
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 115

Flexibility in ROM: A Stackable Open Source BIOS

Adam Agnew, Adam Sulmicki, *Ronald Minnich, William Arbaugh
Department of Computer Science

University of Maryland at College Park
Advanced Computing Lab, Los Alamos National Lab*

Los Alamos, New Mexico
LANL LA-UR-03-2137

agnew@cs.umd.edu, adam@cfar.umd.edu, rminnich@acl.lanl.gov, waa@cs.umd.edu

Abstract

One of the last vestiges of closed source proprietary soft-
ware in current PCs is the PC BIOS. The BIOS, most
always written in assembler, operates mostly in 16 bit
mode, and provides services that few modern 32 bit
operating systems require. Recognizing this, the Lin-
uxBIOS founders began an effort to place a Linux ker-
nel in the ROM of current motherboards– completely
removing the legacy BIOS. While the LinuxBIOS ef-
fort fully supports Linux, other modern operating sys-
tems, e.g. *BSD, and Windows 2000/XP, could not be
directly supported because of their reliance on a few
services provided by those legacy BIOSes. In this pa-
per, we describe how we have combined elements of the
LinuxBIOS, the Bochs PC emulator, and additional soft-
ware to create the first open source firmware for the IBM
PC capable of booting most modern operating systems.

1 Introduction

The personal computer (PC) basic input output sys-
tem (BIOS) remains one of the last bastions of closed
source software. The reasons for this are many, but the
most prominent is that many of the hardware interfaces
in modern PC chipsets are covered by non-disclosure
agreements. NDAs greatly limit the set of systems that
an open source BIOS could support. Additionally, tech-
nical barriers to entry at the firmware/BIOS level are sig-
nificant. For example, debugging is considerably more
difficult, and the tools to permit control over the proces-
sor at the firmware level, e.g. an in-circuit emulator, are
very expensive.

These technical and non-technical barriers, coupled with
a near monopoly in the BIOS market, have prevented in-
novation from occurring in a key element of the personal

computer. As a result, commercial BIOSes continue to
be written entirely in assembler, run mostly in 16 bit
mode, and provide few services beyond the interrupts
initially provided by the BIOS in the 1980’s.

The LinuxBIOS effort at Los Alamos National Labs
sought to change that situation. Frustrated by the prob-
lems created by the BIOS in large sets of computing sys-
tems, i.e. clusters, the LinuxBIOS team began to cre-
ate their own open source BIOS. The LinuxBIOS also
sought to place an operating system kernel, e.g. Linux,
in the ROM of a PC motherboard.

The reason for putting a full kernel in place of the BIOS
is simple: Linux does a far better job of detecting and
configuring hardware than standard BIOSes do, and its
“footprint” in memory is not really that much larger.
As of 1999 there are many systems (kmonte, kexec,
bootimg, LOBOS) that allow Linux to boot another op-
erating system. The result is that LinuxBIOS can load
a kernel over any device, network, protocol, and file
system that Linux supports– compelling reasons to use
Linux as a boot program.

Even with the considerable technical barriers, Lin-
uxBIOS now runs on numerous motherboards. While
it remains unlikely that LinuxBIOS will ever become
available on all PC motherboards, the current success of
the project is significant.

LinuxBIOS is actually divided into two parts. The first
part is a small open-source system startup code. The
second part is the Linux kernel itself. Over time, users
have found that they can use the first part without the
second, and the Linux kernel has been replaced by many
different types of software, from Etherboot to 9load, the
Plan 9 loader. This has led to a confusing situation with
respect to naming: in the early days of LinuxBIOS, the

Awarded Best Student Paper!

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association116

software implicitly included the Linux kernel. Nowa-
days, the name “LinuxBIOS” has gradually come to
mean only the small open source system startup code.
For the rest of the paper, when we use the term “Lin-
uxBIOS” we mean the small startup code, not the full
startup code plus Linux kernel combination.

While the original motivation for LinuxBIOS was fo-
cused solely on improving the management of large
computing clusters, numerous developers viewed Lin-
uxBIOS as a means to provide additional features in the
BIOS such as security, and support for additional oper-
ating systems beyond Linux. In this paper, we describe
one of those efforts– an open source stackable BIOS.

