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Abstract

In this paper, we propose and evaluate the experimen-
tal implementation of cache coloring for task structures
on the Linux kernel 2.4.x. We analyzed the behavior of
the scheduler from the viewpoint of memory architecture
and found that severe cache conflicts occur in a specific
cache line. To solve this issue, we applied cache coloring
scheme to task structures. Until now, task structures in
Linux kernel could not be moved freely in main memory.
We noticed, however, that a small modification can en-
able the coloring. Under heavy workloads, this technique
can dramatically reduce cache misses while traversing the
run queue that contains a lot of runnable processes. For
the evaluation, we used 4-way and 8-way IA server ma-
chines. Web server execution and Chat micro benchmark
of scheduler intensive benchmarks were used for the mea-
surement. The experimental results showed that the Web
server performance achieves a maximum of 23.3% im-
provement compared to the standard kernel. In the Chat
micro benchmark, the message throughput improves a
maximum of 89.6% compared to the standard kernel. Fur-
thermore, our coloring technique gives better scalability
as the number of processors increases on a SMP system
since the lock contention which protects the run queue is
reduced.

1 Introduction

Linux has been widely used for enterprise applications,
such as web servers and DBMS. In these environments,
Linux is expected to be stable and scalable on SMP sys-
tems. However, the current Linux (2.4.x) scheduler de-
sign contains a well-known performance problem: a sin-
gle global run queue protected a spin lock. The scheduler

has to traverse the entire run queue to select an appropri-
ate process to run. Therefore as the number of runnable
processes increases, traversal time becomes longer. On
a SMP system, long traversal time causes both the lock
hold time and the lock contention to increase. This limits
the scalability of the Linux system. A lot of efforts have
been made to improve the scheduler performance by LSE
(Linux Scalability Effort) [1]. But no effort focusing on
cache and memory architecture has been made yet.

In this study, we observed and analyzed the scheduler
behavior from a memory architectural viewpoint using a
hardware system bus monitor on the IA32 platform. And
we found that a large number of cache misses occur dur-
ing the run queue traversal. To reduce these cache misses
and realize faster traversing, we introduce a new solu-
tion into the Linux kernel 2.4.x: cache coloring for a task
structure.

In this paper, we propose an experimental implementa-
tion for coloring which provides large performance gains
under heavy workloads. This scheme can reduce cache
misses during the run queue traversal and speed up the
process scheduling. Furthermore, this method can reduce
both the run queue lock hold time and the lock contention
on a SMP system.

The rest of this paper is organized as follows: Section 2
summarizes the current scheduler issue in terms of cache
efficiency by using a hardware memory bus tracer. Sec-
tion 3 describes our implementation of cache coloring
for a task structure. Section 4 evaluates the performance
of our implementation and gives detailed analysis of bus
transaction statistics. Section 5 presents the scalability
improvement compared with the standard kernel. Section
6 describes related work, and finally we draw conclusions
in Section 7.



2 Current Scheduler Issue

The current Linux scheduler has the following two char-
acteristics.

First is a single run queue which is protected by a run
queue lock. The run queue is organized as a single double-
linked list for all runnable tasks in the system. The sched-
uler traverses the entire run queue to locate the most de-
serving process, while holding the run queue lock to en-
sure exclusive access. As the number of processors in-
creases, the lock contention increases.

Second is the alignment of task structures in physical
memory space. The task structure, which contains the
process information, is always aligned on an 8KB bound-
ary in physical address space. The problem of this im-
plementation is that each variable in the task structure is
always stored at the same offset address of a page frame.
This leads to a strong possibility of cache line conflicts for
each variable while the scheduler is traversing the long
single run queue. At the same time, a large number of
cache misses occur.

