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Abstract

The GNU automatic software configuration tools, Au-
toconf, Automake, and Libtool, were designed to help
the portability of software to multiple platforms. Such
autotools also help improve the readability of code and
speed up the development cycle of software packages.
In this paper we quantify how helpful such autotools are
to the open-source software development process. We
study several large packages that use these autotools and
measure the complexity of their code. We show that total
code size is not an accurate measure of code complex-
ity for portability; two better metrics are the distribution
of CPP conditionals in that code and the number of new
special-purpose Autoconf macros that are written for the
package.

We studied one package in detail—Am-utils, the
Berkeley Automounter. As maintainers and developers
of this package, we tracked its evolution over ten years.
This package was ported to dozens of different platforms
and in 1997 was converted to use GNU autotools. We
show how this conversion (autotooling) resulted in a dra-
matic reduction in code size by over 33%. In addition,
the conversion helped speed code development of the
Am-utils package by allowing new features and ports to
be integrated easily: for the first year after the conversion
to GNU autotools, the Am-utils package grew by over
70% in size, adding many new features, and all without
increasing the average code complexity.

1 Introduction

Large software packages, especially open-source (OSS)
ones, must be highly portable so as to maximize their use
on as many systems as possible. Past techniques for en-
suring that software can build cleanly and run identically
on many systems include the following:

� Asking users to manually configure a package prior
to compilation by editing a header file to turn on
or off package features or to specify services avail-
able from the platform on which the package will
be run. This process required intimate knowledge
of the system on which the package (e.g., C-News)
was to be built.

� Trying to achieve portability using CPP macros
and nested #ifdef statements. Such code results
in complex, system-specific, deeply-nested CPP
macros which are hard to maintain.

� Using Imake [2], a system designed specifically
for building X11 applications. Imake defines
frozen configurations for various systems. How-
ever, such static configurations cannot account for
local changes made by administrators.

� Using Metaconfig [11], developed primarily for
building Perl. This system executes simple tests
similar to Autoconf, but users are often asked to
confirm the results of these tests or to set the re-
sults to the proper values. Metaconfig requires too
much user interaction to select or confirm detected
features and it cannot be extended as easily as Au-
toconf.

GNU Autoconf [5] solves the above problems by pro-
viding canned tests that can dynamically detect various
features of the system on which the tests are run. By
actually testing a feature before using it, Autoconf and
its sister tools Automake [6] and Libtool [7] can build
packages portably without user intervention. These au-
tomated software configuration tools (autotools [10]) can
run on numerous systems. Autotools work identically re-
gardless of the OS version, any local changes that admin-
istrators installed on the system, which system software
packages were installed or not, and which system patches
were installed.



The rest of this paper is organized as follows. Section
2 explains the motivation for automated software config-
uration tools. In section 3 we explain how GNU Auto-
conf and associated tools work, explore their limitations,
and describe how we used these tools. Section 4 eval-
uates several large OSS packages and details the use of
autotools in the Am-utils package. We conclude in Sec-
tion 5.

2 Motivation

When software packages grow large and are required to
work on multiple platforms, they become more difficult
to maintain without automation. We spent several years
maintaining Amd and Am-utils, as well as fixing, port-
ing, and developing other packages. During that time
we noticed how difficult it was to maintain and port such
packages and that led us to convert Amd to use autotools.
As a result of the conversion, we noticed that Am-utils
became easier to maintain and port. We therefore set out
to quantify this improvement in the portability and main-
tainabilty of the Am-utils package, and those investiga-
tions led to writing this paper.

There are six reasons why porting such packages to
new platforms, adding new features, or fixing bugs be-
comes a difficult task more suitable for automatic con-
figuration:

1. Operating system variability: There are more
Unix systems available today, with more minor re-
leases, and with more patches. Flexible software
packaging allows administrators to install selective
parts of the system, increasing variability. An auto-
mated build process can track small changes auto-
matically, and can even account for local changes.

2. Code inclusion and exclusion: To handle
platform-specific features, large portions of code
are often surrounded by #ifdef directives.
Platform-specific code is mixed with more generic
code. Often, system-specific source files are com-
piled on every system, because there is no automatic
way to compile them conditionally.