The elements of the stackable BIOS are shown in Fig-
ure 1. The first element is LinuxBIOS. LinuxBIOS per-
forms all of the steps necessary to initialize the hardware
on the motherboard. The next step is ADLO, the “AD-
hesive LOader.” This is stackable BIOS software specif-
ically written to serve as the “glue” between the Lin-
uxBIOS and the next element, the Bochs BIOS. Bochs
is a highly portable open source x86 PC emulator which
includes emulation of the x86 CPU and common I/O de-
vices. Bochs also includes a custom BIOS which pro-
vides the legacy BIOS functionality needed to boot mod-
ern operating systems such as Linux, OpenBSD, and
Windows 2000 using the GNU Grub bootloader.

The resulting BIOS which comes from the combination
of LinuxBIOS, ADLO, and the Bochs BIOS has proven
to be quite slim and fast.

LinuxBIOS, ADLO, BochsBIOS, and even the Video
BIOS (typically 64KB) can take up less than 175KB in
size (Figure 2). Because alignment data pads out many
of the images, a size of less than 100KB can be achieved.

In the remainder of this paper, we present the details
of how elements of two relatively mature open source
projects (LinuxBIOS and Bochs) were combined with
additional GPL’d software written by the authors to com-
pletely eliminate the need for a proprietary legacy BIOS.

2 LinuxBIOS

LinuxBIOS is a GPLed project started at the Cluster
Research Lab, a division of the Advanced Computing
Laboratory (ACL), in Los Alamos National Labs. A
computer cluster is a group of computers connected to
work together as a parallel computer. The Cluster Re-
search Lab performs research and development in oper-

LinuxBIOS

ADLO

Bochs BIOS

Grub Bootloader

Windows 2000

Figure 1: Stackable BIOS Overview

ating systems and cluster design in order to improve the
way clusters are built, managed, and used.

LinuxBIOS was created to fill a need in the Com-
puter Research Lab for an open source BIOS. Currently,
x86 motherboards ship with BIOSes supplied by ven-
dors such as Phoenix Technologies and American Mega-
trends. But these BIOSes had shortcomings which made
them impractical for cluster use.

The ACL team found that existing BIOSes do a poor job
of setting up a PC for modern OSes. They found:

• BIOSes which configure memory in a suboptimal
way. For example, some BIOSes were discovered
to use memory capable of CAS2 speeds at a much
slower CAS3 setting.

• incorrect configuration of PCI address spaces that
open up security holes when memory-mapped
cards (e.g. Myrinet) are used.

• suboptimal assignment of interrupt requests. Some
BIOSes were found to share IRQs between mul-
tiple devices when such sharing was not required.
This sharing of IRQs added latency upon interrupts

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 117

assembly start up code

LinuxBIOS

0x00

0x3FE00

0x36E00

0x40000

Free Space

ADLO & Bochs BIOS
 & Video BIOS

0x21000

Figure 2: Typical LinuxBIOS + ADLO + BochsBIOS EEP-
ROM map for a 512k part.

needlessly.

• incorrectly configured BIOS tables such as the
$PIR table, so that the critical information Linux
needs for IRQ assignment is not availble. So perva-
sive are some of the errors that they have impacted
the Linux 2.4.19 kernel; in this version, GEODE
IRQ setup was changed, incorrectly, to accommo-
date some broken motherboards.

• incorrect ID strings in the BIOS, for example the
string “Mainboard vendor name here” is in the
BIOS instead of the mainboard vendor name

• no way to upgrade the BIOS from a modern OS
(some vendors ship DOS diskettes for a BIOS up-
grade; others require that you boot a Windows 3.1
CD and run an upgrade program).

• no way to preserve CMOS settings when a BIOS is
upgraded (one vendor recommended we record the
settings on paper and then re-enter them for each
machine; a difficult task on a 960-node system with
no keyboard or console).

There are also structural problems with BIOSes that de-
rive from the requirements for supporting DOS. One of
these is the requirement that the BIOS zero memory.
This requirement makes post-mortem debugging virtu-
ally impossible, as a reset results in erasing the memory
image of the previously running operating system.