We observed the memory bus transactions by using hard-
ware bus tracer GATES [2]. GATES (General pur-
pose memory Access TracE System) can capture mem-
ory transactions on the memory bus of a shared memory
multiprocessor system during program execution. Fig-
ure 1 shows the statistics of memory traffic on a shared
memory bus captured by GATES. In this observation, 256
apache web server processes (httpd) are running on an 4-
way Pentium Pro 200 MHz server with 512KB L2-cache
each. The vertical axis and the horizontal axis represent
the number of transactions per single web request and the
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Figure 1: Memory access statistics of running apache on
the 4-way Pentium Pro server

page offset address, respectively. As shown in this figure,
we can see that a tremendous number of transactions oc-
cur on the offset address 0x30. This cache line contains
the useful variables of a task structure for scheduling. Fig-
ure 2 shows scheduler related variables in a task structure
of the 2.4.4 kernel. The 32 bytes block surrounded by the
thick line contains the variables which is referred to cal-
culate the priority of each process. And this block also
contains the pointer (run list.next) to the next task
structure. The scheduler traverses all of task structures on
the run queue by referring this pointer. During the run
queue traversal, the block of each task structure is succes-
sively transfered to the few cache lines corresponding to
the page offset address from 0x20 to 0x3f. This causes
a lot of cache conflicts on these cache lines, and a large
amount of bus transactions are generated seen as Figure
1.
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Figure 2: The task structure and the run queue structure

Figure 3 shows the number of transactions to the offset
address 0x30 and the web transaction performance. The
horizontal axis represents the number of httpd processes
linked to the run queue. As the number of httpd pro-
cesses on the run queue increases, the number of transac-
tions significantly increases and the web transaction per-
formance correspondingly decreases.

On SMP systems, the run queue is protected by the run
queue lock. When traversing the run queue causes fre-
quent cache misses, the time the processor must spend
waiting to fill the cache just adds to the overall traversal
time. As the traversal time becomes longer, so does the
hold time for the run queue lock. On a multiprocessor
system, this contention for cache lines translates into in-
creased lock contention, which becomes a bottleneck for
scaling.



  

static inline struct task_struct * get_current(void)
{
  struct task_struct *current;
  __asm__("andl %%esp,%0; ":"=r" (current) : "0" (~8191UL));
  return current;
}

  

static inline struct task_struct * get_current(void)
{
  struct task_struct *current;
  __asm__("andl %%esp,%0; ":"=r" (current) : "0" (~8191UL));
  (unsigned long)current |= ((unsigned long)current >> 10) & 0x00000060;
  return current;
}

(a) original get_current()

(b) modified get_current()

Figure 4: modified get current()
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Figure 3: The number of memory bus transactions for the
offset address 0x30 and the web server performance

3 Our solution - cache coloring for a task
structure -

3.1 Implementation issue for coloring

In general, cache coloring [3, 4] is used to address the
cache line conflict problem. We expect that the method is
able to reduce the cache misses during run queue traver-
sal.

However, cache coloring for the task structure in the
Linux kernel seems difficult to implement, because the
Linux kernel coding assumes it to be placed on a specific
boundary. For example, a procedure to acquire a variable

X in a task structure is as follows:

1. Calling get current() (Figure 4 (a)), the func-
tion returns the logical-and value of %esp (current
stack pointer) and 0xffffe000. This is the 8KB
boundary of the %esp towards to the address 0.

2. Adding the offset of the requested variable X to the
above value.

3. Accessing the process specific variable X using the
address.

The kernel stack and task structure share an 8KB alloca-
tion of memory aligned on an 8KB boundary. The func-
tion get current() assumes that the task structure is
always at offset 0 within this block. It zeroes out the low-
order bits of the stack pointer to produce a pointer to the
task structure.

Because of this implementation, a task structure cannot be
shifted freely and the task structure coloring has not been
implemented yet.

3.2 Our implementation for coloring

Although the task structure had the above con-
straints, we noticed that a small modification to the
get current() function can enable the coloring.

Figure 4 (b) shows a new get current(). We only
inserted the single line in bold face to the original. The
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Figure 5: An example of coloring (four colorings)

new get current() returns a slightly different base
address, which is shifted in multiples of cache line size.
We achieved low overhead by adding only a few bit op-
erations to the original get current(). This is very
important because this function is frequently called in the
system. Note that this implementation does not require
any changes to the core routines of the standard kernel
scheduler.

Figure 5 illustrates the implementation of coloring for
a task structure. To be easy to understand, we assume
that the cache size is 32KB (which probably is smaller
than a real L2 cache size) maintained by a direct map-
ping scheme. The kernel stacks (the task structure ob-
jects) shall be contiguously arranged on a main memory
(in fact, they are not necessarily arranged continuously in
this way, but are aligned on the 8KB boundary on a main
memory). The current kernel stack is surrounded by the
thick line in this figure.