3. Multi-level nested macros: To detect certain
features reliably, older code uses deeply nested
#ifdef directives. This results in complex macro
expressions designed to determine features as re-
liably as possible. The main problem with such
macros is that they provide second-hand or anec-
dotal knowledge of the system. For example, to test
if a compiler supports “void *”, some code depends
on the name of the compiler (GNUC) rather than
directly testing for that feature’s existence.

4. Shared libraries: Many packages need to build and
use shared or static libraries. Such packages of-
ten support shared libraries only on a few systems
(e.g., Tcl before it was autotooled), because of dif-
fering shared library implementations. Frequent use
of non-shared (static) libraries results in duplicated
code that wastes disk space and memory.

5. Human errors: Manually-configured software is
more prone to human errors. For example, the
first port of Amd to Solaris on the IA32 platforms
copied the static configuration file from the SPARC
platform, incorrectly setting the endianness to big-
endian instead of little-endian.

6. Novice and overworked administrators: With a
rapidly growing user base and the growth of the In-
ternet, the average expertise of system administra-
tors has decreased. Overworked administrators can-
not afford to maintain and configure many packages
manually.

Converting OSS packages to use GNU autotools—
Autoconf [5], Automake [6], and Libtool [7]—addresses
the aforementioned problems in five ways:

1. Standard tests: Autoconf has a large set of stan-
dard portable tests that were developed from practi-
cal experiences of the maintainers of several GNU
packages. Autoconf tests for features by actually
exercising those features (e.g., compiling and run-
ning programs that use those features). Packages
that use Autoconf tests are automatically portable
to all of the platforms on which these tests work.

2. Consistent names: Autoconf produces uniform
macro names that are based on features. For ex-
ample, code which uses Autoconf can test if the
system supports a reliable memcmp function us-
ing #ifdef HAS MEMCMP, rather than depend-
ing on system-specific macros (e.g., #ifndef
SUNOS4). Autoconf provides a single macro per
feature, reducing the need for complex or nested
macro expressions. This improves code readability
and maintainability.

3. Shared libraries: By using Libtool and Automake
along with Autoconf, a package can build shared or
static libraries easily, removing a lot of custom code
from sources and makefiles.

4. Human factors: Building packages that use auto-
tools is easy. Administrators are becoming increas-
ingly familiar with the process and the standard set
of features autotools provide (i.e., run ./config-
ure and then make). Administrators do not need
to configure the software package manually prior to



compilation and they are likely to make fewer mis-
takes. This standardization speeds up installation
and configuration of software.

5. Extensibility: Finally, software maintainers can ex-
tend Autoconf by writing more tests for specific
needs. For example, we wrote specific tests for
the Am-utils package that detect its interaction with
certain kernels. This allowed us to separate the
common code from the more difficult-to-maintain
platform-specific code.

Our experiences with maintaining the Amd package
clearly show the benefits of autotools. When we con-
verted the Amd package [9, 12] to use autotools, the code
size was reduced by more than one-third and the code
became clearer and easier to maintain. Fixing bugs and
adding new features became easier and faster, even ma-
jor features that affected significant portions of the code:
NFSv3 [8] support, Autofs [1] support, and a run-time
automounter configuration file /etc/amd.conf. New
features that we added immediately worked on many
supported systems and bugs fixes did not introduce ad-
ditional bugs.

3 Autotooling

The basic idea behind Autoconf is to determine a fea-
ture’s availability by running a small test that actually
uses the feature. The test often writes a small program
on the fly, compiles it, and possibly links and runs it.
This is a reliable method of detecting features. Autoconf-
generated configuration scripts are portable. When run,
they use portable shell scripting and tools such as sed
and grep. Building configure scripts requires GNU
M4, but only by the maintainers of the package, not by
those building the package.

In this section we explain how GNU autotools work
and detail the types of autotool tests we used or wrote for
use with Am-utils.

3.1 Autoconf

An Autoconf configure script is built from a con-
figure.in file that contains a set of Autoconf M4
macros to use. Autoconf translates the M4 macros into
their respective portable shell code. For example, to
test if the system supports the bzero function, we used
this M4 macro: AC CHECK FUNCS(bzero). Auto-
conf translates this M4 macro call into shell code that
creates, compiles, and links the following program:

#include "confdefs.h"
char bzero(); /* forward definition */
int main()

�
bzero();
return 0;�

If the program compiles and links successfully,
the configure script defines a CPP macro named
HAVE BZERO in an automatically-generated configura-
tion file named config.h. This macro is based on the
existence of the feature and can be used reliably in the
sources for the package. Note that it is not necessary to
run this program to determine if bzero exists. In fact,
the above program will fail to run properly because the
bzero function was not given proper parameters.