Commercial BIOSes also have problems accommodat-
ing custom built hardware, and can take considerable
time to boot. Finally, when bugs or errors crop up in
a commercial BIOS, it is almost impossible to fix them.

These short-comings made it obvious that an open
source BIOS such as LinuxBIOS is needed, especially
for the fast paced innovations which can make the next
generation of clusters successful.

To accomplish its task, LinuxBIOS is placed in the
computer’s EEPROM chip (Electronically Erasable Pro-
grammable Read Only Memory) where normally a ven-
dor supplied BIOS would reside. LinuxBIOS com-
pletely replaces the vendor BIOS; no fragment of the
vendor BIOS is left once LinuxBIOS is installed. The
LinuxBIOS binary itself is small, typically only 36 kilo-
bytes in size depending on configuration choices. Then,
a Linux kernel is placed in the EEPROM chip to act as a
bootloader (Figure 3).

The Linux kernel is used for this task because it supports
a wide array of hardware that can be used to acquire the
binaries necessary for further booting operating systems.
The Linux kernel is well suited for this task because it
is, for the most part, written to avoid a need for legacy
BIOS services. This lack of dependencies reduces the
number of services LinuxBIOS must provide and thus
results in a small and compact BIOS.

With the complexity and latency of commercial BIOSes
removed, the LinuxBIOS developers discovered they
were able to accomplish the entire bootstrap process in
a matter of seconds.

Pretty soon, the LinuxBIOS developers found there was
demand not only from those building clusters, but also
from a computer enthusiast community, and even more
notably, motherboard vendors who were hopeful of a fu-
ture where they wouldn’t have to pay a royalty to BIOS
vendors.

This created several problems for the LinuxBIOS devel-
opers if they wished to create an open source BIOS for a
wider audience.

• Most motherboards ship with 256Kbyte EEPROM
parts. Even under extreme compression, the Linux
kernel could not fit in such a small flash.

• LinuxBIOS was kept small and fast by not support-
ing legacy PC BIOS services. The Linux Kernel
used with LinuxBIOS had to be slightly modified

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association118

to avoid using these legacy services. Unfortunately,
many of the other operating systems that mother-
board vendors and computer enthusiasts want to
run require these services. It is not practical to mod-
ify the BIOS interface of each of these operating
systems. This is especially true for operating sys-
tems which are closed source.

Linux Kernel

assembly start up code
0x80000
0x7FE00

LinuxBIOS

0x00

0x76E00

Figure 3: Typical LinuxBIOS EEPROM map (using a Linux
Kernel) for a 512k part.

3 Bochs

We were able to solve both of these problems by taking
advantage of another open source project, Bochs.

Bochs is an LGPLed project, sponsored by Mandrake-
Soft, which serves as a highly portable x86 emulator
written in C++. Bochs is a true, complete emulator in
that it fully emulates an x86 CPU, common I/O devices
such as floppy and hard drives, and an x86 BIOS.

The component of Bochs which we found useful in our
plans to add PC BIOS services to LinuxBIOS was its
BIOS. The Bochs BIOS had many attributes which made
it especially appealing for our needs.

• None of the hardware emulated by Bochs is imple-
mented in their BIOS layer. The BIOS was de-
signed to interact with the hardware through true
device calls and aimed to conform to up to date
standards. This was advantageous to us in that few

modifications were needed for the Bochs BIOS to
utilize the real hardware on our target platform.

• Since the hardware is emulated, it does not need to
be “turned on” like on a real x86 platform. This
means Bochs does not implement the process of
initializing such things as CPU cache, IDE con-
trollers, etc. These services are already provided
by LinuxBIOS for the motherboards it supports.

Further, these attributes meant that the modifications we
found necessary to make to Bochs were prime candi-
dates for inclusion back into the Bochs source. All the
changes we needed to make to Bochs were merely more
correct implementations of the BIOS interrupts it pro-
vided. These modifications did not break the Bochs
BIOS’ compatability with their emulated hardware, and
allowed it to work more correctly with the real hardware
on our platform as fewer assumptions were made.

This means that further maintenance of the BIOS layer
of our solution can stay within the Bochs source and Lin-
uxBIOS can continue to leverage itself effortlessly off of
the further hard work of the Bochs PC emulator devel-
opers.