Figure 5 (a) shows the case of the standard kernel (we call
this kernel vanilla). The shaded cache blocks are missed
frequently. Their memory address is given above each
block. As shown in this figure, since each kernel stack
is aligned on an 8KB boundary, task structures which are
placed at 32KB distance addresses on a main memory are
mapped to the same cache lines. If the scheduler con-

tinuously accesses these task structures (such variables as
has cpu), cache conflicts occur. For example, grayed
data in four kernel stacks of 8KB, 40KB, 72KB, and
104KB in a main memory are transferred to the same line
in a cache memory. Therefore, if the scheduler continu-
ously accesses these four task structures, conflicts would
occur at the shaded cache lines labeled “8k+0x30”.

On the other hand, Figure 5 (b) shows the case of a kernel
using four-coloring. When the coloring kernel calls the
modified get current(), it returns 72K+0x40. This
is the base address at a 32*2 bytes (equals the size of two
cache lines) different offset. In the practical implemen-
tation, the modified get current() generates a new
current value by hashing it with its upper two bits. In
this way, when the scheduler continuously accesses the
task structures, cache conflicts never occur.

To apply our implementation to different cache configu-
rations, we have to be careful in our choice of address
bits to copy from the masked stack pointer to create the
colorized pointer to the current task structure. For 2n col-
ors, we would choose for copying the n bits immediately
higher than the bit b satisfying the following equation.

b = log2

cache size

cache associativity
(1)



Suppose the cache configuration is 512KB with four-way
set associative, the address difference of the two blocks on
a same line is always multiple of 128KB. This means the
lower 17 bits of the two block addresses are always same
and using these bits cannot contribute coloring. Thus, to
make the cache coloring effective, bits higher than the
17th bit should be used to colorize the structure.

And, we can control the number of colorings by the num-
ber of bits to be copied. For example, in order to imple-
ment eight colorings, we should use three bits for hashing
task structures (replacing “0x60” by “0xe0” in Figure 4
(b)).

The coloring kernel needs modifications in kernel source
files other than the one containing get current().
However, the patch file is only 225 lines.

3.3 Negative effect of cache coloring

While the coloring performs effectively so as to reduce
cache misses during traversing a run queue, there may be
a negative effect on performance. We will explain it with
Figure 5.

As shown in Figure 5 (a), many conflicts occur at four
cache lines on vanilla kernel. On the other hand, as shown
in Figure 5 (b), the number of cache lines used for vari-
ables, such as has cpu, are increased to 16. In this case,
there is a possibility that the data stored on a colored line
before coloring are unfortunately pushed out. As a result,
the total amount of bus traffic may increase and lower the
overall system performance.

In the latter section for performance evaluation, we will
study the effect of our coloring scheme and also analyze
such negative influence.

4 Performance Evaluation

The rest of this paper gives quantitative evaluation results
of the coloring kernel.

4.1 Methods

To verify the cache coloring improvement, we chose a
web server program as a scheduler intensive benchmark,

and evaluated the performance improvement. In the ex-
periment, Apache 1.3.19 is used as the web server, and
two Linux kernels are used for comparison: vanilla Linux
2.4.4 kernel and modified kernel with using 32 colors for
the task structure. The web clients ran WebBench 3.0
[6] to generate web requests for the server. The speci-
fication of the server machine is shown in Table 1. We
used three different sizes of L2 cache for evaluating the
coloring effects, and all of them have four-way set as-
sociative caches. During the benchmark execution, 256
client threads were running on 28 standard PCs and they
simultaneously sent requests to the server machine. On
the server-side, 256 to a maximum of 1024 server threads
(httpd) 1 were runnable and were linked on the run queue
of the server system.

CPU Pentium Pro 200MHz × 4
Memory 640MB
L2 cache 256KB, 512KB, 1024KB

4 way set associative
NIC Intel EtherExpress Pro/100 × 4

Table 1: The specification of the server machine

4.2 Results

At first, we show the performance of the coloring scheme
with three different cache configurations, in Figure 6. The
horizontal axis is the cache size, and the vertical axis is
the performance improvement ratio based on the vanilla
kernel. In the experiment, the maximum number of httpd
processes on a server is set to 256, 512 and 1024, and the
number of colors was fixed to 32. We show performance
data of the coloring scheme for three different cache con-
figurations.