Assuming the package also checks for the existence
of the memset function, the maintainers of the package
can use the following portable code snippet reliably:

#ifdef HAVE_CONFIG_H
# include <config.h>
#endif /* HAVE_CONFIG_H */

#ifndef HAVE_BZERO
# ifdef HAVE_MEMSET
# define bzero(ptr, len) �

memset((ptr), 0, (len))
# else /* not HAVE_MEMSET */
# error neither bzero nor memset found
# endif /* not HAVE_MEMSET */
#endif /* not HAVE_BZERO */
...

struct nfs_args na;
bzero(&na, sizeof(struct nfs_args));

There are four categories of feature tests that we used
or developed during the autotooling process for Am-
utils:

1. No Autoconf test needed.
2. Simple existing Autoconf tests were available.
3. New simple Autoconf tests had to be written.
4. Static Autoconf tests had to be written.

3.1.1 No Test Needed

These features are common to most Unix platforms and
they are easily available from standard system header
files. No Autoconf tests or macros were required; the
user need only include the correct header files. For ex-
ample, to detach from its controlling terminal, one of the
methods a long-running daemon such as amd uses is the
TIOCNOTTY ioctl. By simply including the right
header files, we could write C code that performed an
action only if TIOCNOTTY was defined.



3.1.2 Simple Existing Tests

These are Autoconf macros for which an existing test
was suitable. Over 70% of the Autoconf tests used by
Am-utils and other large packages fall into this category.
A few examples are:

AC CHECK LIB(rpcsvc, xdr fhandle) checks
if the rpcsvc library includes the xdr fhandle
function. If so, the test ensures that -lrpcsvc is
used when linking binaries.

AC REPLACE FUNCS(strdup) tests if the strdup
function exists in any standard library, and if not,
adds strdup.o to the objects to build. The pack-
age maintainers are then required to supply a re-
placement strdup.c file.

AC CHECK HEADERS(nfs/proto.h) checks if
that header file exists. If so, the test defines the
macro HAVE NFS PROTO H, which can be used in
the code to include the header file only if it exists.

AC CHECK TYPE(time t, unsigned long)
looks for a definition of time t in standard header
files such as <sys/types.h>. If not found,
the macro defines the type to unsigned long.
Portable code need only use time t.

AC FUNC MEMCMP tests if the memcmp library func-
tion exists and if is 8-bit clean; some versions of
this function incorrectly compare 8-bit data. This is
an example of how Autoconf can help to detect bugs
in system software and offer the package maintainer
a workaround option.

Interestingly, the full set of all Autoconf tests also
serves as a testament to the total sum of operating sys-
tem variability. The macros list numerous features that
possibly differ from system to system.

3.1.3 Newly Written Tests

These were macros for which no existing Autoconf test
existed and thus had to be written. The key here is to de-
sign and write tests that could reliably determine a fea-
ture all of the time, regardless of the tools used.

We describe only one example in this paper:
AC CHECK FIELD, a test to determine if a given struc-
ture contains a certain field. � This test can be used to
handle structures with the same name that have different
members across different platforms. Our M4 test macro
is used as follows:

AC_CHECK_FIELD(struct sockaddr, sa_len)

The macro takes two arguments: the first ($1) is the
name of the structure and the second ($2) is the name

of the field. The macro creates and tries to compile the
following small program:

main()
�

$1 a;
char *cp = (char *) &(a.$2);�

If the above program compiles successfully, the test
defines a CPP symbol whose name is automatically con-
structed: HAVE FIELD STRUCT SOCKADDR SA LEN.
Code that uses this CPP symbol can perform the proper
actions when the sockaddr structure contains an
sa len field.

3.1.4 Static Autoconf Tests

Autoconf tests must be 100% deterministic. We identi-
fied several classes of problems where a simple reliable
test could not be written. We wrote these tests statically:
the result of the test is hard-coded based on the operating
system name and version. These include tests for certain
types, for kernel features, for system bugs, and for other
features which would have required complex tests.

1. Types: The types of arguments passed to functions
or used in structure fields cannot be detected easily.
C is not a type-safe language. Some C compilers do
not always fail when a type mismatch occurs, even
with special compiler flags. One example of such a
test is determining the type of the NFS file handle
field in struct nfs args: it can be a fixed-size
buffer, one of several other structures, or a pointer
to any of those.

