Publishing times for ob-

jects in the new community are comparable to the time

it would take to add more objects to one of the existing

communities. This indicates that it is the total number

of objects in the system and not the number of objects in

a community which determines how long it will take to

publish a new object.

In Figure 9, four searches were performed in the

Fruitfly community and the time for results to return

recorded. The same four searches were performed

within the community in the presence of between one

and three other communities (each with about 100 files).

The first of the searches took about twice as long with-

out the presence of other communities than with, but the

subsequent three searches took about the same time re-

gardless of the number of communities. This indicates

that search times converge more quickly than publish

times and that the existence of other communities does

not affect search times.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 37

Average search time

0

200

400

600

800

1000

1200

1 2 3 4

Search Number

T
im

e
 i
n

 m
s

No existing communities
One existing community
Two existing communities
Three existing communities

Figure 9: Search time when increasing the number of

communities

6.3 Further Comments

A permanent U-P2P server has been set up (http:

//24.102.27.174:3300/up2p) and the Fruitfly

gene annotations have been published there. In addition

three other collections of XML documents have been

published:

• DBLP [26] - references to Computer Science re-

lated papers, theses and proceedings

• EDGAR [27] - filings with the US Securities and

Exchange Commission (SEC)

• Gene Ontology [28] - database of gene-related con-

cepts

These are all pure XML communities: objects do

not contain embedded objects. A few hundred objects

have been published in each community. These can be

searched by accessing the client running at the perma-

nent location or via a U-P2P peer installed elsewhere.

In addition, Chemistry Markup Language (CML) re-

searchers also attempted to create a community for shar-

ing molecules using this server.

In general these preliminary performance results indi-

cate that base performance is a general problem: pub-

lish times of 1s on a Pentium 4 are too slow. However,

the quick convergence of publish and search times, their

slow linear growth as the number of files increase and

practical experience indicate that a U-P2P node is scal-

able and can accommodate a few thousand files before

becoming too slow to be useful. One approach to rem-

edying this problem would be to upgrade to the latest

version of XML:DB which promises performance en-

hancements. Another option would be to use the file

system for storing documents although this makes rich

search more difficult. One concrete improvement is the

ability to designate other nodes to be central servers for

new communities. This offloads requests as well as stor-

age space allowing the network as a whole to serve many

more objects.

7 Conclusion and Future Work

U-P2P is a peer-to-peer framework that allows a user to

describe, share and discover communities just like any

other resource. Once a community is found, its schema

and associated stylesheets are downloaded and are used

to perform search and publishing of resources specific

to that community. Communities play a generative role

similar to metaclasses in object-oriented languages. Pos-

sible applications of U-P2P include sharing resources

such as resumes, knowledge management in a corporate

setting, or distributed repositories for design patterns and

software components.

A major direction for future work is in demonstrat-

ing the protocol independence of U-P2P. By develop-

ing PeerNetworkAdapters to interface to existing net-

works such as Freenet or Gnutella, U-P2P could be-

come a meta-data layer that would provide an enhanced

community-based search capability.

U-P2P communities may also be extended beyond the

schema format to include definition of parameters such

as protocol, security and authentication. These various

parameters define a design space for peer-to-peer sys-

tems. Instead of envisioning a single system that is all

things to all people, a more practical approach is to con-

sider which methods are most appropriate to the appli-

cation. The system should allow important features such

as security or authentication to be decoupled and mixed

and matched.

Despite some database performance issues that we be-

lieve can be overcome, as it stands U-P2P can be easily

used for distributed sharing of XML documents, while

exploiting structured metadata to optimize search.

Availability

U-P2P is an open source application licensed under

the GPL, and makes use of other open source prod-

ucts such as Jakarta Tomcat [16] and eXist [18]. Com-

plete source code and documentation as well as guides

and presentations are accessible at http://u-p2p.

sourceforge.net.

Acknowledgments

This work is supported by the Natural Sciences and En-

gineering Research Council of Canada and the Foundry

Program of Carleton University. Valuable feedback on

U-P2P has been received from Peter Murray-Rust and

his team at the University of Cambridge, UK. The design

pattern case study would not have been possible without

the help of Darrell Ferguson and Dwight Deugo of the

Carleton School of Computer Science.

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association38

References

[1] Napster, http://www.napster.com Ac-

cessed on 07 April 2003 06:00 UTC.

[2] Gnutella, http://gnutella.wego.com Ac-

cessed on 07 April 2003 06:00 UTC.