Second, to measure the coloring effect directly, the num-
ber of bus transactions on the memory bus was measured
with 1024 httpd processes. In the Figure 7, bus transac-
tions are sorted in the following two categories:

colored lines: By coloring, as illustrated in Section 3.2,
the run queue list elements are distributed into sev-
eral cache lines. The total number of bus transactions
for these cache lines is expected to decrease due to
the coloring.

other lines: The bus transactions of the cache lines other
than the above.

1We changed MaxClients parameter value in the configuration
file of Apache.



Finally, we measured the number of L2 cache misses
and total L2 read counts during the execution of
list for each loop using the performance monitor-
ing counters built into the Pentium processor. This loop
traverses the global run queue. Table 2 gives the average
of L2 cache miss ratio with three cache sizes. The miss
ratio is calculated by the following equation:

L2 cache miss ratio =
L2 cache miss counts

L2 read counts
(2)
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httpd processes)

At an L2 cache size of 256KB, we see little or no perfor-
mance improvement from colorizing (Fig 6). In fact, the
number of memory bus transactions per request increased
slightly (Fig 7). This is the negative effect of coloring
described in Section 3.3. In the case of 32 colorings,
(256KB/8KB) × 32colors = 1024 processes ideally
should be stored in a cache memory. As shown in Table 2,
however, the ratio of L2 cache miss in list for each

256 KB 512 KB 1024 KB

vanilla 99.7% 99.6% 99.5%
32 coloring 82.7% 35.8% 8.2%

Table 2: L2 cache miss ratio during searching the run
queue (1024 httpd processes)

loop, achieves only 17%-age points reduction. This is be-
cause all of task structures are not always contiguously al-
located in main memory. Therefore the theoretically pos-
sible number of task structures was not stored in cache
memory. Since the effect of coloring is partially canceled
by the negative effect of increasing bus transactions, there
was less performance improvement in the case of 256KB
L2 cache.

On the other hand, in Figure 6, significant improvement
is observed with both 512KB and 1024KB L2 cache size.
The 32 coloring kernel achieves a maximum of 23.1% and
42.3% performance improvement compared to the vanilla
one. Also the cache miss ratio is dramatically reduced.
Without coloring, the cache miss rate was 99.5% for L2
accesses. Using 32 colors, the L2 cache miss rate de-
creased to 35.8% and 8.2% with 512KB and 1024KB L2
cache, respectively. As a result, the number of bus trans-
actions for colored cache lines decreases by 33.3% and
73.0% compared to the vanilla kernel (Fig. 7).

As shown above, the cache coloring is more effective for
a large cache size, because the large cache area can be
utilized to reduce cache conflicts for the run queue.

4.3 The relationship between the number of
processes and the number of colorings

In this section, we show the performance difference as the
number of colors changes.

By n coloring, the single severely conflicting line in a cur-
rent scheduler is distributed into n lines. To minimize to-
tal cache conflicts, the number of colors should satisfy the
following equation:

c ≥ p

(s/8[KB])
(3)

In this equation, c, p, and s are the number of colors, the
number of processes, and the cache size in KB, respec-
tively. 8KB is the Linux kernel stack size. Ideally, a cache
memory can store s/8 kernel stacks. For example, in the
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Figure 8: The number of bus transactions and performance changing the number of colorings

case of 1024 processes running on the 512KB cache sys-
tem, 16 or more colors can prevent conflicts.

To verify the model, we measured the performance vary-
ing both the number of colors (4, 8, 16, and 32) and the
number of httpd processes (256, 512, and 1024). We used
512KB and 1024KB L2 cache system for the experiment.
Figure 8 shows the result of web processing performance
and the number of bus transactions. In these graphs, c n
denotes n-coloring kernel.

At first, we discuss the case of 512KB cache size. Using
the equation (3), c = 4, 8, and 16 colors should be required
as a minimum in the case of 256, 512 and 1024 running
processes, respectively. As shown in Figure 8 (a), the re-
sult almost confirms this requirement: When the number
of the coloring is less than the above requirement, the per-
formance is not improved. As the number of coloring in-
crease above the value c of the equation (3), the number
of bus transactions for the colored line sharply decreases
and the performance improves.