2. Kernel features: Kernel internals are difficult to
probe, even with root access. For example, deter-
mining how the mount(2) system call works is
not practical because it requires mounting a known
file system and superuser privileges. Worse, if the
resource being mounted is a remote file system
(e.g., NFS), the client also needs to know the name
of the server exporting that file system and the name
of the exported path on the server.

3. System bugs: Some systems have bugs that cannot
be easily detected. For example, all versions of Irix
up to 6.4 use an NIS function yp all that leaks a
TCP file descriptor opened to the bound NIS server
ypserv. To detect this bug, a program must run
on a configured NIS system and know which NIS
maps to download—information that is specific to
the site. We considered and rejected several more
complex alternatives to detect this bug; it was sim-
pler to hard-code the answer.



4. Complex tests: If the Autoconf test being written
is too complex or long, generally more than half a
page of M4, C, and sh code, and is used only once
or twice throughout the configure script, it is better
to write it statically. A shorter test, even a static
one, is often more readable and helps to reduce the
maintenance effort needed for the package.

The following example illustrates when a static test
was preferable. Automounters include an entry in mount
tables (e.g., /etc/mtab) that is set as “hidden” from
the df(1) program because there is not much meaning-
ful data that statfs(2) can return to df for that mount
point. Amd uses the “ignore” or “auto” mount type to tell
the system to hide that mount entry from df. We found
that this feature was difficult to test automatically: some
systems do not define these mount types in their header
files but still use them (hard-coded in the vendor’s own
tools). Other systems define both, but prefer one over the
other. A few systems define one or more of them but use
an entirely different mechanism to hide mount entries: a
mount table flag. Lastly, some systems do not have the
ability to hide mount entries. We wrote the test simply
and statically as follows:

case "$
�
host_os

�
" in

irix* | hpux10* )
ac_cv_hide_mount_type="ignore" ;;

sunos4* )
ac_cv_hide_mount_type="auto" ;;

* )
ac_cv_hide_mount_type="nfs" ;;

esac

3.2 Automake

Automake [6] can automatically generate any number of
Makefile templates for use when configuring packages.
These Makefile templates contain the exact definitions
for compiling, linking, installing programs and auxil-
iary files, and more. Automake allows for many features
tested during the process of configuring the package to be
passed on to Makefile templates. These Makefile tem-
plates are used by the configure script at configure
time; the script performs simple variable substitution on
the templates, to produce the actual Makefiles used to
compile the package. The latter are the final Makefiles
for that specifically-configured package and include any
additional site overrides.

One example of Automake’s usefulness is that it cre-
ates templates that contain generic definitions for the li-
braries that applications need to link with. These li-
braries are detected early in the configuration process.
This way the exact set of libraries needed is used during

build time. The names and locations of these libraries do
not have to be statically configured or specified by the
user.

One disadvantage of Automake is that it produces long
and complex Makefile templates. These are more dif-
ficult to debug and understand because of their length
and the large number of Makefile features they use which
are intended to assist configure in producing a final
Makefile.

To use Automake, a package maintainer writes small
Makefile.am Automake template files that define the
bare minimum that needs to be known at that point; this
is often just the names of target files and the sources used
to produce those targets. Then, the maintainer calls a
small number of special M4 macros in their config-
ure.in file which tell Autoconf that this package uses
Automake-generated Makefiles. Next, the maintainer
runs automake to produce the Makefile template files
named Makefile.in. The configure script reads
Makefile.in files at configure time and generates the
final Makefiles used to compile the package.

3.3 Libtool

Libtool [7] automates the building, linking, and installa-
tion of shared or static libraries. Shared library support
is specific to a given system. Different compiler, linker,
and assembler options are often used to build shared li-
braries and those options depend on the specific devel-
opment tools used. Some shared libraries use different
extensions such as .so or .sl. Different systems use
different rules for versioning of shared libraries. Some
other systems require setting environment variables such
as $LD LIBRARY PATH in order to run a binary with
the proper shared library.

To use Libtool, a package maintainer calls a small
number of special M4 macros in their configure.in
file. Also, the maintainer must use a slightly different
way of specifying libraries in various Makefile.am
files, to indicate to Autoconf and Automake that this
package will use Libtool to support both shared and static
libraries.