4 BIOS Dependancies in Modern Operat-
ing Systems

The BIOS services required to boot some modern oper-
ating systems are plentiful. Most are trivial and hardly
worth mentioning, such as probing for keyboard pres-
ence or the timer interrupt. But there are four main
services which proved critical to booting both operating
systems like Windows 2000 and the Linux Kernel 2.4
series. These services comprised the video BIOS func-
tions, hard drive services, memory sizing, and providing
a PCI table. Many more services are useful, but they are
still new standards which are optional to use in modern
operating systems, see Table 1.

The following section outlines the steps taken to make
ADLO and Bochs BIOS functionality closer to that of
standard commercial BIOSes and distinguish this func-
tionality from that of its base LinuxBIOS, see Table 2.

4.1 Video BIOS Functions

Among the first of the issues dealt with was providing
Video BIOS functions. In a stock LinuxBIOS setup, the
issue is averted by rerouting the console output to a serial

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 119

BIOS Feature Standard 2.4.x Modified for LinuxBIOS Windows Windows FreeBSD[5]
Needed Linux Kernel 2.4.x Linux Kernel 2000[3] XP[4]
Int13 Handling yes no yes yes yes
Int15 ax=E820 Map* yes no yes yes yes
PnPBIOS no no no no no
PCI Table yes yes yes yes yes
Video BIOS no no yes yes yes
ACPI no no no no no
APM no no no no no

Table 1: Operating system dependencies on BIOS interrupt functionality.
* While Int15 function ax=E820 is not itself needed, it is the most modern and popular of the Int15 memory sizing

functions of which at least one is needed.

Feature Standard LinuxBIOS using LinuxBIOS using LinuxBIOS using
PC BIOS[2] Linux Kernel Etherboot ADLO and Bochs BIOS

Int13 Handling yes no no yes
Int15 ax=E820 Map yes no no yes
PnPBIOS yes no no no
PCI Table yes yes yes yes
Video BIOS yes yes yes yes
ACPI yes no no no
APM yes no no no

Table 2: Features provided by a variety of BIOS configurations

console. Regrettably, this luxury was rarely available in
other operating systems, so the issue had to be resolved
in another way.

In most commercial BIOSes, Video BIOS functionality
is provided by an add-in card containing an expansion
ROM. This ROM is found while probing the IO buses
for expansion ROMS. When a Video BIOS is found, it is
copied into memory area 0xC0000 to 0xC7FFF and ex-
ecuted. The Video BIOS in turn claims control of Int10.

On the motherboard we developed with, however, the
video chipset was integrated and the Video BIOS was
stored with the commercial BIOS on the motherboard’s
EEPROM. As these images are to replaced with our
code, the Video ROM had to be acquired and loaded in
a different fashion.

We accomplished this task by extracting the Video BIOS
from memory before installing LinuxBIOS. Since we
can expect the Video BIOS to be stored at address
0xC00000, we can boot into Linux using the commer-
cial BIOS shipped with the motherboard and extract this
image using ’dd’ and the /proc/kcore memory interface.
The total size of the image is determined by the 3rd byte,
which represents the number of 512 byte blocks. Be-
cause the /proc/kcore interface is an ELF image, an off-

set must be taken into account in order to skip the ELF
header. This extraction method will work easily on most
integrated and non integrated motherboards alike. Once
the video BIOS image is extracted it is stored in the EEP-
ROM, see Figure 2.

Once the Video BIOS is in place, both the Linux and
Windows operating systems will use it for such functions
as preliminary output when booting, VESA compliance
probing, and setting video modes.

4.2 Hard Drive Services and Interrupt 13

Historically, hard drive services have been the most
complex and frustrating of the BIOS services for both
the BIOS and operating system developers. As hard
drives have grown in capacity, they have consistently
been the first of the devices to feel the strain imposed
by the instruction width of architectures. As a result,
there have been several evolutionary steps in addressing
modes and the complexity of the Int13 services has be-
come staggering.

Speed constraints, buggy BIOSes, addressing mode re-
visions, and an increasing variety of devices has com-
pelled designers of modern operating systems to remove

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association120

dependency on Int13 for hard drive functions for the
most part. Instead, they communicate with the drive
controllers directly, in “polled I/O mode”, and only the
bootloaders, which are constrained by space from hav-
ing drivers for a variety of controllers, still depend on
these services heavily.