The coloring effect on 1024 KB cache size showed a sim-
ilar relation between the performance and the number of
colorings. 2, 4, and 8 colorings should be used when 256,
512, and 1024 processes are running on a system, respec-
tively. The graph in Figure 8 (b) shows that the number of
bus transactions decreases significantly when more than
2, 4, and 8 coloring is used and the total performance im-
proves.

In order for the coloring scheme to be effective, the num-
ber of colors must be larger than the threshold selected by
equation (3). Otherwise, the effect of the coloring scheme

is hindered by the side-effect of increasing bus transac-
tions with higher cache conflicts.

5 Scalability enhancement with coloring

In this section, we describe the effect of coloring from the
viewpoint of scalability. We find that our coloring method
is effective in the case of many CPUs.

5.1 Experimental Environment and Bench-
marks

The experimental environment is shown in Table 3 and
we used the 2.4.4 distribution of the Linux kernel. To
evaluate the effect of our coloring method, we ran the fol-
lowing two benchmarks on an 8-way IA server machine:
WebBench 3.0 and Chat micro benchmark [7, 8, 9]. A
lot of processes are created when these benchmarks are
running. In particular, since the run queue length of Chat
is longer than that of WebBench, lock contention is ex-
pected to be higher. We can expect that the coloring effect
in Chat micro benchmark shows larger scalability than in
WebBench.

In the case of WebBench, 256 maximum client-threads
running on 28 standard PCs, simultaneously send requests
to the server machine. During our experimentation, 256
httpd processes are always runnable on the server ma-
chine.



1 CPU 2 CPUs 3 CPUs 4 CPUs 5 CPUs 6 CPUs 7 CPUs 8 CPUs

32 coloring 8.2% 13.3% 15.8% 17.6% 18.0% 20.6% 22.6% 23.3%
Multi-Queue –3.0% 13.6% 18.2% 21.7% 23.8% 26.9% 28.7% 30.6%

Table 4: Speeding up to vanilla scheduler (WebBench)

CPU Pentium III Xeon 550MHz × 8
Memory 1GB
L2 cache 1024KB

(4-way set associative)
NIC Netgear GA622T (1GbE) × 4

Table 3: The specification of the server machine

The Chat micro benchmark is a stand-alone type bench-
mark, and no client machine is used. This benchmark sim-
ulates chat rooms with multiple users exchanging mes-
sages using TCP sockets. Each chat room consists of 20
users, and each user broadcasts a number of 100 byte mes-
sages in the room. To handle message exchange, one user
program creates four threads. Thus 80 threads are cre-
ated per room. The characteristic parameters of the Chat
micro benchmark are the number of rooms and the num-
ber of messages per user. We choose 30 rooms and 300
messages per user as parameters, so that 2400 processes
(threads) are generated on a system during experimenta-
tion.

In this research, we also evaluated the multi-queue [8] (we
called MQ) scheduler proposed by IBM, which is an al-
ternative to vanilla scheduler. MQ scheduler separates the
run queue and the run queue lock for each CPU in the
system.

5.2 Result

5.2.1 WebBench

Figure 9 shows WebBench results for the following three
kernel: standard kernel (vanilla), 32 coloring kernel (c32),
and multi-queue scheduler kernel (MQ). Table 4 shows
performance gains of c32 and MQ compared with vanilla.

We can see in this graph that both of c32 and MQ show
better performance than vanilla. In Table 4, c32 and MQ
achieves maximum of 23.3% and 30.6% improvement on
an 8-way, respectively. In fact, MQ shows more perfor-
mance improvement than c32. However, MQ requires
more extensive changes to be implemented than c32. Al-
though requiring less modification, c32 nearly achieves
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the performance improvement of MQ. Furthermore, c32
achieves speedup over all of the CPU set. In contrast,
MQ’s performance drops on single CPU system.

In Table 4, as the number of CPUs increases, c32 gains
larger speeding up. When the number of CPUs is one, the
performance gains is 8.2%. When the number of CPUs
becomes 8, the performance gains 23.3%. The major rea-
son is the improved lock statistics. The reduction of cache
misses in scheduler makes the traversal time shorter and
dramatically decreases the holding time for the run queue
lock. Thus, our coloring method could perform more ef-
fectively on a SMP system rather than a uniprocessor sys-
tem.