4 Evaluation

When a package uses autotools such as Autoconf, it gen-
erally becomes easier to maintain. However, even Auto-
conf has its limitations. The first goal of this section is to
provide a method of evaluating a package’s complexity
for developers who are using or considering using au-
totools for that package. Note that we are specifically
concerned with complexity concerning the portability of



that package to newer operating environments. The sec-
ond goal of this section is to show the benefits and limi-
tations of using autotools.

Table 1 lists the packages that we evaluated. We
picked ten large, popular packages that use autotools, in-
cluding Am-utils. We also evaluate the Amd package,
which is Am-utils before it was autotooled. We eval-
uated as many versions of these packages as we could
find, spanning development cycles of 2 to 9 years. This
ensures that our reported results are sufficiently stable,
given a large number of versions spanning several years.

Package Versions Year-span
amd 10 2.6
am-utils 48 4.7
bash 9 4.6
bin-utils 9 4.9
emacs 12 5.1
gcc 11 9.1
gdb 4 4.1
glibc 11 5.2
openssh 58 2.0
tcl 38 8.7
tk 37 8.1

Table 1: The packages evaluated in this section, the number
of versions of each package we evaluated, and the overall span
of release years for those versions.

Figures 1 through 6, include “error” bars showing one
standard deviation off of the mean. Since we have eval-
uated a number of packages and versions for each, the
standard deviation accounts for the general variation in
size and complexity of the package over time.

4.1 Code Complexity

A typical metric of code complexity is a count of the
number of lines of code in the package, as can be seen
in Figure 1. As we can see, the four largest packages
are Binutils, Gcc, Gdb, and Glibc. The number of lines
of code in a package is one useful measure of the effort
involved in developing and maintaining the package, but
may not tell the whole story.

A different measure of the portability complexity of
a package is the number of CPP conditionals that ap-
pear in the code: #if, #ifdef, #ifndef, #else,
and #elif. Each of those statements indicates one ex-
tra code compilation diversion. Generally, each of those
CPP conditionals account for some difference between
systems, to ensure that the code can compile cleanly on
each system. In other words, the effort to port a software
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Figure 1: Average size of packages in thousands of lines of
code.
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Figure 2: Average number of CPP conditionals per package.

package to multiple systems and maintain it on those is
related to the number of CPP conditionals used.

Figure 2 shows the average number of CPP condi-
tionals per package. Since Autoconf supports condi-
tional whole source file compilations, we counted each
of those conditionally-compiled source files as one ad-
ditional CPP conditional. Here, the same packages that
have the most lines of code (Figure 1) also have the most
number of CPP conditionals. This is not surprising: as
the size of the package grows, so the number of CPP
conditionals is likely to grow. This suggests that perhaps
neither code size nor absolute number of CPP condition-
als provide a good measure of code complexity.

Next, we combined the above two metrics to provide a
normalized metric of code complexity for the purposes of
portability and maintainabilty of code over multiple op-
erating systems. In Figure 3 we show the average number
of CPP conditionals per 1000 lines of code. We notice
three things in Figure 3.

First, the difference between the most and least com-
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Figure 3: Average number of CPP conditionals per 1000 lines
of code.

plex packages is not as large as in Figures 1 and 2. In
those two, the difference was as much as an order of mag-
nitude, whereas in Figure 3 the difference is a factor of
2–4.

Second, the standard deviation in this figure is smaller
than in the first two. This means that although larger
packages do have more CPP conditionals, the average
distribution of CPP conditionals is almost fixed for a
given package. The implication of this is also that a given
package may have a native (portability) complexity that
is not likely to change much over time and that this mea-
sure is related to the nature of the package, not its size.

The third and most important thing we notice in Fig-
ure 3 is that the packages that appear to be very complex
in Figures 1 and 2 are no longer the most complex; lead-
ing in average distribution of CPP conditionals are Am-
utils and Bash. To understand why, we have to under-
stand what makes a software package more complex to
port to another operating system. For the most part, lan-
guages such as C and C++ are portable across most sys-
tems. The biggest differences come when a C program
begins interacting with the operating system and the sys-
tem libraries, primarily through system calls. Although
POSIX provides a common set of system call APIs [3],
not all systems are POSIX compliant and every system
includes many additional system calls and ioctls that
are not standardized. Furthermore, although the C library
(libc) provides a common set of functions, many func-
tions in it and in other libraries are not standardized. For
example, there are no widely-standardized methods for
accessing configuration files that often reside in /etc.
Similarly, software (e.g., libbfd in Binutils) that han-
dles different binary formats (ELF, COFF, a.out) must
function properly across many platforms regardless of
the binary formats supported by those platforms.