In this regard, a LinuxBIOS configuration with the
Linux Kernel housed in ROM with LinuxBIOS is again
at an advantage. The Linux Kernel has all the neces-
sary drivers for properly communicating with a vari-
ety of drive controllers. The only issue that needs to
be addressed then is waiting for the hard drives to spin
up to operational speed. While the boot times of most
commercial BIOSes are long enough that it is taken for
granted that hard drives will be fully spun up and avail-
able before they are needed, the fast boot times of Lin-
uxBIOS makes this assumption incorrect. To correct
the mistake, the kernel is patched to assume drives are
present before they are available for actual I/O.

As we aimed to boot unmodified operating systems and
bootloaders such as LILO, GRUB, and the Windows
2000 Bootloader, we needed to support a much larger
set of Int13 functionality.

The Bochs BIOS provided an excellent starting point to-
ward this end; it implemented virtual devices and de-
fined the Int13 functions necessary for bootloaders and
operating systems to interface with them. When Bochs
virtualizes these devices under a host operating system,
the host operating systems already deals with timing is-
sues with the actual physical devices. For this reason,
timing with Int13 had not been taken into account di-
rectly in the Bochs BIOS. As our BIOS does not include
such a virtualization, we implemented proper handling
of timing issues to avoid such complications as trying
to access devices before they were spun up to operating
speed or reading buffers before they could be filled by
the hard drive.

4.3 Memory Sizing

Like hard drive addressing modes, memory sizing
has also gone through evolutionary steps as instruc-
tion widths and the cost of memory has dramatically
changed. While memory sizing used to be accomplished
by simply returning the amount of 1K size blocks avail-
able through Int15 function ah=088h, limiting the re-
turned amount to 64MB, the service is now commonly
performed through subsequent calls to Int15 function
ax=0e820h in order to fill sections of a table[8].

A typical Int15 ax=E820 memory table contains several
entries, each describing a range in memory with unique
characteristics, see Table 3. In this example, the first
range identifies the memory from the beginning to 640K
as available in keeping with the convention of Lower
Memory. Next, a range up to the first megabyte is re-
served for BIOS use. The other segments map the rest
of available memory, reserving some sections for ACPI
use.

An operating system is only interested in the memory
ranges which it can use, see table 4. To reduce complex-
ity, we removed sections from the table which were re-
served. LinuxBIOS coupled with the Bochs BIOS does
not provide ACPI functions, so those sections do not
need to be explicitly identified either. The simplified
Int15 ax=E820 table was able to get us past issues in
development that dealt with an AMI compatible CMOS
which we were unable to provide.

4.4 PCI Tables

The original PCI design for interrupts was very simple.
PCI supports four interrupts lines, A, B, C, and D. The
B, C, and D lines are reserved for multifunction cards, so
that only the A line can be used for single-function cards.
The problem is that most cards are single-function; most
cards drive the A line. Most cards would have to share
the A interrupt, leading to high interrupt latency.

This is the reason for one of the more distressing kludges
related to PCI busses. Vendors decided to remap the A,
B, C, and D lines on the motherboard so as to more
evenly distribute the interrupt load. The A line for a
given slot may actually be mapped to the B, C, or D
interrupt pins on the interrupt controller.

How can an operating system tell, from reading the PCI
bus configuration, how the lines are actually mapped? In
practice, it can not. Hence the need for the PCI tables.

There are two types of PCI tables: the older $PIR table,
and the newer SMP table. The BIOS must supply both
these tables, the older one for older operating systems or
newer OSes configured to use the old table (e.g. Linux
in uniprocessor mode); and the newer one which is re-
quired for correct functioning of an SMP OS.