To confirm this, we also measured following two charac-
teristics.

L2 cache miss ratio: measuring the number of L2 cache
miss ratio during the execution of list for each
loop. The miss ratio is calculated by the equation (1)
as described in Section 4.2. We used performance
monitoring counters built into the Pentium processor.

Lock hold time and lock contention: measuring fol-
lowing two statistics: (1) the time that the run queue
lock is held, and (2) the fraction of lock requests
that found the run queue lock was busy when it was
requested. These information are measured by using



1CPU 2 CPUs 3 CPUs 4 CPUs 5 CPUs 6 CPUs 7 CPUs 8 CPUs

vanilla 92.4% 98.0% 98.0% 92.4% 96.2% 94.6% 92.3% 93.9%
32 coloring 6.0% 7.5% 6.8% 7.2% 6.6% 7.4% 11.1% 13.7%

Table 5: L2 cache miss ratio during run queue traversal (WebBench)

2 CPUs 3 CPUs 4 CPUs 5 CPUs 6 CPUs 7 CPUs 8 CPUs

Contention 9.2% 15.4% 19.7% 22.9% 27.2% 35.9% 45.6%
vanilla Hold Mean [us] 42 40 40 41 43 43 36

Hold Max [us] 133 137 143 157 153 153 156
Contention 2.3% 4.1% 6.0% 7.2% 9.3% 14.0% 23.4%

32 coloring Hold Mean [us] 12 12 13 13 13 11 13
Hold Max [us] 112 129 113 135 132 78 80

Table 6: lock statistics for run queue lock (WebBench)

Lockmeter tool [10].

The results are shown in Table 5 and 6, respectively. In
the case of vanilla kernel, the list for each() loop
involves potentially large cache misses as seen in Table
5, resulting more than 90% cache miss ratio. In contrast,
32 coloring shows substantial reduction to about 10% on
any number of CPUs system. Moreover, in Table 6, both
of the mean of lock hold time and the lock contention
are largely reduced on any number of CPUs system by
using 32 coloring. The lock contention is reduced from
45.6% to 23.4% on an 8-way system. This leads to better
scalability than vanilla kernel.

5.2.2 Chat

Figure 10 shows the throughput performance on the stan-
dard kernel (vanilla), 32 coloring kernel (c32), and multi-
queue scheduler kernel (MQ).

As expected, c32 shows significantly better throughput
than vanilla. Vanilla kernel slightly scales up to 4 CPUs,
but its throughput performance starts dropping from 5
CPUs upward. On the contrary, c32 scales up to 6 CPUs
which provides 89.6% throughput improvement com-
pared to vanilla. MQ gains the best throughput among
these three kernels.

As similar in WebBench, we collected information for L2
cache miss ratio and lock statistics. The results are shown
in Table 7 and 8, respectively. We can see that there is a
substantial reduction in L2 cache miss ratio on any num-
ber of CPUs, leading to speedup of the run queue traver-
sal. This result shows that the lock hold time is reduced
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Figure 10: Chat Performance (30 rooms, 300 messages)

from 40us to 14us on the 8 CPUs system by the color-
ing scheme. The lock contention is also decreased from
85.8% on vanilla to 69.7% on c32. The run queue lock
contention of Chat micro benchmark is higher than that
of WebBench.

6 Related work

Several schemes for speeding up Linux scheduler have
been proposed.

Kravetz et al. proposed the multi-queue scheduler to en-
hance scalability of the Linux 2.4.x on large scale SMP
machines [8]. The multi-queue scheduler separates the
global run queue into a number of queues and distributes
them to each CPU. Each CPU maintains its own run
queue. This scheduler aims to reduce the run queue lock



1CPU 2 CPUs 3 CPUs 4 CPUs 5 CPUs 6 CPUs 7 CPUs 8 CPUs

vanilla 99.7% 99.8% 76.4% 98.8% 64.5% 85.3% 94.4% 84.8%
32 coloring 3.2% 4.6% 2.8% 2.4% 5.8% 3.6% 2.8% 3.3%

Table 7: L2 cache miss ratio during run queue traversal (Chat)