Despite their large size, Binutils, Gcc, Gdb, and
Glibc—on average—do not use as many operating sys-
tem features as Bash and Am-utils do. For example,
Gcc and Binutils primarily need to be able to read files,
process them internally (parsing, linking, etc.), and then
write output files. Most of their complexity exists in
portable C code that performs file parsing and target for-
mat generation. Whereas Gcc and Binutils are large and
complex packages in their own right, porting them to
other operating systems may not be as difficult a job as
for a program that uses a wide variety of system calls
or a program that interacts more closely with other parts
of the running system. (In this paper we do not account
separately for package-specific portability complexities:
Gcc and Binutils to new architectures, Am-utils to new
file systems, Emacs and Tk to new windowing systems,
etc.)

For example, Bash must perform complex process and
terminal management, and it invokes many system calls
as well as special-purpose ioctls. Amd (part of Am-
utils) is a user-level file server and interacts heavily with
the rest of the operating system to manage other file sys-
tems: it interacts with many local and remote services
(NFS, NIS/NIS+, DNS, LDAP, Hesiod); it understands
custom file systems (e.g., loop-device mounts in Linux,
Cachefs on Solaris, XFS on IRIX, Autofs, and many
more); it is both an NFS client and a local NFS server;
and it communicates with the local host’s kernel using an
asynchronous RPC engine. By all rights, an automounter
such as Amd is a file system server and should reside in
the kernel. Indeed, Autofs [1, 4] is an effort to move the
critical parts of the automounter into the kernel.

4.2 Autoconf Tests

Before building a package, it must be configured. The
number of Autoconf (and Automake and Libtool) tests
that a package must perform is another useful measure
of the complexity of the package. The more tests per-
formed, the more complex the package is to port to an-
other system, since the package requires a larger number
of system-discriminating features.

Figure 4 shows the average number of tests that each
package performs. The figure validates some of what we
already knew: that Binutils, Gcc, Gdb are large and com-
plex. But we also see that Am-utils performs more than
600 tests: only Gdb performs more tests on average. This
confirms that Am-utils is indeed a complex package to
port, even though its size is more than ten times smaller
than Gcc or Gdb.

Since Autoconf comes with many useful tests already,
we also measured how many new Autoconf tests the
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Figure 4: Average number of autotool tests (Autoconf, Au-
tomake, and Libtool M4 tests). The large standard deviation
for Gcc is due to the fact that Gcc 2. � used a few canned con-
figurations, whereas Gcc 3. � began using many Autoconf tests.
Amd is excluded because it is the Am-utils package before au-
totooling, and hence includes no Autoconf tests.

package’s maintainers wrote. The number of new macros
that are written shows two things. First, that Autoconf is
limited to what it already supports and that new macros
are almost always needed for large packages. Second,
that the number of new macros needed indicates that a
given package may be more complex.

Figure 5 shows the average number of new M4 macros
(Autoconf tests) that were written for each package. As
we see, most packages do not need more than 10 new
tests, if any. Binutils, Gcc, and Gdb are more com-
plex and required about 30 new tests each. Am-utils, on
the other hand, required nearly 90 new tests. According
to this metric, Am-utils is more complex than the other
packages we measured because it requires more tests that
Autoconf does not provide. Indeed this has been true
in our experience developing and maintaining Am-utils:
many tests we wrote try to detect kernel features and in-
ternal behavior of certain system calls that none of the
other packages deal with (for example, how to pass file-
system–specific mount options to the mount(2) system
call).

Figure 5 also shows the portion of static macros that
were written. As we described in Section 3.1.4, these are
macros that cannot detect a feature 100% deterministi-
cally and are often written as a case statement for differ-
ent operating systems. In other words, these tests cannot
use the power of Autoconf to perform automated feature
detection. As we see in Figure 5, most packages need
a few such static macros, if any. Again, Am-utils takes
the lead on such static macros. The main reason for this
is that a reliable way to test such features is impossible
without superuser privileges and knowledge of the entire
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Figure 5: Average number of new Autoconf tests written and
the portion of those that are static tests. Amd is excluded be-
cause it is the Am-utils package before autotooling, and hence
includes no Autoconf tests.

site (i.e., the names, IP addresses, and exported resources
of various network servers).