Each table has basic information about the motherboard,
including a variable-length list of PCI slots and the map-
ping of the four PCI slot interrupt lines to the actual in-
terrupt lines on the interrupt controller. This informa-
tion can be used to determine, for a given interrupt line,

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 121

BIOS-e820: 0000000000000000 - 00000000000A0000 (usable)
BIOS-e820: 00000000000F0000 - 0000000000100000 (reserved)
BIOS-e820: 0000000000100000 - 000000001FFF0000 (usable)
BIOS-e820: 000000001FFF0000 - 000000001FFF3000 (ACPI NVS)
BIOS-e820: 000000001FFF3000 - 0000000020000000 (ACPI data)
BIOS-e820: 00000000FFFF0000 - 0000000100000000 (reserved)

Table 3: Int15 ax=E820 memory map in a commercial BIOS

BIOS-e820: 0000000000000000 - 00000000000A0000 (usable)
BIOS-e820: 0000000000100000 - 000000001FFF0000 (usable)

Table 4: Int15 ax=E820 memory map in LinuxBIOS using Bochs BIOS

which card or cards is the source of the interrupt. The
operating system has to build an internal mapping of the
card IRQs so that it can make this determination.

One of the more troublesome aspects of the tables is that
they contain errors. For example, some Geode mother-
boards have the low order bit set incorrectly. This led
to an incorrect patch being applied to the Linux 2.4.19
release kernel which broke the kernel on correct moth-
erboards so the kernel would work on incorrect moth-
erboards. As of this writing this mistake has not been
corrected.

4.5 Future Work in ADLO and Bochs BIOS

In recent years, new standards have emerged and been
quickly adopted by both BIOS manufactures and the de-
velopers of operating systems.

The Advanced Configuration and Power Interface
(ACPI) is a particularly powerful specification that aims
to take over the services performed by PnPBIOSes, mul-
tiprocessor tables, and Advanced Power Management
(APM). However, support for ACPI has just recently
been started in the Linux Kernel 2.5 series. Many Win-
dows varieties already extensively make use of ACPI
when available, but it is still not necessary for booting
these operating systems. Int15 function ax=E820 is the
first of the services from the ACPI specification which
we have chosen to implement and a full implementation
of ACPI would be a worthy goal in further development
of ADLO and Bochs BIOS.

As ACPI aims to replace the functionality of APM,
PnPBIOS, and multiprocessor tables, adding support
in ADLO and Bochs BIOS to support these functions
would equate to adding a layer of services which are not
necessary now and will become legacy in the near future.

Other directions ADLO and Bochs BIOS development
will likely take is full support for multiprocessor sys-
tems (this has been added into the Bochs BIOS for use
in Bochs, but remains to be tested on real hardware), and
a virtual Video BIOS to allow for serial consoles like on
many server class motherboards.

5 The Bootstrap Process

Though LinuxBIOS and the Bochs BIOS are an open
source take on the PC BIOS, neither intended to be a
drop in replacement for commercial BIOSes. By stack-
ing and executing the LinuxBIOS, ADLO, and Bochs
BIOS components in order, the foundation is in place for
an open source BIOS to finally be a viable alternative to
commercial BIOSes on many x86 PCs. A description of
the tasks performed by each component in this advanta-
geous configuration follows.

5.1 LinuxBIOS

The guiding philosophy of LinuxBIOS is simple: “Let
the Linux kernel do it.” In other words, if Linux can
perform some task such as device initialization, there is
no need for any other software to do that work. We have
found that in most cases Linux will redo work that the
BIOS did anyway; or, still worse, Linux has to redo work
that the BIOS did since in so many cases the BIOS gets it
wrong. The BIOS should only do the bare minimum of
work that Linux can’t do. By doing the bare minimum,
LinuxBIOS becomes fast and small.

In the procedure of booting up the computer to a usable
state, LinuxBIOS performs many tasks. First among
these tasks is to set up and initialize memory; and set
up the serial consoles so debugging information is avail-
able. The resources which the LinuxBIOS developers

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association122

have available to them on the chipsets for which they
develop are often vague, scant, or simply non-existent.
With this in mind, it is fitting for a serial console to be
such a high priority.

Once the DRAM is initialized, LinuxBIOS can continue
in C code. This is a welcome feature when faced with
thousands of lines of x86 assembly.

From this point, LinuxBIOS can set up Memory Type
Range Registers (MTRRs) on the CPU(s), making the
cache of the CPU(s) available and thus speeding up ex-
ecution considerably. LinuxBIOS is also be responsible
for creating an IRQ routing table, and initializing indi-
vidual hardware components on the motherboard. These
often include an IDE controller, keyboard, southbridge,
etc. Again, only the bare minimum initialization is done;
Linux does the rest.