[3] Thadani, Sumeet, Meta Information

Searches on the Gnutella Network, http:

//www.limewire.com/index.jsp/

metainfo_searches Accessed on 07 April

2003 06:00 UTC.

[4] Thadani, Sumeet, Meta Data searches on

the Gnutella Network (addendum), http:

//www.limewire.com/developer/

MetaProposal2.htm Accessed on 07 April

2003 06:00 UTC.

[5] FastTrack, now owned by Sharman Networks and

found in Kazaa Media Desktop http://www.

kazaa.com Accessed on 07 April 2003 06:00

UTC.

[6] OpenCola project, http://www.opencola.

com Accessed on 07 April 2003 06:00 UTC.

[7] Bitzi, http://www.bitzi.com Accessed on

07 April 2003 06:00 UTC.

[8] XML Schema Part 0: Primer, W3C Recommen-

dation, 2 May 2001 http://www.w3.org/

TR/xmlschema-0/ Accessed on 07 April 2003

06:00 UTC.

[9] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen,

Eve Maler, Extensible Markup Language (XML)

1.0 (Second Edition), W3C Recommendation,

6 October 2000, http://www.w3.org/TR/

REC-xmlAccessed on 07 April 2003 06:00 UTC.

[10] Resource Description Framework, W3C http:

//www.w3.org/RDF/ Accessed on 07 April

2003 06:00 UTC.

[11] Tim Berners-Lee, James Hendler and Ora Las-

sila, The Semantic Web, Scientific American, May

2001.

[12] Nejdl, Wolfgang et al, EDUTELLA: A P2P

Networking Infrastructure Based on RDF,

http://edutella.jxta.org/reports/

edutella-whitepaper.pdf Accessed on

07 April 2003 06:00 UTC.

[13] Extensible Stylesheet Language Transformations

(XSLT) Version 1.0, W3C Recommendation, 16

November 1999, James Clark (Editor), http://

www.w3.org/TR/xslt Accessed on 07 April

2003 06:00 UTC.

[14] Gong Li, JXTA: A Network Programming Envi-

ronment, IEEE Internet Computing Vol 5. No. 3.

May/June 2001

[15] JavaServer Pages, Sun Microsystems, http://

java.sun.com/products/jsp/ Accessed

on 07 April 2003 06:00 UTC.

[16] Jakarta Tomcat, Apache Software Foundation,

http://jakarta.apache.org/tomcat

Accessed on 07 April 2003 06:00 UTC.

[17] XML:DB API, Working Draft, 20 September

2001, Kimbro Staken (Editor), http://www.

xmldb.org/xapi/xapi-draft.html Ac-

cessed on 07 April 2003 06:00 UTC.

[18] eXist 0.8, http://exist.sourceforge.

net Accessed on 07 April 2003 06:00 UTC.

[19] The SSL Protocol Version 3.0, Internet-Draft,

18 November 1996, http://wp.netscape.

com/eng/ssl3/draft302.txtAccessed on

07 April 2003 06:00 UTC.

[20] XML-Signature Syntax and Processing, W3C Rec-

ommendation, 12 February 2002, http://www.

w3.org/TR/xmldsig-core/Accessed on 07

April 2003 06:00 UTC.

[21] Dwight Deugo, Darrell Ferguson, Carleton Pat-

tern Repository, http://muffin.nexus.

carleton.ca/˜darrell/repo/ Accessed

in July 2002.

[22] Dwight Deugo, D. Ferguson, XML Specification

for Design Patterns, Proceedings of the Second

International Conference on Internet Computing

(IC’2001): 407-412.

[23] Neal Arthorne, An XML Schema for De-

sign Patterns, http://chat.carleton.

ca/˜narthorn/project/patterns/

pattern.xsd Accessed on 07 April 2003 06:00

UTC.

[24] G.M. Rubin, Around the Genomes: The

Drosophila Genome Project, Genome Research

(1996) 6:71-79

[25] DTD2XS, http://puvogel.informatik.

med.uni-giessen.de/lumrix/ Accessed

on 07 April 2003 06:00 UTC.

[26] DBLP, http://dblp.uni-trier.de/

xml/ Accessed on 07 April 2003 06:00 UTC.

[27] EDGAR, http://bulk.resource.org/

edgar/xml/ Accessed on 07 April 2003 06:00

UTC.

[28] The Gene Ontology Consortium, Gene Ontology:

tool for the unification of biology Nature Genetics

25: 25-29.