The conclusion we draw in this section is that al-
though Autoconf continues to evolve and provide more
tests, maintainers of large and complex packages may
still have to write 10–30 custom macros. Moreover, some
packages will always need a number of static macros, for
those features that Autoconf cannot test in a reliable, au-
tomated way.

4.3 Amd and Am-utils

In Sections 4.1 and 4.2 we established that Am-utils is a
more complex package to port than it appears from look-
ing purely at its size. In several ways, Am-utils repre-
sents an upper bound for the complexity of portable C
code: of the packages examined it has the most dense
distribution of CPP conditionals and the largest number
of custom macros. In addition, it performs critical file
system services that are often part of the kernel proper.
Therefore, analyzing Am-utils in more detail provides
more insight into the process of maintaining and port-
ing large or complex packages. Moreover, since we have
maintained this code for nearly ten years, we can provide
a unique perspective on the history of the development of
Am-utils dating back to well before it used autotools.

In Figure 6 we see the code size for all released ver-
sions of Am-utils. The vertical dashed line separates
the autotooled code on the right from the non-autotooled
one on the left (before autotooling, the package had a
“upl” versioning scheme). The most important factor is
the drop in code size after autotooling. The last version
before autotooling (amd-upl102) was 91640 lines long.
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Figure 6: Code size of all Amd and Am-utils package versions. Versions to the right of the vertical line were autotooled.
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Figure 7: Development timeline of Amd and Am-utils, span-
ning nearly 10 years. There is a dramatic increase in code
size (and hence features) for Am-utils in the first year after the
package had been autotooled.

The first version after autotooling (am-utils-6.0a1) was
only 59804 lines long. The two versions offered identi-
cal features and behavior, but the latter used Autoconf,
Automake, and Libtool. This drop of 35% in code size
was afforded thanks to the code cleanup and simplifica-
tion that resulted from using the GNU autotools.

Since the release of many versions occurred over a pe-
riod of nearly ten years, we show in Figure 7 the timeline
for each release and the code size since the first release.
We can see that for the first 32 months, nearly three years,
the non-autotooled package continued to grow in size.

However, that growth in size was accompanied by a seri-
ous increase in difficulty to maintain the package which
hindered the package’s evolution; the older code con-
tained a large number of multi-level nested CPP macros,
often resulting in what is dubbed “spaghetti code.” It
took nearly two more years before the first autotooled
version of Amd was released. Of those 22 months, about
6 months prior to month 54 were spent learning how
to use Autoconf, Automake, and Libtool, understanding
the inner working of Amd, and adapting the code to use
autotools.

�

The autotooling effort paid off significantly in two
ways. First, the autotooled version was more than one-
third smaller. Second, the autotooling process allowed
us to add new features to Amd and port it to new sys-
tems with minimal effort. For the first 12 months af-
ter its initial autotooled release, Am-utils grew by 70%,
adding major features such NFSv3 [8] support, Autofs
[1] support, a run-time automounter configuration file
/etc/amd.conf, and offering dozens of new ports.
This growth in size did not complicate the code much, as
can be seen from the small standard deviation for Am-
utils in Figure 3. The growth rate has reduced over the
past two years, as the Am-utils package became more
stable and fewer new features or ports were required.

The conclusion we draw from our experiences is that
large packages can benefit greatly from using autotools
such as Autoconf. Autoconf-based packages are easier
to maintain, develop, and port to new systems.



4.4 Performance

Autotooling a package bears a build-time performance
cost. Before compiling a package, configure must
run to detect system features. This detection process can
consume a lot of time and CPU resources. Therefore,
Autoconf supports caching the results of a configure
run, to be used in later invocations. These cached results
can be used as long as no changes are made to the system
that could invalidate the cache, such as an OS upgrade,
installation of new software packages, or de-installation
of existing software packages.

We measured the elapsed time it took to build a pack-
age before and immediately after it was autotooled. We
used the last version of Amd before it was autotooled
(upl102) and the first version after it was autotooled
(6.0a1) because these two included functionally identi-
cal code. We ran tests on a number of different Unix
systems configured on identical hardware: a Pentium-III
650MHz PC with 128MB of memory. We ran each test
ten times and averaged the results. The standard devia-
tions for these tests were less than 3% of the mean.