When LinuxBIOS is finished initializing hardware, it
then looks in the contents of the ROM to find a next stage
in the boot process. With the traditional approach of Lin-
uxBIOS, this would be a Linux Kernel. This configura-
tion is what provides such phenomenal records such as
3 seconds from power-on to a bash prompt.

There are however other extensions to LinuxBIOS
which make full use of its modular design. A popular
choice among these would be to load Etherboot, which
gives the bootstrap process the ability to retrieve the next
stage in the bootstrap process (either another component
to further enhance the boot strap process, or the final op-
erating system itself)[7].

5.2 ADLO

Indeed, instead of executing a Linux Kernel at this stage,
we want to load the Bochs BIOS to provide standard
commercial PC BIOS interrupt support.

In order to do this effectively, we built a small wrap-
per program around the Bochs BIOS to transfer valuable
information from LinuxBIOS to the Bochs BIOS with-
out having to make modification to the Bochs BIOS. We
have named this small wrapper ADLO, the “ADhesive
LOader.” ADLO allows us to leverage the capabilities
of the Bochs BIOS without making modifications to it.

ADLO is responsible for making sure the ROMs that
make up the Bochs BIOS and the VGA BIOS are stored
at the expected addresses. It also performs the task of
copying the Bochs BIOS from its original location into
“Shadow RAM.” In addition, LinuxBIOS stores some

tables (such as a memory map and the IRQ routing ta-
ble) in a format designed to be practical across architec-
tures, but not conforming to the format in which they’re
normally stored on a commercial PC BIOS. ADLO con-
verts these tables back to a format easily understood by
the Bochs BIOS as it is implemented presently.

In the same vain, the Bochs BIOS was written for the
Bochs emulation environment, and was written to emu-
late an AMI BIOS. To accomplish this goal, configura-
tion of the Bochs BIOS is done by storing and retrieving
configuration data in the CMOS as a real BIOS would
do. ADLO is responsible for storing some of this data in
the CMOS before executing the Bochs BIOS for param-
eters such as primary boot device and floppy size.

5.3 Bochs BIOS

The primary job of the Bochs BIOS is to set up the In-
terrupt Vector Table, and supply an entry point for each
of its BIOS services. The interrupt vector table is stored
from memory location 0000:0000h up to 0000:03FCh
and contains a maximum of 256 vectors, each 4 bytes
wide.

For instance, if we wanted to save the interrupt vector for
our newly implemented Interrupt 13, the vector would be
saved as the 19th entry (13h = 19) in the interrupt vector
table. Since each interrupt vector is 4 bytes wide, the
vector for Int13 will be stored at address 0x4C (19 * 4).

The interrupt handler for Interrupt 13 is placed at offset
0xE3FE within the BIOS image. The BIOS image is
placed at segment 0xF000 in memory. Therefore, the
four bytes at this offset can merely contain the segment
(0xF000) as the high four bytes and the offset (0xE3FE)
as the low four bytes.

5.4 Bootloader and Operating System

After the Bochs BIOS has established its interrupt vec-
tor table, we rely on a good foundation of BIOS inter-
rupt services to insure that everything continues to run
smoothly. To date, we have managed to refine the BIOS
services until booting of Linux kernels, which have not
been modified for LinuxBIOS compatability, and Win-
dows 2000 have been possible. Once these services had
been refined that far, OpenBSD began to boot through
to completion as an added reward. Other modern oper-
ating systems, for instance FreeBSD and Windows XP,
will require further work while still more have gone so
far unexplored. All bootloaders we have tried work flaw-

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 123

lessly, including the popular Grub and Lilo.

5.5 Hardware Support

To date, the boot strap process outlined in this paper has
only been tested on motherboards featuring the SIS630
North/South Bridge chipset. This chipset was chosen
as a stable basis for our development efforts due to the
long history of support SiS Semiconductors has shown
the LinuxBIOS team.

Using any other mainboards in replace of our test system
would comprise four steps.