2 CPUs 3 CPUs 4 CPUs 5 CPUs 6 CPUs 7 CPUs 8 CPUs

Contention 33.0% 48.4% 51.9% 73.0% 75.0% 85.2% 85.8%
vanilla Hold Mean [us] 113 51 32 50 34 54 40

Hold Max [us] 352 196 125 186 147 270 155
Contention 23.6% 38.7% 48.3% 56.4% 60.6% 61.9% 69.7%

32 coloring Hold Mean [us] 26 25 18 19 17 13 14
Hold Max [us] 235 215 192 200 168 133 166

Table 8: lock statistics for run queue lock (Chat)

contention among processors. On the other hand, our col-
oring scheme aims to reduce cache conflicts during the
run queue traversal. These two methods have different
purposes and are orthogonal with each other. Further-
more, our coloring scheme can also be merged with the
multi-queue scheduler and accelerate its performance.

Molloy et al. proposed the ELSC scheduler [11]. This
scheduler focuses on pre-calculating base priorities and
sorting the run queue for efficient task selection. The base
priority is calculated by variables, such as counter and
priority, which do not change while the runnable task
is not running on a processor. This scheduler maintains a
table which is sorted in the base priority. Each entry of
the table contains a double-linked list which involves pro-
cesses with same priority. The Priority Level Scheduler
(PLS) [8] is proposed as a similar scheme. Both ELSC
and PLS can make scheduling decisions faster, but can-
not eliminate run queue lock contention, therefore do not
show further scalability as the number of CPUs increases.

In [12], Sears has pointed out severe cache misses, which
occur in the current scheduler, and provided the solution
by using a prefetch technique. This improvement has al-
ready been merged to the latest kernel (after 2.4.10 ver-
sion). However, in order for the prefetch technique to per-
form efficiently, the memory access latency and good-
ness() execution must overlap almost perfectly. The
potential problem of this method is that these values de-
pends on the memory system configuration.

Development of the Linux kernel is performed very
rapidly on the Linux kernel mailing list. We have already
contributed our scheme as a patch. Concurrently, Spraul
has also contributed a patch with another implementation
for coloring task structures. In his implementation, the

kernel allocates task structures through the Slab Alloca-
tor [4, 13]. His implementation does not fix the number
of colors nor does not depend on the cache configuration.
In this respect, it is much more general than ours. On
the other hand, our approach needs only a small modifi-
cation to get current() function, and the coloring ef-
fect could be quickly verified. Using our implementation,
we can control the number of colors. Therefore, we could
analyze the effect of the coloring, reduction of bus traffic,
L2 cache misses and lock contentions, as a function of the
number of colors.

7 Conclusions

We showed in this paper that the current Linux kernel po-
tentially has scalability problem due to severe cache line
conflicts from the placement of task structures in physical
memory. We observed memory bus transactions on real
SMP server systems and confirmed that large number of
cache misses occur in the scheduler under heavy work-
load.

To address this issue, we proposed and implemented
the cache coloring for a task structure. The evalua-
tion result of this implementation demonstrates that the
cache miss ratio while traversing the run queue is signif-
icantly reduced and the scheduling speed is enhanced. In
WebBench, the web transaction performance on the col-
oring kernel achieved maximum of 42.3% improvement
on 4-way Pentium Pro 200MHz system and 23.3% im-
provement on 8-way Pentium III Xeon 550MHz system.
In Chat benchmark, the message throughput on the color-
ing kernel showed a maximum of 89.6% improvement on
8-way Pentium III system.



Reduction of cache misses can lead to decreasing run
queue traversal time. On a SMP system this results in
decreasing the lock hold time and lock contention. This
is the effect of coloring on a large scale SMP machine.
We verified these effects on an 8-way system, and found
that the coloring scheme achieves better scalability than
the standard kernel.

On the other hand, there is potential disadvantage caused
by coloring: useful data are replaced on colored lines. To
avoid this problem, we provided a simple model to de-
cide the appropriate number of colorings, and verified the
model with the bus transactions data observed on a real
system.

As the gap between processor and memory speed grows
wider the cache conflict issue caused by the current sched-
uler becomes more serious. Our coloring scheme is an
essential technique for ameliorating this issue. The col-
oring scheme patch is contributed to the open source
community, and is freely available for use and modi-
fication. The current patch can be downloaded from
http://www.labs.fujitsu.com/en/techinfo/linux/.
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