Action and Package Time
Build Amd-upl102 35.4
Configure Am-utils-6.0a1 (no cache) 102.6
Configure Am-utils-6.0a1 (with cache) 24.2
Compile Am-utils-6.0a1 73.1

Table 2: Time (seconds) to Configure and Build Amd Packages

Table 2 shows the results of our tests. We see that just
compiling the newly autotooled code takes more than
twice as long. That is because the autotooled code in-
cludes long automatically generated header files such as
config.h in every source file—despite the fact that the
autotooling process reduced the size of the package it-
self by one-third. Worse, configuring the newer Am-utils
package alone now takes more than 100 seconds. How-
ever, after that first run, re-configuring the package with
cached results runs four times faster.

If we consider the worst-case overall time it takes to
build this package, including the configuration part with-
out a cache, then building Am-utils-6.0a1 is nearly five
times slower than its functionally-equivalent predeces-
sor, Amd-upl102.

4.5 Autotool Limitations

Through this work, we identified five limitations to GNU
autotools. First, developers must be fairly knowledge-
able in using these autotools, including understanding
how they work internally.

Second, building code that was autotooled often takes
longer than non-autotooled equivalents. However, given
ever-increasing CPU speeds, this limitation is often not
as important as ease of maintenance and configuration.

Third, developing code with autotools requires using
a GNU version of the M4 processor. Also, Autoconf de-
pends on the native system to provide stable and work-
ing versions of the Bourne shell sh, as well as sed,
cpp, and egrep among others. Even though such tools
come with most Unix systems, they do not always behave
the same. When they behave differently, maintainers of
GNU autotools must use common features that will work
portably across all known systems.

Fourth, although autotools support cross-compilation
environments which further helps the portability of
cross-compiled code, Autoconf generally cannot execute
binary tests meant for one platform on another. This lim-
its Autoconf’s ability to detect certain tests that require
the execution of binaries.

Last, developers may still have to write custom tests
and M4 macros for complex or large packages. Devel-
oping, testing, and debugging such tests is often difficult
since they intermix M4 and shell syntax.

5 Conclusions

The main contribution of this paper is in quantifying the
benefits of autotools such as GNU Autoconf: showing
how much they help the portability of large software
packages and illustrating their limitations.

We also showed several useful metrics for measuring
the complexity of code when it comes to its portability:
the average distribution of CPP conditionals in the code,
the number of new Autoconf tests that had to be written,
and the portion of those tests that were static and there-
fore beyond the normal capabilities of Autoconf. Using
these metrics we showed how packages with more lines
of code may not be as difficult to port as packages that
use a more diverse set of system features.

In analyzing the evolution of the Am-utils package,
we showed how the package benefited from autotooling:
its code size was reduced dramatically and the code base
was made cleaner, thus allowing rapid progress on new
feature implementation.

The GNU autotools we used also have limitations.
First, maintainers must become intimately familiar with
the autotools. Second, building autotooled packages
takes longer. Third, even autotools cannot solve all porta-
bility problems; large-package maintainers usually have
to write their own custom tests. Fourth, certain tests can-
not be executed in a cross-compiled environment. Nev-
ertheless, in the long run, once an initial autotooling ef-



fort has taken place, an autotooled package is easier to
maintain on existing systems and port to new or diverg-
ing systems.

Although a count of code lines had been used for years
as a metric of code complexity, we believe that metric
oversimplifies the process of portable software develop-
ment. In the future we would like to automate the process
of quantifying the complexity of a package. We plan on
building tools that will parse autotool files and related C
code, separately evaluating conditionally-included code
from unconditionally-included code. This will allow us
to evaluate how much of a given autotooled package is
highly portable code and how much code is densely pop-
ulated with system-specific code. In addition, we would
like to account for package-specific portability complex-
ities (i.e., how new architectures affect Gcc and Binutils,
new file systems affect Amd, and new windowing sys-
tems affect Emacs and Tk).
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Notes

� A similar test to detect names of fields within struc-
tures was recently added to Autoconf, partially based on
our efforts in writing and contributing M4 test macros to
the OSS community.

�

Amd was originally written by Jan-Simon Pendry
and Nick Williams, not the authors of this paper. There-
fore we did not initially understand every part of the orig-
inal 60432-line code base.