• Insuring that the mainboard is already supported
by the LinuxBIOS project[6], or adding support to
LinuxBIOS for that mainboard.

• Insuring that LinuxBIOS takes the extra step of ini-
tializing the IDE controller. As the Linux Kernel is
in most cases capable of this task, it has not already
been done for all motherboards with LinuxBIOS
supports.

• Extracting of the IRQ routing table for use by
ADLO to convey a correct table to the Bochs BIOS.

• Extraction the VGA ROM for use by ADLO if a
graphical console is desired.

There are several other hardware issues of interest which
are not yet addressed by our efforts.

The first of these is USB support. There are several
projects which would benefit greatly from a small open
source USB stack. As PS/2 ports have been considered
legacy devices for several years now and motherboards
are now being sold to consumers which do not feature
PS/2 ports at all, the need for simple USB Human In-
terface Device (HID) support as well as generic USB
Storage support has become apparent.

SMP support has not yet been explored. However, Lin-
uxBIOS itself supports SMP on many motherboards,
and SMP support has been integrated into Bochs and
Bochs BIOS. We expect the integration of the two to be
trivial.

6 Conclusions

While open source operating systems on the PC have
flourished, the same can not be said for the firmware or

BIOS. The reasons for this are many, but the lack of an
open source and general purpose BIOS has limited inno-
vation in an important space of the personal computer.

The open source stackable BIOS, described in this paper,
eliminates the proprietary BIOS from numerous mother-
boards, and as a result, a number of new projects can
be started within the BIOS space. For example, low
level cryptographic support can now be easily added for
strong pre-boot authentication, secure remote console
support, and secure configuration management are just
some of the possible new efforts that can be started now
that a general purpose open source BIOS exists.

Source Availability

Instructions for obtaining the source
code for this project is located at
http://www.missl.cs.umd.edu/Projects/sebos/main.shtml

Acknowledgments

Research at the University of Maryland on this project
was funded in part by the Composable High Assurance
Trusted Systems Program at DARPA via AFRL/IF-NY
contract F30602-01-2-0535

Research conducted in the Cluster Research Lab at
the Los Alamos National Labs was funded in part by
the Mathematical Information and Computer Sciences
(MICS) Program of the DOE Office of Science and the
Los Alamos Computer Science Institute (ASCI Insti-
tutes). Los Alamos National Laboratory is operated by
the University of California for the National Nuclear
Security Administration of the United States Depart-
ment of Energy under contract W-7405-ENG-36. Los
Alamos, NM 87545 LANL LA-UR-03-2137.

We would like to thank the following people for their
hard work, suggestions, and encouragement.

The bochs developers have been an invaluable and help-
ful group, especially Christopher Bothamy.

We would also like to extend a special thank you to the
LinuxBIOS developers, of whom Eric Biederman and
Ollie Lho were especially helpful.

The guidance and suggestions of Pascal Dornier and
David Sankel made sure that we overcame hurdles

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association124

swiftly and easily in bringing all of this work together.

References

[1] Ron Minnich, James Hendricks, Dale Web-
ster. The Linux BIOS. The Fourth Annual
Linux Showcase and Conference, October 2000.
http://www.acl.lanl.gov/linuxbios/papers/als00/linuxbios.pdf

[2] Phoenix Technologies Ltd. The
PhoenixBIOS 4.0 Revision 6 User’s Manual.
http://www.phoenix.com/resources/userman.pdf

[3] Adam Sulmicki. A Study of BIOS Inter-
rupts as used by Microsoft Windows 2000.
http://www.missl.cs.umd.edu/Projects/sebos/winint/index1.html

[4] Adam Sulmicki. A Study of BIOS In-
terrupts as used by Microsoft Windows XP.
http://www.missl.cs.umd.edu/Projects/sebos/winint/index2.html

[5] Bruce M. Simpson. FreeBSD BIOS Coupling on i386.
http://www.incunabulum.com/code/projects/freebsd/freebsd-
bios-interaction.txt

[6] The LinuxBios Status Guide.
http://www.linuxbios.org/status/index.html

[7] The Etherboot Project. http://www.etherboot.org

[8] Ralf Brown’s Interrupt List. http://www-
2.cs.cmu.edu/ ralf/files.html

